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Scientific evolutionary pathways: identifying and visualizing relationships 

for scientific topics 

Abstract  

Whereas traditional science maps emphasize citation statistics and static relationships, this paper presents a 

term-based method to identify and visualize the evolutionary pathways of scientific topics in a series of time 

slices. First, we create a data pre-processing model for accurate term cleaning, consolidating, and clustering. 

Then, we construct a simulated data streaming function and introduce a learning process to train a relationship 

identification function to adapt to changing environments in real time, where relationships of topic evolution, 

fusion, death, and novelty are identified. The main result of the method is a map of scientific evolutionary 

pathways. The visual routines provide a way to indicate the interactions among scientific subjects and a version 

in a series of time slices helps further illustrate such evolutionary pathways in detail. The detailed outline offers 

sufficient statistical information to delve into scientific topics and routines and then helps address meaningful 

insights with the assistance of expert knowledge. This empirical study focuses on scientific proposals granted by 

the United States National Science Foundation, and demonstrates the feasibility and reliability. Our method 

could be widely applied to a range of science, technology, and innovation policy research, and offer insight into 

the evolutionary pathways of scientific activities.  

Keywords Topic maps; Bibliometrics; Cluster analysis.  

Introduction 

Science maps are spatial representations of relationships among disciplines, fields, specialities, and individual 

papers or authors (Small 1999), and are promising for visualizing the extent and structure of large-scale data to 

help understand scientific activities, innovative pathways, and interactive relationships (Börner 2014). Similarity 

measures are the main analytic approach for science maps, and include many bibliometric indicators (Rafols et 

al. 2010), such as bibliographic coupling (Kessler 1963), citation analysis (Garfield et al. 1964), co-citation 

analysis (Small 1973), co-word analysis (Callon et al. 1983), and co-author analysis (Glänzel 2001). Since the 

1970s, science maps have achieved great success in both theoretical research and practical applications. The 

rapid growth of information technology (IT), especially information visualization techniques, helps further 

support the increasing need for these kinds of relational studies.  

Citation- and term-based techniques are considered to be the two main parallel technical categories for mapping 

science. The former was first used in Garfield’s historiographic map (Garfield et al. 1964) and Henry Small 

strengthened the approach by exploring the relationships between the publications that were co-cited frequently 

(Small 1973). However, critical comments exist, e.g., the relationship between a reference and the originality, 

importance or even the quality of that work (Okubo 1997), the difference between the source documents within 

technical and applied fields (Rip 1988), and the bias of databases (De Bellis 2009). As natural language 

processing (NLP) techniques have developed, terms have become a fast way to uncover meaningful concepts 

from the large volume of textual records (Porter and Detampel 1995), and the time information of the terms 

derived from multi-level entities would allow an analysis of the dynamics of scientific systems (Tijssen and Van 

Raan 1994). Although citation-based approaches demonstrate great power for creating science maps, it is widely 

believed that the Pandora’s box of term-based approaches, in the age of big data, will be opened by modern IT 

techniques such as large-scale quantum computing, machine learning, and convolutional networks.  

Despite the ability of capturing scientific interactions, it is still challenging to identify evolutionary relationships 

using science maps. Clearly, the evolution of science, technology, & innovation (ST&I) never stops, and 

accumulative changes may induce evolution or perhaps even disruptive revolution (Kostoff et al. 2004). 

Addressing these concerns, the main objective of this paper is to introduce a learning technique to identify the 

evolutionary relationships (e.g., topic evolution, fusion, death, and novelty) between scientific topics and 

visualize such relationships in a map of scientific evolutionary pathways (SEP), where terms and their co-

occurrence distributions are involved. In terms of technical bibliometric issues, we attempt to handle the 

challenges via the following efforts: 1) applying a term clumping process (Zhang et al. 2014a) to effectively 

clean noisy terms; 2) introducing a K-means clustering approach (Zhang et al. 2016) for high-accurate topic 

gathering; and, in particular, 3) designing a learning process to identify the evolutionary relationships and train 

related functions to adapt to changing environments in real time.  

The main contributions of this study are: 1) a term-based science map to trace scientific evolutionary pathways 

with both visual routines and detailed outlines; and 2) a learning process to introduce machine learning 

techniques to investigate topic analysis in a changing environment over time. Considering the varied 

backgrounds of our audience, we have simplified the technical details and demonstrate our method via a case 



study of the United States (US) National Science Foundation (NSF) Awards. The resulting analysis illustrates 

the landscape of the evolution of the US’s scientific activities and could be a beneficial tool in a wide range of 

ST&I policy research e.g., locating hotspots, tracing emerging trends, and collecting insights for specific R&D 

needs. 

Science Maps and Related Bibliometric Techniques 

Science maps are rooted in Henry Small’s co-citation studies in the 1970s (Small and Griffith 1974), which 

could be generally described as graphic references for scientific fields or portfolios that are used to chart 

strategic trajectories, locate emerging research frontiers, and profile insights into specific portfolios (Rafols et al. 

2010; Börner et al. 2012). This paper reviews science maps via related bibliometric techniques, where citation 

and co-citation analysis and co-word analysis are highlighted. 

Citation and Co-citation Analysis 

The origin of citation analysis is Garfield’s historiographic map (Garfield et al. 1964). Its informetric analytic 

software HistCite (Garfield and Pudovkin 2004) further enhanced such efforts and Lucio-Arias and Leydesdorff 

(2008) applied main-path analysis to retrieve the structural backbone of a selected scientific field. CiteSpace is 

another significant contribution (Chen 2006), which divides a time span into several slices and detects certain 

emerging trends (Chen et al. 2010). 

Co-citation analysis continues the traditions of the Institute of Scientific Information (ISI) and includes some 

notable work. Small (1999) first presented a science map for entire scientific subjects using a large-scale 

publication dataset. Boyack et al. (2005) extended this approach by addressing insights into both the inter-

citation and co-citation links between scientific journals. Leydesdorff and Rafols (2009) introduced ISI subject 

categories and proposed a citation-based overlay map to analyze interdisciplinary relationships. Their effort was 

further associated with multi-dimensional indicators [e.g. international patent classification (IPC) code (Kay et 

al. 2014; Leydesdorff et al. 2014) and geographical maps (Leydesdorff and Bornmann 2012)]. 

Co-word Analysis 

Co-word information was first used to measure relationships between clusters of topics that represent a series of 

scientific sub-domains and areas (Noyons and van Raan 1998b). Significant pioneering endeavours are mostly 

credited to Van Raan and his colleagues at Leiden University (Peters and van Raan 1993; Noyons and van Raan 

1998a; Noyons 2001). However, compared to citations, the relationships derived from semantic structures are 

not as direct and clear as citation links. IT development provides significant opportunities to improve the 

computation of term identification and clustering (Noyons and van Raan 1998b; Zhu and Porter 2002; van Eck 

et al. 2010). In recent years, the latent Dirichlet allocation approach (Blei et al. 2003) has played an active role 

in science maps (Yau et al. 2014; Suominen and Toivanen 2015). One important piece of software is 

VantagePoint, which provides systematic functions for term-based analysis. The attempts to combine co-word 

analysis with citation and co-citation analysis began around 2000 (Noyons et al. 1999), and were then associated 

with main-path analysis (Calero-Medina and Noyons 2008). The software VOSviewer (Waltman et al. 2010), 

which defines association links with co-word, co-citation, and bibliographic couplings and visualizes grouped 

nodes as networks, is an important representation of such efforts. 

Validation of Science Maps 

Boyack and Klavans contributed ground-breaking work in the validation of science maps (Boyack et al. 2005; 

Klavans and Boyack 2006; Boyack and Klavans 2010; Boyack et al. 2011). They compared the accuracy of 

similarity measurements for topic identification, and extended these comparisons of science maps to represent 

research fronts via diverse indicator coupling. Their most recent study indicates that direct citation analysis is 

better for direct communication and detecting disciplines than co-citation analysis (Klavans and Boyack 2016). 

Methodology of Scientific Evolutionary Pathways 

This paper proposes a method for composing a science map that identifies and visualizes the evolutionary 

relationships of scientific activities. Our method, called scientific evolutionary pathways (SEP), includes a data 

pre-processing model, a relationship identification model, and a visualization model, as shown in Fig. 1.   



 

Fig. 1. The framework of the scientific evolutionary pathways. 

Data Pre-processing Model 

Our method is designed for ST&I textual data, e.g., publications, patents, and academic proposals, but it is still 

necessary to note that diverse emphases and styles of term composition might exist in diverse ST&I textual data 

and when applying our method to different databases, sufficient investigations are required. Generally, the data 

pre-processing model formats the raw data into our favoured structures and draws upon several of our previous 

endeavours to achieve this goal. 

An NLP technique is used to retrieve terms, after which a term clumping process (Zhang et al. 2014a) removes 

meaningless noise and consolidates synonyms to reduce the number of terms from millions (or billions) to 

thousands. The main steps of the term clumping process include: thesaurus-based term removal, knowledge-

based term removal and consolidation (e.g., to consolidate certain technological synonyms), and association 

rule-based term consolidation (e.g., to consolidate terms which share certain individual words).  



A K-means-based clustering approach (Zhang et al. 2016) follows, which includes a validation measure function 

and a feature selection and weighting function. We design methods to blend the general features (e.g., title and 

abstract terms) and special features (e.g., specific classification codes of a database), and highlight special 

features by weights. Then, based on a labelled sample dataset, we exhaustively run all possible combinations of 

a feature assembled set and decide a K value in a given interval with a preference for clustering accuracy, hence 

the validation measurement is used to identify the best combination. This clustering approach groups records of 

the initial batch into several topics.  

Relationship Identification Model 

This model identifies the following evolutionary relationships, with a sample shown in Fig. 2: 

 Novelty (white node): a new topic is generated without any predecessors. Our model identifies topics 

that are generated suddenly and which share low or no similarities with existing topics as novelty. Thus, 

a novelty could be one which is related to something new that has never appeared before, or it also 

could be noise.  

 Topic evolution (node filled with spots): a new topic is generated from existing topics. When the 

similarity between existing topics and a new record cannot be maintained above a threshold, but it still 

stays at a controllable interval, we set the topics grouped by these records as evolutions and the 

relationships between a predecessor and its evolved topics are identified as parent-child pairs. 

 Topic Fusion (node filled with small grid): an existing topic fuses with another existing topic. However, 

identifying knowledge fusion is another difficult, but promising, research topic for current ST&I 

research, but we leave this task for further study.  

 Topic Death (grey node): topic death occurs if no new records are added for several sequential batches. 

 

Fig. 2. The types of evolutionary relationships. 

Topics are the main focus, and we list the features of a topic in Fig. 3. Our computation is mainly based on these 

features and detailed algorithms are presented in related functions.  

 

Fig. 3. The list of topic features. 

The learning process runs through the whole model, and the algorithm is described as follows: 

(1) Initialization function 



A. Batch setting 

In the initialization function, a batch setting determines how to divide the whole dataset into a number of small 

batches. Despite a strategy of setting window size
1
, we generally divide data by time, e.g. all records published 

in the same year are gathered in one batch. Given that the whole dataset 𝛩 is divided into 𝑛 batches, each batch 

𝐵 contains a number of records, where 𝐵(𝑖, 𝑗) denotes the 𝑗-th record of the 𝑖-th batch. We denote that 𝑁𝑢𝑚𝑡 is 

the total number of records in the 𝑡-th batch and 1 ≤ 𝑡 ≤ 𝑛, and the input data stream of the learning process 

can be described as: 

𝐵(1,1),… , 𝐵(1, 𝑁𝑢𝑚1), 𝐵(2,1)… ,𝐵(2,𝑁𝑢𝑚2),… , 𝐵(𝑡, 1),… , 𝐵(𝑡, 𝑁𝑢𝑚𝑡), … , 𝐵(𝑛, 1),… , 𝐵(𝑛, 𝑁𝑢𝑚𝑛) 

A record 𝐵(𝑡, 𝑥), 1 ≤ 𝑥 ≤ 𝑁𝑢𝑚𝑡 can be a term frequency-based vector �⃑� 𝐵(𝑡,𝑥) = {𝑣𝑡1 , 𝑣𝑡2 , … 𝑣𝑡𝑘
, … , 𝑣𝑡𝑚−1

, 𝑣𝑡𝑚}, 

where 𝑡𝑘 is the 𝑘-th term of the record 𝐵(𝑡, 𝑥) and 𝑣𝑡𝑘
is its value, e.g. raw term frequency or TFIDF value.  

B. Topic initialization 

Once a batch has been sequenced, the learning process iterates for each batch and accesses the records of the 

batch one by one. In each iteration (e.g. for the batch 𝐵𝑡+1), the initial topics 𝛹𝑡 = {𝜙1, 𝜙2, … , 𝜙𝑝, … , 𝜙𝑙−1, 𝜙𝑙}, 1 ≤

𝑝 ≤ 𝑙 are derived from the number of existing topics (i.e. not dead or fused) in previous batches, except for the 

first iteration, where 𝑙 is the local optimum 𝐾 defined in the K-means clustering approach. A series of topic 

features is then initialized. Let topic 𝜙𝑝  contain 𝑧  records  𝐵𝑖(𝑡, 𝑥), 1 ≤ 𝑖 ≤ 𝑧 , and, thus, the selected topic 

features are defined and calculated as: 

 The label: a prevalence value 𝑃(𝑡) (Zhang et al. 2014b) is used to select terms to represent a topic. 

When a topic is born, we label it with the highest prevalence-value term (or the text of certain special 

features) at that current time.  

 The centroid  C⃑ (ϕp): the mean of the term frequency-based vectors of all records in the topic, and is 

the mathematical representation of the topic, 

 𝐶 (𝜙𝑝) = 𝐴𝑣𝑔( 𝐵𝑖(𝑡, 𝑥)) =
1

𝑧
× ∑ �⃑� 𝐵𝑖(𝑡,𝑥)

𝑧

𝑖=1

 

 The boundary  𝑅(𝜙𝑝): the largest Euclidean distance between the centroid and the records, 

 𝑅(𝜙𝑝) = 𝑀𝑎𝑥 (𝐸𝑑 (𝜙𝑝, 𝐵𝑖(𝑡, 𝑥))) = 𝑀𝑎𝑥(| 𝐶 (𝜙𝑝) −  �⃑� 𝐵𝑖(𝑡,𝑥)|) 

 The TFIDF weighting  wtf−idf(ϕp): we apply a classical TFIDF formula (Salton and Buckley 1988) to 

weight a topic,  

 𝑤𝑡𝑓−𝑖𝑑𝑓(𝜙𝑝) =
𝑇𝑒𝑟𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝜙𝑝

𝑇𝑒𝑟𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛  𝛹𝑡
× 𝑙𝑜𝑔

𝑅𝑒𝑐𝑜𝑟𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝛹𝑡 

𝑅𝑒𝑐𝑜𝑟𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝜙𝑝
 

The initialization function is called at the beginning of each batch, and the features (e.g., centroid and boundary) 

of all existing topics are re-calculated to adapt to changing environments, since these newly assigned records 

can be accumulated to change the main content of a topic. Obviously, such efforts are within the scope of 

“training.” It is promising that such efforts directly improve the performance of the following analyses.  

(2) Similarity measure function 

A. Similarity-based record assignment 

For a new record 𝐵(𝑡 + 1, 𝑥), we first apply Salton’s cosine similarity measurement (Salton and McGill 1986) to 

calculate the similarity between 𝐵(𝑡 + 1, 𝑥) and all the existing topics. In particular, a time-based topic weighting 

approach is used to take the term’s timeliness into consideration, i.e., new terms are preferable to old ones. The 

similarity 𝑆 (𝜙𝑝, 𝐵(𝑡 + 1, 𝑥)) between the record B(t + 1, x) and the topic 𝜙𝑝 is calculated as: 

𝑆 (𝜙𝑝, 𝐵(𝑡 + 1, 𝑥)) =  𝑤𝛿(𝜙𝑝) × 𝑐𝑜𝑠( 𝐶 (𝜙𝑝),  �⃑� 𝐵(𝑡+1,𝑥)) = 𝑒𝑥𝑝 (−𝛿 × 𝑇(𝜙𝑝)) ×
 𝐶 (𝜙𝑝) ×  �⃑� 𝐵(𝑡+1,𝑥)

| 𝐶 (𝜙𝑝)|| �⃑� 𝐵(𝑡+1,𝑥)|
 

                                                      
1
 The batch setting is a general window-size problem. While reading a data stream, we need to determine the 

window size to decide how many data items we should read in one time, and deciding an ideal window-size 

requires experiments. 



where 𝑇(𝜙𝑝) is the time-gap (e.g. year) between the born batch of the topic 𝜙𝑝 and batch 𝐵𝑡+1, and 𝛿 is used as a 

sensitive parameter, that is, the larger 𝛿 is, the sooner old batches become unimportant.  

The record 𝐵(𝑡 + 1, 𝑥) is then assigned to the topic that shares the highest similarity value, and we assume the 

topic is 𝜙𝑝 and denote the Euclidean distance between them as 𝐸𝑑 (𝜙𝑝, 𝐵𝑖(𝑡 + 1, 𝑥)). We hypothesize a topic is a 

circle and the boundary is its radius, and then we set a threshold τ – evolutionary range – to draw a lower range 

and an upper range for the boundary. As shown in Fig. 4, three situations exist: 

 Situation 1 - 𝐸𝑑 (𝜙𝑝, 𝐵𝑖(𝑡 + 1, 𝑥)) ∈ (0,  𝑅(𝜙𝑝) × (1 − 𝜏)]: the distance is less than the lower range of the 

boundary, so we set the record as a normal newcomer to the topic 𝜙𝑝; 

 Situation 2- 𝐸𝑑 (𝜙𝑝, 𝐵𝑖(𝑡 + 1, 𝑥)) ∈ (𝑅(ϕp) × (1 − 𝜏),  𝑅(ϕp) × (1 + τ)]: the distance is between the lower 

and upper range, so we set the record as evolved; 

 Situation 3- 𝐸𝑑 (𝜙𝑝, 𝐵𝑖(𝑡 + 1, 𝑥)) ∈ ( 𝑅(ϕp) × (1 + τ), +∞) : the distance is larger than the upper range, 

so we set the record as novel. 

 

Fig. 4. The situations of evolution. 

B. Hierarchical agglomerative clustering  

There is no further operation for records in situation 1, but a hierarchical agglomerative clustering (HAC) 

approach is used to group the records in situation 2 and 3 separately. A basic HAC approach is applied which 

we briefly describe as follows: 1) to set each record as a cluster; 2) to calculate the similarities among clusters 

and group the two clusters with the highest similarity value; and 3) to iterate step 2 until the terminal condition. 

Generally, the threshold has a positive correlation with the topic number, i.e., the higher it is, the more evolved 

or novel the topic results, but we use a relatively objective way to eliminate such influence – the minimum 

similarity value among existing topics of the last is used, and once the highest similarity value between clusters 

is less than the threshold, HAC stops. 

The concerns about choosing a HAC approach include the following: 1) the K-means approach needs labelled 

sample data to decide the best K value in a given interval but this condition does not exist for the small datasets; 

and 2) it is not reasonable to set the topic number to a fixed value, e.g., in some batches, very few records are 

assigned to situation 2 or 3, but in some other batches, the record number is a little larger. Therefore, a dynamic 

topic number varying with actual conditions is more promising.  

C. Evolutionary relationship identification 

Generally, the topics grouped by the records in situation 2 are identified as “evolved topics” and their 

predecessors are set as parent topics, while the topics in situation 3 are identified as “novel topics” and have no 

parent topic. Specifically, referring to an interesting assumption that a “sleeping beauty” is an article that goes 

unnoticed (sleeps) for a long time and then, almost suddenly, attracts a lot of attention (van Raan 2004; van 

Raan 2016), we propose a design of “death and resurgence” to capture this phenomenon. After reading all the 

records in a batch and finishing the tasks of evolution and novelty identification, the topics that have not been 

assigned any new records in certain sequential batches are set as “dead topics.” Then, we measure the 

similarities
2
 between the new topics generated in the current batch and all the existing/dead topics. Once the 

                                                      
2
 Here we skip the aging function and directly apply the Cosine measure to the centroids of two topics, and 

focusing on topics with the same label, generally we add a weight to highlight our preference for consolidating 



previous topic that shares the highest similarity value with a new topic is not its parent, we consolidate the new 

topic with the previous one. In this circumstance, if the previous topic is a dead one, it is then resurged; if it is an 

existing topic, we set it as a confused topic. Note that in our current design, such consolidations miss all the 

information of a consolidated topic; thus, there is no topic with multiple parents.  

The iteration stops when the learning process has read all the records in the data stream, and the output of this 

model is a list of topics (with their features) and their relationships.  

Visualization Model 

Using the basic format of a network, we identify the topics as nodes and their evolutionary relationships as arcs, 

and weigh a node via its related topic’s TFIDF weighting. Then, Gephi (Bastian et al. 2009) is used to visualize 

the results and the SEP is generated. The SEP is considered as an objective exhibition of quantitative data and 

analysis, and we then suggest involving experts for further understanding and implementation, which would 

increase the potential of SEP for addressing insights into specific problems and phenomenon. 

Empirical Study: Scientific Evolutionary Pathways of the US NSF Awards 

This paper proposes a SEP map to provide a graph of the visual routines of the US’s scientific activities and a 

detailed outline of the interactions of a series of scientific topics. The US NSF receives approximately 40,000 

proposals per year, of which approximately 11,000 are granted. Considering the diverse purposes of different 

award types, e.g. education, travel funding, or academic conference organization, this paper concentrates on the 

standard grant, the largest part of the NSF Awards. The NSF categorizes awards given prior to 1976 as historical 

data and reports on the possible features missing from these “old” awards. This paper downloaded 388,909 

awards from 1976 to 2014, and after some irrelevant awards (e.g., travel supports and sponsorship of academic 

activities) were removed, a total of 243,606 awards remained. 

Data Pre-processing 

The data pre-processing model was applied to the title and abstract. We first ran the NLP function of 

VantagePoint
3
 to retrieve 2,898,868 abstract terms and 312,639 title terms. Then, Zhang et al. (2014a)'s term 

clumping process is used for term cleaning, which derived 178,262 distinct terms including 132,191 abstract 

terms and 62,089 title terms. Similar to IPCs, the US NSF Awards also have a systematic classification, e.g. 

program element code (PEC) and program reference code (PRC). We are aware of the value of the PEC and 

PRC for topic clustering and labelling, which provide a clearer taxonomy on naming classifications. Thus, we 

decide to label identified topics in all our models by the text of the highest prevalence-value PEC or PRC within 

the topic. 

In this case, we imported 3,418 distinct PECs and 1,803 distinct PRCs. We assembled the abstract terms, title 

terms, PECs, and PRCs as the features of a record, and a record-feature matrix was generated, involving 

4,414,646 cells. Since 1976 is the starting point of this data, we choose the 3,670 awards granted in 1976 to 

identify the initial topics. Following the general process of the clustering approach, we accumulated a 500-

award labelled sample data set and set the parameters as “K=9,” “TFIDF-weighted term,” and “abstract terms + 

inverse-ratio-weighted (title terms + PEC + PRC).” The initial 9 topics are: statistics, molecular biophysics, 

computer application research, renewable resources, polymers, metal & metallic nanostructure, geophysics, 

evolutionary processes cluster, and algebra & number theory.  

Relationship Identification 

We set the batch by year, resulting in 39 batches. The number of records in each batch varies and is 

approximately 10,000. Using the algorithm detailed in the methodology section: 1) for the exponential aging 

function 𝑒𝑥𝑝 (−𝑇(𝜙𝑝)), we choose a conservative option to let 𝛿 be 1 – we prefer the new terms but do not 

immediately ignore the old ones; 2) the threshold 𝜏 to determine the upper/lower range of the boundary for 

evolution/novelty identification was set as 10%; 3) the initial threshold for the terminal condition of the HAC 

approach, as we defined, is the minimum similarity among the initial topics. We also designed a function to 

detect changes in the minimum similarity in a series of batches, and once the amplitude is larger than 10%, we 

set the new value as the threshold, but the bottom line of the threshold cannot be less than the half of the initial 

one; 4) once a topic maintains its record number in two sequential batches (including the born batch), we set the 

                                                                                                                                                                     
such topics (but they are not always consolidated). Obviously, the weight will have a negative correlation with 

the final number of topics. 
3
 Since the term clumping process is to remove noise, the possible impacts resulting from diverse NLP functions 

can be ignored – a smart NLP function can lighten the stress, but a normal NLP function is also fine. The only 

requirement is that the output needs to be terms rather than individual words. 



topic as dead; and 5) a strategy of labelling topics is used where we use the text of the highest prevalence-value 

PEC or PRC to label a topic but we use the highest prevalence-value term if the PEC and PRC are not ranked in 

the top 3 list. 

As the results show, we generated 553 topics after the initial 9 ones, which included 30 novel and 523 evolved 

topics. Each topic, except the initial ones and the novel ones, had unique parent topics, and so were identified as 

evolutionary pathways. The batch when the topic was set as dead was also recorded. The statistical information 

of the 562 topics is given in Fig. 5. 

 

Fig. 5. The statistical information of the topics 

We divided the 562 topics into six categories: 1) always alive – these topics have been alive since being born 

and are considered the backbone of the US NSF’s scientific activities; 2) alive with resurgence – using the idea 

of “sleeping beauties” (van Raan 2004; van Raan 2016), it is interesting to assume that these topics might 

contain great potential for innovation; 3) dead with resurgence – an extension of the category “alive with 

resurgence”, but these topics had been dead and had not been resurged by 2014; 4) dead without resurgence – 

these topics could have been important at a previous time but their importance has decreased and their 

significance has not currently been recognized; 5) dead when born with child – these topics could be 

meaningless but we keep them because they have children and could act as certain conjunctions; and 6) dead 

when born with no child – we treat these topics as noise and delete them before visualization. 

Based on the six categories and the statistical information shown in Fig. 5, we observed certain interesting 

findings: 1) the topics dead when born with no child have the smallest mean of TFIDF values, and the smallest 

standard deviation which further indicates a relatively stable dynamic of these values. Thus, this could support 

our hypothesis that the topics belonging to this category could be noise; 2) the topics dead with resurgence and 

alive with resurgence up till 2014 had the highest means of TFIDF values and the longest survival length, and 

the topics dead with resurgence were ranked higher than the topics always alive and were even more stable. 

Such observations could be a good endorsement for the idea of “sleeping beauties;” 3) despite occupying nearly 

70% of both topic number and record number, the topics always alive might be not as important as we imagined 

and the same may apply to the topics dead without resurgence, which had an even lower TFIDF value than the 

mean of the total topics; and 4) generally a new topic survives 9 to 10 years, and if resurgence occurs, the 

survival length could extend to 12 to 17 years. When considering the life cycle of scientific activities, we might 

consider the length of the life cycle of a scholarly innovation granted by the US NSF to be around 9 years, that 

is, an innovation and its follow-up enhancement could last about 9 years, after which it might die until further 

significant innovation in this area appears again. 

Visualization 

Based on the topics (we removed the 53 topics in the category dead when born with no child and used the 

remaining 509 topics) and their evolutionary relationships, we generated a node list and an arc list as the inputs 

for Gephi (Bastian et al. 2009), where the TFIDF value of topics was used as the weights for the size of the 

nodes and the Gephi’s modularity function was applied to determine the color. The SEP is shown in Fig. 6 and 

is one of the outputs of our method. 

As the coloring strategy might influence readers, we discuss our selection as follows: the modularity function is 

based on a modularity optimization-based heuristic method (Blondel et al. 2008), which makes good sense when 

objectively seeking and grouping similar communities via the similarity values among topics (identified as the 



weights of arcs in Gephi). Other options for assigning colors could be based on the results of the HAC approach. 

When considering the granularity of these coloring strategies, only the “brother” topics which are generated by 

the same parent topic are painted the same color and such granularity could be too trivial. 

 

Fig. 6. The scientific evolutionary pathways for the US NSF Award data 

The Insights of the Scientific Evolutionary Pathways 

Visual Routines 

The graph of the visual routines is the main output of the SEP, which continues the traditions of science maps 

and address concerns on scientific activities and their evolutionary relationships in a landscape. We discuss the 

insights gained from the SEP in two parts: the distribution of disciplines and the version in time slices. 

1) The distribution of disciplines 

As shown in Fig. 6, we grouped the routines into seven clusters and briefly discuss each. 

 Cluster 1: Infrastructure – Described as one of the main responsibilities of the US NSF, this topic 

covers the construction of infrastructure for high school, universities, and academic institutions. It ran 

through the whole period, and, as time went on, this infrastructure diversified into detailed fields, e.g. 

electronic devices, sensors, and other applications.  

 Cluster 2: Computer Science – It is interesting that one of the branches in the topic “history & 

philosophy” is “networking research,” and the computer science subject stems almost entirely from this. 

Several pathways were identified: software engineering, computing processes, computer & information 

foundation, and computer systems. 

 Cluster 3: Social Science – Evolving from the general topic “history & philosophy”, this topic, also 

associated with science education, comprised many related topics, e.g. science, technology & society. 



 Cluster 4: Molecular Biophysics – it is difficult to completely distinguish between biology and 

chemistry, where strong interactions and interdisciplinary integrations tend to occur. Molecular 

biophysics was an initial topic in our settings, and its evolved topics included “biological and chemical 

separations,” “ecosystems,” “neuroendocrinology,” and “behavior systems,” where neuroscience is a 

significant direction for future biology studies.  

 Cluster 5: Applied Mathematics – Mathematics is widely used in multiple disciplines, e.g. software 

engineering and information technology, biology, and instrument development. This cluster includes a 

large range of scientific applications that deal with real-world needs through mathematical approaches. 

 Cluster 6:  Evolutionary Processes – This cluster also originated from an initial topic, which shared 

similarities with Cluster 4, but focused on Darwin’s evolution theory and on earth science, e.g. 

geochemistry, population dynamics, and biological oceanography.  

 Cluster 7: Industrial Engineering – A combination of management principles, system theory, 

mathematics, and engineering applications are grouped in this cluster, which are fundamental topics for 

modern industrial engineering research. Starting with the topic “thermal transport processes,” these 

topics are divided into two groups: theoretical research and applications.  

As shown in Fig. 6, education-related topics appear three times – “science education” in Cluster 3 and between 

Clusters 6 and 7, and “engineering education” located at the top of Cluster 4. This is definitely not due to 

confusion resulting from our topic-labelling approach. One important responsibility of the US NSF in 

progressing the US’s academic research and advanced technique development is to fund education. Despite an 

independent Directorate of Education & Human Resource, a large number of funding programs for fundamental 

education are allocated by other specific-subject-oriented directorates. As an example, a division of the 

Engineering Education and Centers is under the Directorate of Engineering, and obviously, the biological, 

chemical, and neuroscientific topics in Cluster 4 are important branches of engineering. Therefore, an 

explanation for such a phenomenon is that education-related programs were widely proposed in different 

directorates and different fields, which were evolved by or then evolved to related specific scientific topics.  

2) The SEP in Time Slices  

Aiming to better demonstrate the advantages of SEP in identifying evolutionary pathways, we set four time 

slices, shown in Fig. 7, to trace the evolution of scientific topics. The slice before 1980 is the beginning of the 

US NSF programs, and shows some early-stage topics, or, as we say, the predecessors of some routines. The 

slices for the 1990s and 2000s follow, and the newly generated topics indicate how the routines evolved. The 

fourth slice covering the period from 2001 to 2014 indicates the new ideas and innovation in recent years, and it 

is interesting to examine the in-depth implications. 

 Slice 1 (1976 to 1980): This period does not show any impressive innovations, when the US NSF 

focused on fundamental research, infrastructure construction, and education. 

 Slice 2 (1981 to 1990): Commercial innovation in infrastructure-related programs is one significant 

topic in this period, computer science started to appear, attempts at blending system theory with 

mathematics appeared, and earth science received increasing support.  

 Slice 3 (1991 to 2000): Biology, especially neuroscience, was the most rapidly developing discipline in 

the last decade of the 20
th

 century, since a large proportion of newly granted proposals related to this 

discipline. In the same period, engineering was also important and was widely applied to related 

subjects.   

 Slice 4 (2001 to 2014): Information technology and computer science dominated research at the 

beginning decade of the 21
st
 century. Another significant research was sustainability, as energy 

concerns had become an emerging need for the modern world, and engaging new techniques, materials, 

and products for environmental sustainability were on the US NSF’s agenda. 

We present the SEP in time slices to further demonstrate the feasibility of our method for exploring the 

evolutionary pathways for entire scientific fields and specific subjects. Similar to Fig. 6, the SEP provides an 

effective method to identify the relationships among scientific topics and visualize such topics and relationships 

in a landscape-type manner. 



 

Fig. 7. The scientific evolutionary pathways for the US NSF Award data in time slices. 

A Detailed Outline of Specific Topics 

SEP’s major advantage is its ability to trace the evolutionary pathways of scientific topics, however, the graph 

of the visual routines of the SEP is only able to reveal changes in topics and these changes mostly relate to 

labels. We selected the topic “evolutionary processes” and its related generations as an example to demonstrate 

changes in feature space (e.g. terms) and data distribution (e.g. the number of top terms) to indicate such 

evolutions.  

As one of the initial 9 topics, “evolutionary processes” was set to be dead in 1996, 2001, and 2011 respectively, 

but resurged twice before 2014. This topic is a good representative example to illustrate an entire evolutionary 

pathway with the dynamics of both feature space and data distribution. The topic contained 5922 records from 

24 batches, from which we retrieved 10475 title terms, 10353 abstract terms, 6567 PECs, and 805 PRCs. We 

combined the title and abstract terms to arrive at 3643 distinct terms that constitute the topic’s feature space. 

Since only 498 terms appeared more than 10 times, we consolidated the related terms into a group where a 

simple association rule was applied, i.e., terms sharing the same words or the same stem were grouped. As an 

example, terms such as “gene engineering” was first consolidated with the term “gene” since both terms shared 

the word “gene,” and then, based on the stem “*gene*,” all related terms were consolidated with the term 

“genetics” (the decision to choose either “gene” or “genetics” as the representation requires human intervention). 

Finally, we selected 7 groups to represent their principal features – ecological factors, molecular analyses, 

geography, population, genetics, evolution, and species.  

We recorded the term frequency of the principal features in each batch, and created a 100% stacked area chart, 

shown in Fig. 8. Given the records in 1976 were grouped as the initial topics, we skipped this batch and started 

the chart from 1977. Although the 7 principal features dominated the top of the feature space, it is obvious that 

their distributions kept changing over time. The label of the topic was “evolutionary processes,” and we set it to 

stable, but the main focus of this topic was different in diverse time intervals. As shown in Fig. 8, the proportion 



of species reduced dramatically, while some emerging subjects, e.g. genetics and molecular analyses, played 

increasingly important roles. Geography-related studies grew well at the beginning, but, this tendency weakened 

rapidly after 1984, and a similar situation also occurred with population. 

 

Fig. 8. The dynamics of the principal features’ distribution in the topic “evolutionary processes.” 

Aiming to better illustrate the change in the distributions, we magnified Fig. 6 and focused only on our selected 

topics, as shown in Fig. 9. 13 child topics were generated in diverse batches, most of which could be easily 

matched with the 7 principal features, e.g. population dynamics, geochemistry, and animal behavior. This 

phenomenon might explain how a new topic generates, that is, while new records are being assigned to a topic, 

the term composition of the topic also keeps changing (shown as Fig. 8), and such accumulative change finally 

leads to the generation of a child topic.  

 

Fig. 9. The next generation of the topic “evolutionary processes.” 

Such discoveries act as a good way to: address more details and concerns for specified subjects and fields; 

provide sufficient statistical information to trace detailed evolutionary pathways; and aid the understanding of 

the visual routines of the SEP.  

Case Study on the Routines of Big Data Research from 2009 to 2014 

Considering the breadth of our empirical study on the US NSF Awards from 1976 to 2014, we find it was not 

realistic to validate our results by manually reviewing the topics. Moreover, although Klavans and Boyack 

(2009) generated a consensus map to provide certain indicators for validating science maps, this approach was 

specifically designed for multidisciplinary studies and its main criteria can be summarized as: how many 

disciplines can be indicated from a science map (16 areas of science were pre-summarized) and can the real 

linkages between these disciplines be displayed correctly? However, these criteria do not exactly match the SEP, 

where we focus on the evolutionary relationships between scientific topics. Obviously, our definition of a 

scientific topic might cover certain disciplines and the evolutionary relationships between scientific topics could 

be both multidisciplinary and interdisciplinary interactions. Moreover, while comparing their 16 areas of science, 

the US NSF Awards exclude certain disciplines, e.g., infectious disease, medical specialities, and health services. 

At this stage, instead of quantitatively measuring the validation of our results, we instead apply a case study on 



the routines of big data research from 2010 to 2014. The main objectives of this case study are: 1) to 

demonstrate the reliability and robustness of the SEP; 2) to examine the role that the US NSF plays in 

implementing the Obama Administration’s Big Data Research and Development Initiative; and 3) to 

specifically focus on the evolutionary pathways of big data-related topics over the recent five years, which can 

be a practical application of the SEP and might be meaningful for science policy makers, program officers, and 

academic researchers in related areas. 

As shown in Fig. 7, the routines evolved by the topic “Communication & Information Foundations (CIF)” 

started after 2000 but grew rapidly over the next 15 years. Professionally, big data and related analytic 

techniques can only be a sub-category of CIF, but considering the extensive and in-depth influence of big data, 

we have named the entire routine big data research. These routines are shown in Fig. 10, where the red nodes 

indicate all topics generated before 2010 while the topics identified from 2010 to 2014 are shown in diverse 

colors.  

 

Fig. 10. The routines of big data-related topics (from 2010 to 2014) 

We first reviewed the CIF studies before 2010, which mainly related to topics on computer systems and 

theoretical foundations, and the most significant pilot studies during this period were the topics “cyber trust” and 

“robust intelligence.” On one hand, launched by the US NSF in late 2003, the cyber trust program involved 

certain divisions of the Directorate for Computer & Information Science & Engineering (CISE) (Landwehr 

2003). The archived programs in the US NSF indicated that cyber trust programs are open for applicants each 

year and they are available until 2016. Despite no significant new topics being generated after 2010, cyber trust 

programs integrated well with the scope of big data, and the state-of-the-art terms include: trustworthy 

computing, secure and trustworthy cyberspace, cyber security, digital privacy, etc.
4
. On the other hand, the 

robust intelligence program
5
 belongs to the division of Information & Intelligent Systems (IIS), and includes 

research areas such as artificial intelligence, robotics, human language research, and computational neuroscience. 

One new topic “real time” was generated from robust intelligence in 2013, and is one of the main attributes of 

big data analytic techniques. In addition, a nearby topic “Enhancing Access to the Radio Spectrum (EARS),” 

was a collaborative program involving three US NSF directorates
6
, and such collaboration was also motivated 

by the emerging requirements of big data analysis – exploring insights from unstructured data (Chui et al. 2011). 

Interesting topics generated in 2010 or after include: 1) high performance computing – despite appearing in 

early 2000s as “high performance computing centre,” evolving from topics related to wireless networks, control, 

and computational intelligence, this topic was consistent with the US NSF’s plan entitled “Advanced Computing 

Infrastructure: Vision and Strategic Plan” in Feb. 2012
7
 and specifically focused on expanding the use of high-

end resources to larger and more diverse communities; 2) exploiting parallelism and scalability – parallel 

computing is a big data-related technique that concerns not only new hardware architectures but also new 

concepts, models, and algorithms; 3) robotics – a “national robotics initiative” program was operated by the IIS 

                                                      
4
 More details can be found at the website: 

https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf.   
5
 A general history of the NSF’s robust intelligence program was recalled by Fu and Barton (2012). 

6
 Resources can be seen at the website: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503480. 

7
 Resources can be seen at the website: http://www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf.  

http://www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf


but it collaborated with not only other directorates of the US NSF but also with a wide range of US agencies, 

e.g., National Institutes of Health (NIH) and NASA
8
; and 4) smart and connected health – we specifically 

picked this topic since it involved direct collaboration
9
 between the US NSF and NIH, which was advanced by 

the Obama Admission’s big data program in 2012.  

As discussed above, the SEP can effectively identify emerging scientific topics and the case study provides 

meaningful evidence to endorse the reliability of our results. Meanwhile, the results address in-depth insights 

into the latest programs of the US NSF in big data research and offer efficient guidance for stakeholders in these 

areas.   

Discussion and Conclusions 

This paper proposed a SEP method to identify and visualize the relationships among scientific topics. We 

focused on the potential of terms derived from ST&I textual data via NLP techniques, and a learning process 

was introduced to trace the evolutionary relationships. We demonstrated our method using a case study of all 

proposals granted by the US NSF over the time period between 1976 and 2014. The results include a graph of 

visual routines to visualize the scientific evolutionary pathways of several grouped routines and a detailed 

outline of scientific topics with statistical information and insights.  

Potential for Term-based Science Maps 

Terms, as shown in the SEP, first provide an easy and meaningful way to label topics. A set of terms can 

constitute comprehensive semantic meanings and help to better understand the related topics, and, compared to 

citation linkages, the relationships between terms are easy to recognize manually. In particular, as one of the 

basic hypotheses of our method, a term is defined as the feature of SEP, and the dynamics of terms and their 

frequency result in the evolution of related scientific topics. In addition, as semantic elements, it also makes 

good sense to blend terms with other ST&I entities on science maps to link active agents with objects, e.g. who 

was the key player in this scientific arena and what is the relationship between the players, competitive or 

complementary? The development of NLP techniques greatly assists the retrieval of accurate terms, and 

clustering approaches in multiple dimensions effectively reduce negative influences from single or limited 

scopes. 

Benefits of Learning Process-based Bibliometrics 

Our endeavor to introduce machine learning techniques to deal with bibliometric problems is another exciting 

effort. Traditional bibliometric approaches analyze data in a stable environment, and the time and topic label is 

the only factor to identify the relationships between time interval and its forward or afterward topics. This 

design has been widely adopted in many bibliometric studies. However, it is not always correct to link topics 

with the same label yet diverse time intervals.  

Although our empirical data was offline, we simulated a data stream. Once we identified the initial topics in 

batch 0, our method followed the sequence of the batch and read its records one by one. Obviously, once new 

records were classified into an existing topic, the features of the topic changed. Our learning process focused on 

changing environments and adjusted topics in real time. Thus, the evolutionary relationship identified by our 

method not only pays attention to time, but takes these dynamic interactions into prior consideration. 

Implementation 

It is our belief that implementation of SEP is a beneficial development. The synergy between the visual routines 

and the detailed outline works well for tracing evolutionary pathways for both entire scientific subjects and 

selected ones. The SEP could be an effective tool by which to investigate a wide range of ST&I policy research, 

e.g. multidisciplinary interactions, scientific outputs evaluation for selected entities, and competitive technical 

intelligence studies. We list two possible implementations as follows:  

Multidisciplinary interactions – SEP has a great capability for exploring multidisciplinary interactions, as most 

science maps do. The empirical study and Fig. 6 demonstrated the feasibility of our SEP for such needs. It is 

easy to explore the interactions between diverse subjects and, in particular, detect interdisciplinary activities, e.g. 

topic evolution, confusion, and death. There are many substitutes to replace the US NSF Awards, and these data 

options provide different scopes and insights for multidisciplinary needs. 

                                                      
8
 Resources can be seen at the website: http://www.nsf.gov/pubs/2015/nsf15505/nsf15505.htm. 

9
 Resources could be seen at the website: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504739. 



Competitive and technical intelligence – SEP is helpful for locating the core scientific nodes in evolutionary 

pathways for selected paths, which would be significant materials, techniques, or algorithms. If we narrow the 

focus to specific entities, e.g. individuals, organizations, countries, and regions, the comparison study between 

different SEPs generated from diverse entities’ records, it would be promising to analyze potential collaborators 

and competitors. With the assistance of strategic analysis, such combination would be of great interest to 

stakeholders.  

Limitations of the SEP 

There are several limitations to our current methods: 1) the level of term cleaning heavily influences the results 

of the similarity measure. This is a general problem with term-based analysis. Although the term clumping 

process effectively helps reduce the term amount, there is still a gap between the ideal situation and current one; 

2) we apply a clustering algorithm to identify initial topics, but the parameter configuration of the clustering 

algorithm highly depends on the labelled sample data set; and 3) since most ST&I data is unlabelled and the 

interaction between semantic structures is complex, we could not find an efficient approach to validate the 

accuracy of our method or compare it with other approaches, except by expert knowledge.  
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