
A Measurement-Driven Process Model For Managing Inconsistent Software
Requirements

Kedian Mu
School of Mathematical Sciences

Peking University, Beijing 100871, P.R.China

Zhi Jin
School of Electronics Engineering and Computer Science

Peking University, Beijing 100871, P.R.China

Didar Zowghi
Department of Software Engineering

University of Technology, Sydney, NSW2007, Australia

Abstract

Inconsistency is a pervasive issue in software engineer-
ing. Both general rules of inconsistency management and
special case-based approaches to handling inconsistency
have recently been considered. In this paper, we present
a process model for handling requirements inconsistency
within the Viewpoints framework. In this process model,
when an inconsistency among viewpoints is detected, a set
of candidate proposals for handling inconsistency will be
generated using techniques from Multi-agent automated ne-
gotiations. The proposals are then prioritized using an inte-
grated measurement of inconsistencies. The viewpoints in-
volved in the inconsistency will then enter the negotiations
by being presented with the candidate proposals and thus
selecting an acceptable proposal based on the priorities as-
sociated with each candidate proposal. To facilitate usabil-
ity, in our process, we assume that the natural language re-
quirements statements are first translated into correspond-
ing logical formulas using a translator software. Moreover,
the candidate proposals for handling inconsistency are also
translated back from formal login into natural language be-
fore being presented to the analyst for selection.

Keywords: Inconsistency handling, automated negotia-
tion, measure of inconsistency.

1. Introduction

Support for evolutionary processes is needed at all stages
of software development but especially during Require-
ments Engineering (RE), since it is the requirements modifi-

cations that typically triggers other changes in the develop-
ment life cycle. Requirements often evolve because stake-
holders cannot possibly envision all the ways in which a
system can be utilized. The environment where the soft-
ware is situated frequently changes and so do the software
boundaries and business rules governing the utilization of
that software. Correspondingly, designs change because the
requirements change. Implementation has to be changed be-
cause designs evolve and defects have to be fixed.

Software Requirements Specification (SRS) plays an im-
portant role in the development process because it provides
a baseline for the development of all the subsequent artifacts
such as design, code and test cases. Eliciting and document-
ing high quality requirements as well as an effective and
efficient management of requirements process are consid-
ered crucial for software development projects. This state-
ment is supported by claims in the literature that ineffective
requirements management is identified as a major source
of problems [9] and that errors made during requirements
stage account for 40-60% of all defects found in software
projects [13]. It is generally accepted that it is much more
expensive to correct these types of errors if they are left un-
detected and leaked into the subsequent phases of software
development projects.

One of the main classes of defects in requirements speci-
fications is that of inconsistency. Inconsistency occurs when
a specification contains conflicting, contradictory descrip-
tions of the expected behavior of the system. Such contra-
dictory descriptions could be attributed to conflicting goals
between the various participants that contribute to the de-
velopment of the specification, namely the stakeholders. In-
consistencies could also result from uncoordinated changes

1

introduced in the specification during the usual evolution of
the requirements.

Inconsistency is considered as a serious problem and a
major source of risk that permeates all aspects of software
development. It makes it very hard to design and implement
a system that fully satisfies its specification. In some cases,
the programmer may arbitrarily resolve inconsistencies dur-
ing the implementation of the system. This means that one
of the conflicting requirements will be preferred over the
others, usually without performing an in-depth analysis of
the consequences, and without notifying the relevant stake-
holders. In worst-case scenarios, undetected inconsistency
may lead to incorrect and unreliable systems, whose faults
are only discovered after deployment when it is too late.

In requirements elicitation, it is often advocated to con-
sult all relevant stakeholders so that each can express his/her
own needs for the system under construction. In viewpoint-
based approaches to RE [2, 5, 11], it is recognized that all
the necessary requirements information cannot be elicited
by viewing the system from a single perspective and that re-
quirements have to be gathered and organized from a num-
ber of different viewpoints. A viewpoint is an encapsulation
(from a certain perspective), of partial information about
a system’s requirements. Information from different view-
points then has to be integrated into the final product of RE,
the SRS.

Inconsistency has been recognized as one of the impor-
tant issues in the Viewpoints framework[4, 8]. Handling in-
consistency arising in overlapped viewpoints is not just a
technical issue. It is also associated with a process of ne-
gotiation over actions of inconsistency handling between
related stakeholders. For each stakeholder, many factors
such as his expected benefits from the system-to-be, rela-
tive value of each requirement, cost of implementation, and
subjective preference and so on will have influence on his
trade-off decision on inconsistency handling. It is not easy
to persuade stakeholders to change their needs that have
been expressed. Thus, the final proposal could often become
an unsuccessful compromise between stakeholders. More-
over, lack of appropriate principles for evaluating negotia-
tion proposals prevents participants from reaching reason-
able agreement.

If a proposal for inconsistency handling is acceptable to a
particular viewpoint, then acceptance of the proposal should
intuitively result in decreasing the degree and significance
of inconsistency in overlapped viewpoints from the perspec-
tive of the viewpoint. Previously [14], we have argued that
the relative importance of requirements with regard to the
viewpoint always affects the evaluation of significance of
inconsistent viewpoints. Therefore, the appropriate princi-
ples for evaluating proposals of negotiation over inconsis-
tent viewpoints should also take the priority of requirements
statement into account.

Generally speaking, inconsistency management may be
divided into two parts, i.e. consistency checking and incon-
sistency handling. Consistency checking focuses on tech-
niques for detecting inconsistencies in a set of require-
ments. Typical techniques include logic-based approaches
[7, 8, 22] and consistency-rule-based approaches [15, 17].
For logic-based approaches, the term inconsistency is de-
fined as any situation in which some fact and its negation
can be simultaneously derived from the same requirements
collection. That is, inconsistency is referred to as logical
contradiction. Detecting this type of inconsistency entails
that the SRS should be represented in formal notation such
as logic. Writing and analyzing a specification in formal
logic requires very specialized knowledge and expertise.
Often, such expertise is not readily available, and this con-
tributes to the limited use of formal specification languages
in software industry. Translation between formal and infor-
mal languages is thus needed if we are to benefit from the
power of formal logic in management of inconsistencies in
requirements specifications and make automated inconsis-
tency management accessible to requirements engineers.

“Inconsistency Implies Actions” is recognized as a meta-
rule for inconsistency handling [6, 8]. That is, when incon-
sistencies are detected, some action should be performed to
manage these inconsistencies. However, identifying appro-
priate actions still remains a difficult, but important chal-
lenge [8] in software development. The choice of an incon-
sistency handling action always depends on the nature and
context of these inconsistencies [6, 4]. Thus it is difficult to
provide a universal approach to handling all types of incon-
sistencies in requirements engineering.

In this paper we build upon our previous work [14]
on an integrated measure-driven approach to handling in-
consistency in Viewpoints framework. Firstly, we present
our measure-driven framework for handling inconsistency
among multiple viewpoints using an integrated priority re-
lations among requirements that combines the notions of
degree and significance of inconsistencies. When an incon-
sistency among viewpoints is detected, a set of candidate
proposals for handling this inconsistency will be generated
using techniques from Multi-agent automated negotiations.
The viewpoints involved in the inconsistency will then enter
the negotiation by being presented with the candidate pro-
posals and thus selecting an acceptable proposal based on
the priorities of each candidate proposal.

In our recognition of the need for a software tool that
can fully automate the process of detection and handling of
requirements inconsistencies in an evolutionary viewpoints
framework, and motivated by our desire to make this tool
accessible to any requirements engineer, we thus propose
a process model for the management of requirements in-
consistencies. This process model will also include the de-
tails of generating a set of candidate proposals for handling

2

inconsistency and identifying an acceptable common pro-
posal. Our proposed process model will envisage the use of
a translator application (e.g. Carl in [7]), that would allow
requirements engineers interact in natural language with an
automated inconsistency handler application.

This paper is organized as follows. Section 2 presents a
measurement-driven process model for managing require-
ments inconsistencies. Section 3 gives some preliminar-
ies for formulating this process model. Section 4 describes
components of the process model. Section 5 gives a case
study to illustrate the use of the process model during the
requirements stage. Section 6 compares our process model
and related works. Finally, we conclude the paper in sec-
tion 7.

2. A Process Model for Handling Require-
ments Inconsistencies

We propose here a measurement-driven process for han-
dling requirements inconsistencies, as shown in fig. 1.

The input and the output of this process model are re-
quirements in natural language with priority and the consis-
tent requirements specification respectively. The activities
in this process model are as follows:

• requirement translation: translating the requirements with
priority in natural language submitted by the stakeholders
into requirements in logic with priority

• specification revision: revise the requirement set into an or-
dered requirement specification

• inconsistence management: the inconsistence manager con-
tains two parts. One is the detector and the other is the mea-
surer. The detector is designed for detecting the inconsis-
tency in requirements specification. Once there are inconsis-
tent requirements statements, it produces the minimum in-
consistent set and triggers the measurement of the inconsis-
tent degree. After measurement, an integrated inconsistence
degree will be obtained. If no inconsistence can be detected,
a consistent requirement specification can be obtained and
returned to the stakeholders

• negotiation: the negotiation mechanism is designed for gen-
erating the proposals from each individual viewpoint for re-
solving the inconsistences in the minimum inconsistence set.
And a group decision maker is also provided for getting
a sorted list of proposals by adopting some priority-based
strategies.

• proposal translation: translating the proposals into natural
langauge sentences so that the stakehoders can understand
them and then can make their choices by their own prefer-
ence.

Among these activities, the inconsistence management
and the negotiation are two key activities in this process.
The other activities are just included for communicating

Figure 1. A Process Model for Handling Re-
quirements Inconsistencies

with the stakeholders. They will not within the scope of this
paper.

3. Preliminaries for Formulating the Process

The principle of heterogeneity of representation al-
lows different viewpoints use different notations and
tools to represent their requirements during the require-
ments stage [16]. However, classical logic is appealing
for formal representation of requirements [8]. More-
over, in logic-based framework for representing require-
ments, reasoning about requirements is always based on
some facts that describe a certain scenario [8]. That im-

3

plies that checking consistency of requirements collections
considers ground formulas rather than unground formu-
las. These reasons make the classical logic the most conve-
nient to illustrate our approach, as will be shown in the rest
of the paper.

Let LΦ0 be the language composed from a set of classi-
cal atoms Φ0 and logical connectives {∨,∧,¬,→} and let
` be the classical consequence relation. Let α ∈ LΦ0 be a
classical formula and ∆ ⊆ LΦ0 a set of formulas in LΦ0 . In
this paper, we call ∆ a set of requirements while each for-
mula α ∈ ∆ represents a requirements statement.

Let V = {v1, v2, · · · , vn} be a set of viewpoints. For
each i (1 ≤ i ≤ n), Si is a set of requirements of vi.

Generally, the requirements specification could be repre-
sented by a n tuple 〈∆1, · · · ,∆n〉.

The term of inconsistency has different definitions in re-
quirements engineering [22]. Most logic-based works such
as [8, 22, 7] concentrated on a particular kind of inconsis-
tency, i.e. the logical contradiction: any situation in which
some fact α and its negation ¬α can be simultaneously de-
rived from the same requirements collection. In this paper,
we shall be also concerned with the logical contradiction. If
there is a formula α such that ∆ ` α and ∆ ` ¬α, then we
consider ∆ to be inconsistent and abbreviate α ∧ ¬α by ⊥.

It has been recognized that the relative priority of re-
quirements can help stakeholders resolve conflicts and
make some necessary trade-off decisions [20, 3]. A com-
mon approach to prioritizing requirements specifica-
tion is to group requirements into several priority cate-
gories, such as the most frequent three-level scale of {High,
Medium, Low} [20] and the IEEE recommended scale of
{Essential, Conditional, Optional} [10].

Let m, a natural number, be the scale of the priority and
L be {l0, · · · , lm−1}, a totally ordered finite set of m sym-
bolic values of the priorities, i.e. li < lj iff i < j. Further-
more, each symbolic value in L could associate with a lin-
guistic value. For example, we have a totally ordered set L
as L = {l0, l1, l2} where l0 : Low, l1 : Medium, l2 : High.
For example, if we assign l2 to a requirements statement α,
it means that α is one of the most important requirements
statements. Prioritization over ∆i is in essence to establish a
prioritization function Pi : ∆i → L by balancing the busi-
ness value of each requirements statement against its cost
and technique risk. Then in the Viewpoints framework, the
requirements specification with preference may be repre-
sented by 〈(∆1, P1), · · · , (∆n, Pn)〉, where Pi is the priori-
tizing function of viewpoint vi.

We consider each individual viewpoint as a negotiation
participant during the process of inconsistency handling.
And assume that they are negotiating over a finite set Ω of
possible modifications of requirements (which is referred to
as outcomes in [21]).

Negotiation proceeds in a series of rounds, where at each

round, every participant presents a proposal which is a sub-
set of Ω. And it is assumed that any outcome of the pro-
posal is acceptable to the offerer. As we use the classi-
cal logic-based negotiation language L proposed in [21],
the proposal a participant makes at each round is a for-
mula of L. Then each round could be described by a tuple
〈ϕ1, · · · , ϕn〉, where ϕi is the proposal presented by par-
ticipant i [21]. A negotiation history is a finite sequence of
rounds. Let ϕk

i be the proposal made by participant i in the
kth round, then a negotiation history could be viewed as the
following matrix of formulas of L [21]:

ϕ0
1 ϕ1

1 · · · ϕm
1

...
...

. . .
...

ϕ0
n ϕ1

n · · · ϕm
n .

In this paper, we use the combination of the two above
agreement conditions mentioned in [21], that is, the agree-
ment will be reached if and only if (ϕm

1 ∧· · ·∧ϕm
n)∧(ϕm

1 ⇔
· · · ⇔ ϕm

n) is satisfiable. This agreement condition guaran-
tees that if an agreement is reached in negotiation over in-
consistency handling, then all the viewpoints involved will
undertake a feasible global proposal of inconsistency han-
dling and they should agree on the meanings of the pro-
posal.

4. Components of Tool Set

We discuss components of tool set for supporting ap-
plication of the process model to requirements engineering
practice. A translator, an inconsistency manager, and a ne-
gotiation controller may be considered as the most impor-
tant components of the process. As mentioned earlier, the
process model would allow requirements engineers interact
in natural language with an automated inconsistency han-
dler. Consequently, a translator for mapping requirements in
natural language into logic formulas (e.g. Carl in [7]) would
be built in the process. In this paper, we focus on the incon-
sistency manager and the negotiation controller.

4.1. Inconsistency manager

The inconsistency manager consists of an inconsistency
detector and an inconsistency measurer.
Inconsistency detector. An inconsistency detector is de-
signed to detect inconsistencies in a set of requirements.
Generally, most logic-based approaches [8, 22, 7] design
some paraconsistent logics to represent the requirements,
moreover, reasoning engine is considered as inconsistency
detector. In contrast, consistency rule bases plays an impor-
tant role in consistency rule-based approaches. In this pa-
per, the term of inconsistency is defined as logical contra-
dictions. Consequently, inconsistency detector should be a
type of paraconsistent reasoning engine.

4

Inconsistency Measurer. Inconsistency measurer plays an
important role during the process for handling inconsistent
requirements. The degree and the significance of inconsis-
tency are two essential aspects for articulating an individ-
ual inconsistent requirements set. The degree of inconsis-
tency describes how inconsistent a requirements collection
is, whilst the significance of inconsistency measures how
important the inconsistency of a requirements set is. Then
they may be viewed as two distinct dimensions of measure-
ment of an inconsistency.

• Degree of inconsistency. Suppose that ∆ is a set of re-
quirements. Let

MI(∆) = {Φ ⊆ ∆|Φ ` ⊥,∀φ ∈ Φ, Φ− {φ} 6` ⊥},
CORE(∆) =

⋃

Φ∈MI(∆)

Φ.

Note that MI(∆) is the set of minimal inconsistent sub-
sets of ∆; and CORE(∆) is the union of all its mini-
mal inconsistent subsets of ∆. For any set of require-
ments, we consider the union of all its minimal incon-
sistent subsets as the collection of all the problemati-
cal requirements.

Hunter’s approach [1] to measuring the degree of
inconsistency of a formulas set captures contribution
of each subset to the inconsistency. Given ∆, a scor-
ing function S is defined from P(∆) (the power set of
∆) into the natural numbers so that for any Γ ∈ P(∆),
S(Γ) gives the number of minimal inconsistent sub-
sets of ∆ that would be eliminated if the subset Γ was
removed from ∆ [1]. That is, for Γ ⊆ ∆,

S(Γ) = |MI(∆)| − |MI(∆− Γ)|.
As such, sets of formulas could be compared using
their scoring functions so that an ordering relation,
which means “more inconsistent than”, over these sets
can be defined [1]. That is, assume that Γ1 and Γ2 are
of the same cardinality, S1 is the scoring function for
Γ1, and S2 the scoring function for Γ2. S1 ≤ S2 holds
iff there is a bijection f : P(Γ1) 7→P(Γ2) such that
the following condition can be satisfied:

∀Θ ∈ P(Γ1), S1(Θ) ≤ S2(f(Θ))

We say Γ2 is more inconsistent than Γ1 iff S1 ≤ S2.

• Significance of inconsistency. Intuitively, the signifi-
cance of an inconsistency depends on the relative im-
portance of requirements statements involved in the in-
consistency. In our previous paper [14], we provided
the following intuitive assumptions about significance
of a requirements set in a given viewpoint:

– the requirements statements with the same prior-
ity have the same significance;

– any requirements statement with a higher prior-
ity is more significant than all of those with lower
priorities;

– those requirements statements with higher prior-
ities play dominant roles in measuring the signif-
icance of a requirements set.

Then given a requirements set Γ in viewpoint vi,
we use the priority-based cardinality vector, de-
noted −→C i(Γ), to measure the significane of Γ with re-
gard to vi, where −→C i(Γ) = (|Γ0|, · · · , |Γm−1|), and
for each k, Γk = {γ ∈ Γ, Pi(γ) = lk} [14]. Infor-
mally, vector −→C i(Γ) provides the number of require-
ments with each priority level as well as the pref-
erences of vi. In this sense, it gives a measure of
priority-based significance of ∆ from the perspec-
tive of vi. Moreover, in a given viewpoint, the sets of
requirements of the viewpoints could be compared us-
ing the lexicographical vector ordering relationship
¹P provided in [14].

Based on the cardinality vector ordering, we can
compare two minimal inconsistent subsets Φ1 and Φ2

in the sense of significance with regard to vi using their
cardinality vectors. If−→C i(Φ1) ¹P

−→
C i(Φ2), then Φ2 is

more important(or significant) than Φ1 with regard to
vi.

4.2. Negotiation Controller

Based on the measurement of a given inconsistency, each
viewpoint involved in the inconsistency need to provide a
proposal for handling the inconsistency from its own per-
spective. Also, all the viewpoints involved in the inconsis-
tency need to reach an agreement on the final proposal for
handling the inconsistency. Measurement of inconsistency
provides support for putting forward a desirable proposal
for handling inconsistency as well as reaching a successful
compromise among viewpoints. Negotiation controller will
simulate the behavior of viewpoints(or stakeholders) during
this stage. It consists of proposal generators and an auto-
mated group decision maker.

• Proposal Generators. For each viewpoint, the cor-
responding proposal generator is responsible for pro-
viding appropriate proposals from its own perspective
during the negotiation process. Just for convenience,
we focus our attention on negotiation between two
viewpoints in this paper. The negotiation among multi-
ple viewpoints could be discussed based on negotiation
in multi-agents system in the way similar to that pre-
sented in this paper. Let ∆i,j = ∆i ∪ ∆j , 1 ≤ i, j ≤
n, i 6= j. If ∆i,j is inconsistent, then vi and vj are
trying to reach an agreement on the modifications of

5

CORE(∆i,j). For each individual viewpoint, we con-
sider two kinds of atomic actions appropriate for mod-
ifying CORE(∆i,j):

– delete(vi, α, ∆i): vi deletes the requirement α from
∆i;

– add(vi, (β, lk), ∆i): If neither β nor ¬β appears in
∆i, then vi add the requirements statement β with pri-
ority of lk to ∆i.

A proposal is a series of such actions under ∧.
In particular, we abbreviate delete(vi, α,∆i) ∧
add(vi, (γ, lt),∆i) by replace(vi, α,∆i, (γ, lt)). A
desirable proposal should be able to decrease the de-
gree of inconsistency or decrease the significance
of inconsistency. Moreover, change of the require-
ments with lower priorities should be considered
firstly. Generally, if viewpoint vi wants to put for-
ward a proposal ϕk

i at k-th step, the following strate-
gies should be considered:

– the degree of inconsistency in the union of the view-
points should be decreased;

– from the perspective of vi, a desirable proposal should
help to eliminate the most significant minimal incon-
sistent subsets of the current requirements set;

– change of the requirements with lower priori-
ties should be considered firstly.

However, these proposals presented by different
viewpoints reflect different concerns and intentions.
Viewpoints need to identify a common acceptable pro-
posal by proceeding negotiation. It is a process of
group decision making.

• Group Decision Maker. When a proposal for han-
dling inconsistency is presented by a viewpoint, the
negotiation for a common acceptable proposal start.
For proceeding the negotiation process, we may use
a negotiation meta-language defined in [21]. This lan-
guage is richer for taking about proposals than nego-
tiation languages designed for special scenarios [21],
since it includes the following illocutions for describ-
ing the speech acts of conveying intentions:

– request(i, j, ϕ) : a request from agent i to agent j for
proposal ϕ;

– offer(i, j, ϕ): a proposal of ϕ from agent i to agent
j;

– accept(i, j, ϕ): agent i accepts proposal ϕ made by
agent j;

– reject(i, j, ϕ): agent i rejects proposal ϕ made by
agent j;

– withdraw(i, j): agent i withdraws from negotiation
with agent j.

Here ϕ is a formula of the negotiation language. Gen-
erally, a negotiation begins when one agent makes an

Viewpoint vi says Viewpoint vj replies

request(vi, vj , ϕ
k
i) offer(vj , vi, ϕ

k
j)

offer(vi, vj , ϕ
k
i) offer(vj , vi, ϕ

k
j), or

accept(vj , vi, ϕ
k
j), or

reject(vj , vi, ϕ
k
j), or

withdraw(vj , vi)

reject(vi, vj , ϕ
k−1
i) offer(vj , vi, ϕ

k
j), or

withdraw(vj , vi)

accept(vi, vj , ϕ
k−1
i) end of negotiation

withdraw(vi, vj) end of negotiation

Table 1. The protocol at the k-th step of the
negotiation

offer to another, or when one makes a request to an-
other. Negotiation ceases when one agent accept an
offer or withdraw from negotiation [21].

We adopt the protocol used in [18] in this paper,
which is list in Table 1. It has been shown that the pro-
tocol guarantees success in [21].

To respond to proposal ϕk
i presented by vi, view-

point vj need to evaluate the proposal. The following
strategies should be taken into account:

– If there are some essential requirements of ∆j in-
volved in ϕk

i , then vj may reject the proposal ϕk
i ,

or offer a new proposal to vi, or withdraw from
negotiation with vi. Generally, viewpoint vj can-
not accept the proposal.

– For vj , if the most significant minimal incon-
sistent subsets of the current requirements set
will be eliminated by performing the proposal,
and the importance of the set of requirements in-
volved in ϕk

i is less than that of the set of others
requirements, then vj may accept the proposal
ϕk

i , or offer an adaptation of ϕk
i to vi in general

case.

Based on these strategies, all the proposals may be sorted
by each viewpoint from its own perspective. Let MI(∆) =
{Φ1, · · · , Φn}. And assume that −→C i(Φ1) ¹P · · · ¹P−→
C i(Φn). Given a proposal ϕ, u(ϕ) = (a1, · · · , an), where
ai = 1 if ϕ can eliminate Φi and ai = 0 otherwise.

Definition 1 (Ordering relation over proposals) Given
two proposals ϕ1 and ϕ2, ϕ1 ≤ ϕ2 iff u(ϕ1) ¹P u(ϕ1).
We say that viewpoint vi prefers ϕ2 to ϕ1.

However, these priority-based strategies do not provide
an universal solution. Rather, the priority-based strategy em-
phasizes that the priority of requirements should play an im-
portant role in making or evaluating a proposal, since it is
viewed as some kind of abstraction of the statement’s signif-
icance.

6

5. Case Study

We give a small example to illustrate the use of the pro-
cess model to handling inconsistency in software require-
ments development.

Example 1 Consider the requirements for updating a soft-
ware system. Stakeholder A, who will be in charge of sale
of system-to-be, provides three demands as follows:

• Essential requirements: The system-to-be should be open
(OPEN) , that is, the system-to-be could be extended easily;

• Conditional requirements: The user interface of system-to-be
should be fashionably designed(FASH);

• Optional requirements: The system-to-be should be devel-
oped based on the newest development techniques (NEWT).

Stakeholder B, who is a delegate of the users of the ex-
isting system, provides the following requirements:

• Essential requirements: The system-to-be should be devel-
oped based on the techniques used in the existing system;

• Essential requirements: The user interface of system-to-be
should keep the style of that of existing system;

• Optional requirements: The system-to-be should not be open
for the sake of security.

Let 〈(∆A, PA), (∆B , PB)〉 denote the partial specifica-
tion comprising the two viewpoints {vA, vB}, where ∆A =
{OPEN, FASH, NEWT}, ∆B = {¬OPEN, ¬FASH, ¬NEWT},
and PA(OPEN) = l2, PA(FASH) = l1, PA(NEWT) = l0;

PB(¬NEWT) = l2; PB(¬OPEN) = l0, PB(¬FASH) = l2.

Then ∆A,B ` ⊥, and MI(∆A,B) = {Γ1,Γ2,Γ3},

CORE(∆A,B) =
3⋃

i=1

Γi,

Γ1 = {OPEN,¬OPEN}, Γ2 = {FASH,¬FASH}, Γ3 =
{NEWT,¬NEWT}, −→C A(CORE(∆A,B) ∩ ∆A) = (1, 1, 1),−→
C B(CORE(∆A,B) ∩∆B) = (1, 0, 2).

Let ϕk
i be a proposal offered by vi at k-th step and

∆ϕk
i

l (l = A,B, {A,B}) the modification of ∆l by accept-
ing ϕk

i . Since ¬FASH and ¬NEWT are the requirements
statement with highest priority in vB involved in inconsis-
tency, at the beginning of negotiation, vB puts forward a
proposal ϕ0

B as follows:

offer(vB , vA, (delete(vA, OPEN,∆A) ∧ delete(vA,

FASH,∆A) ∧ delete(vA, NEWT,∆A)));

For viewpoint vA, PA(open) = l2, that is, open is es-
sential to viewpoint vA, then vA rejects the proposal ϕ0

B:
reject(vA, vB , ϕ0

B). According
to the strategies mentioned above, then vB puts forward

the proposal ϕ1
B as follows:

offer(vB , vA, (delete(vB ,¬OPEN,∆B) ∧ replace(vA,

NEWT,∆A, (¬NEWT, l0))));

If vA accepts the proposal ϕ1
B , then Γ1 and Γ3 disappear,

and CORE(∆ϕ1
B

A,B) = Γ2,
−→
C A(∆A ∪ Γ2) = (0, 1, 0) ¹P

−→
C A(Γ1 ∪∆A),−→

C A({NEWT}) ≺P
−→
C A({OPEN}).

Then vA may accept ϕ1
B: accept(vA, vB , ϕ1

B). The first ne-
gotiation ends. And we get a modification of viewpoints as
follows:

∆ϕ1
B

A = {OPEN, FASH, ¬NEWT},
P

ϕ1
B

A (OPEN) = l2, P
ϕ1

B

A (FASH) = l1, P
ϕ1

B

A (¬NEWT) = l0;

∆ϕ1
B

B = {¬FASH, ¬NEWT}, CORE(∆ϕ1
B

A,B) = Γ2.

P
ϕ1

B

B (¬FASH) = l2, P
ϕ1

B

B (¬NEWT) = l2.

However, −→C 2(Γ2 ∪ ∆2) = (0, 0, 1),−→C 1(Γ2 ∪ ∆1) =
(0, 1, 0). The second negotiation begins when viewpoint vB

puts forward a proposal ϕ2
B as follows:

offer(vB , vA, (delete(vA, FASH,∆ϕ1
B

A)));

If viewpoint vA accepts it: accept(vA, vB , ϕ2
B). The second

negotiation ends. And we get a consistent modification of
viewpoints as follows:

∆ϕ2
B

A = {OPEN, ¬NEWT},
P

ϕ2
B

A (OPEN) = l2, P
ϕ2

B

A (¬NEWT) = l0;

∆ϕ2
B

B = {¬FASH, ¬NEWT},
P

ϕ2
B

B (¬FASH) = l2, P
ϕ2

B

B (¬NEWT) = l2.

6. Related Works

Inconsistency handling is a pervasive issue during the
software development. A similar framework for manag-
ing inconsistency has been proposed in [15, 17]. Both the
framework in [15, 17] and the process model presented in
this paper emphasize the role of measurement of incon-
sistency in managing inconsistency. However, consistency
rule rather than logical reasoning engine is considered as
a central role to the framework presented in [15, 17]. In
contrast,the process model presented in this paper consid-
ers logical reasoning engine as inconsistency detector. A
detail rather than general approach to measuring require-
ments inconsistency is also considered in the process model.
Moreover, the process model introduces the automated ne-
gotiation mechanism to resolve disagreement among differ-
ent stakeholders in identifying final modification of require-
ments. In particular, the significance and the degree of in-
consistency play a crucial role in putting forward or evalu-
ating a proposal.

On the other hand, identifying appropriate actions for
handling inconsistency is still a difficult issue in inconsis-
tency management [8, 6, 4]. We do not claim that negotia-
tion should be considered as a silver bullet for identifying an

7

appropriate proposal for inconsistency handling. For exam-
ple, when a negotiation round ends with a withdraw, some
other strategies such as combinatorial vote [12] and game
theory should be considered.

7. Conclusions

We have presented a measure-driven process model
for handling requirements inconsistency in the View-
points framework. In this process model, developers first
translate the requirements in natural language into corre-
sponding logical formulas by a translator such as devel-
oped in [7]. And an appropriate logical reasoning engine
serves as inconsistency detector. If some inconsisten-
cies are detected, then the inconsistent requirements set is
measured in terms of the significance as well as the de-
gree of inconsistency. Then negotiation mechanism from
Multi-Agents is introduced to find an agreement among dif-
ferent viewpoints on inconsistency handling. In par-
ticular, the measurement of inconsistency is crucial to
reaching a successful compromise during the negotia-
tion.

The approach presented in this paper is an innovative
integration of negotiation with the priority-based inconsis-
tency handling for viewpoints conflicts. This work presents
a first attempt in overcoming one of the weaknesses of
the viewpoints framework, namely “limited support for re-
quirements negotiation” as identified by Sommerville and
Sawyer [19].

References

[1] A.Hunter. Logical comparison of inconsistent perspectives
using scoring functions. Knowledge and Information Sys-
tems Journal, 6(5):528–543, 2004.

[2] J. Andrade, J. Ares, R. Garcia, J. Pazos, S. Rodriguez,
and A. Silva. A methodological framework for viewpoint-
oriented conceptual modeling. IEEE Trans. Softw. Eng.,
30(5):282–294, 2004.

[3] A. Davis. Just Enough Requirements Management:Where
Software Development Meets Marking. Dorset House, 2005.

[4] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nu-
seibeh. Inconsistency handling in multiperspective specifi-
cations. IEEE Trans. on Software Engineering, 20:569–578,
1994.

[5] A. Finkelstein, J.Kramer, B.Nuseibeh, L.Finkelstein, and
M.Goedicke. Viewpoints: A framework for integrating mul-
tiple perspectives in system development. International
Journal of Software Engineering and Knowledge Engineer-
ing, 2(1):31–58, 1992.

[6] D. Gabbay and A. Hunter. Making inconsistency re-
spectable 2:meta-level handling of inconsistent data. In
ECSQARU93,LNCS, volume 747, pages 129–136. Springer,
1993.

[7] V. Gervasi and D.Zowghi. Reasoning about inconsistencies
in natural language requirements. ACM Transaction on Soft-
ware Engineering and Methodologies, 14(3):277–330, 2005.

[8] A. Hunter and B.Nuseibeh. Managing inconsistent speci-
fication. ACM Transactions on Software Engineering and
Methodology, 7(4):335–367, 1998.

[9] M. Ibanez. European user survey analysis. Tech. rep. ESI re-
port TR95104. European Software Institute, Zamudio, Spain.
Web site: www.esi.es, 1996.

[10] IEEE.1998. IEEE Std 830-1998:IEEE Recommended Prac-
tice for Software Requirements Specifications. Los Alamitos,
CA:IEEE Computer Society Press, 1998.

[11] G. Kotonya and I.Sommerville. Viewpoints for requirements
definition. IEE Software Eng.Journal, 7:375–387, Novem-
ber 1992.

[12] J. Lang. From logical preference representation to combina-
torial vote. In Proceedings of 8th International Conference
on Principles of Knowledge Representation and Reasoning,
pages 277–288. Morgan Kaufmann, 2002.

[13] D. Leffingwell. Calculating the return on investment from
more effective requirements management. American Pro-
grammer, 10(4), 1997.

[14] K. Mu, Z. Jin, R. Lu, and W. Liu. Measuring inconsis-
tency in requirements specifications. In L.Godo, editor, EC-
SQARU2005,LNCS, volume 3571, pages 440–451. Springer-
Verlag Berlin Heidelberg, 2005.

[15] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging
inconsistency in software development. IEEE Computer,
33(4):24–29, 2000.

[16] B. Nuseibeh, J. Kramer, and A. Finkelstein. Viewpoints:
meaningful relationships are difficult! In Proceedings of
the 25th International Conference on Software Engineering,
pages 676–681. IEEE CS Press, 2003.

[17] B. Nuseibeh, S.Easterbrook, and A.Russo. Making inconsis-
tency respectable in software development. Journal of Sys-
tems and Software, 58(2):171–180, 2001.

[18] C. Sierra, N. Jennings, P. Noriega, and S. Parsons. A frame-
work for argumentation-based negotiation. In Intelligent
Agents IV (LNAI Volume 1365), pages 177–192. 1998.

[19] I. Sommerville and P. Sawyer. Viewpoints: Principles, prob-
lems and a practical approach to requirements engineering.
Ann. Software Eng., 3:101–130, 1997.

[20] K. Wiegers. First things first:prioritizing requirements. Soft-
ware Development, 7(9):48–53, 1999.

[21] M. Wooldridge and S. Parsons. Languages for negotiation.
In Proceedings of ECAI2000), pages 393–397. 2000.

[22] D. Zowghi and V. Gervasi. On the interplay between con-
sistency, completeness, and correctness in requirements evo-
lution. Information and Software Technology, 45(14):993–
1009, 2003.

8

© [2008] IEEE. Reprinted, with permission, from Mu, Kedian., Jin, Zhi., and Zowghi,

Didar 2008, 'A Measurement-Driven Process Model for Managing Inconsistent

Software Requirements', 2008 15th Asia Pacific Software Engineering Conference,

pp. 291-298.This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply IEEE endorsement of any of the

University of Technology, Sydney's products or services. Internal or personal use of

this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or

redistribution must be obtained from the IEEE by writing to pubs-

permissions@ieee.org. By choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Edgar,%20J.A..QT.&newsearch=partialPref

	Pages from 2008000584-2
	Pages from 2008000584

