
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Evaluation of Different SLAM Algorithms using
Google Tangle Data

Liyang Liu, Youbing Wang, Liang Zhao, Shoudong Huang
Centre for Autonomous Systems, Faculty of Engineering and IT, University of Technology, Sydney, Australia

{LiYang.Liu,Youbing.Wang,Liang.Zhao,Shoudong.Huang}@uts.edu.au

Abstract—In this paper, we evaluate three state-of-the-art
Simultaneous Localization and Mapping (SLAM) methods using
data extracted from a state-of-the-art device for indoor navi-
gation — the Google Tango tablet. The SLAM algorithms we
investigated include Preintegration Visual Inertial Navigation
System (VINS), ParallaxBA and ORB-SLAM. We first describe
the detailed process of obtaining synchronized IMU and image
data from the Google Tango device, then we present some of
the SLAM results obtained using the three different SLAM
algorithms, all with the datasets collected from Tango. These
SLAM results are compared with that obtained from Tango’s in-
built motion tracking system. The advantages and failure modes
of the different SLAM algorithms are analysed and illustrated
thereafter. The evaluation results presented in this paper are
expected to provide some guidance on further development of
more robust SLAM algorithms for robotic applications.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is a pop-
ular yet challenging research frontier in the robotic community.
Many research efforts aim at producing accurate, robust and
real-time SLAM algorithms. This, combined with availability
of affordable devices and sensing platforms, brings a fully
automated robot close to reality [1]. Feature-based SLAM is
one of the most studied areas due to its usage of low cost
camera sensor and ability to produce accurate results. Visual
Inertial Navigation System (VINS) provides scale information
fusing inertial measurements with vision input. Preintegration
VINS has greatly enhanced VINS by turning it into a practical
and high-fidelity solution [2][5][6]. Bundle Adjustment (BA)
is known to provide accurate estimates of camera localizations
as well as sparse scene reconstruction [8]. Parallax angle
based Bundle Adjustment [3] offers a robust BA solution that
handles even very challenging motion and scene situations.
ORB-SLAM [4], with a modular design approach, turns the
computation intensive optimization problem into a fully online
real-time application. Leveraging on existing research achieve-
ments, Google has produced an engineering device Tango that
detects its position relative to the surrounding world without
using GPS [10].

Each of these methods has its own selling point, yet exhibit
issues that cannot be overlooked. A SLAM researcher needs
to evaluate these methods in a diverse environment and motion
conditions to obtain good insight in the topic, with the help
of a consistent and reliable data source.

In this paper, we explain a software solution to stream
synchronized visual and inertial data from the Tango device

into ROS – the widely-used robotic software development
platform. With the same input data feed, we compare the afore-
mentioned SLAM methods and outline our findings.

This paper is organized as follows. Section II introduces
how we achieved data streaming from Tango. Section III
describes the three algorithms that will be compared with the
Google Tango trajectory results. Then, we provide the detailed
analysis of Tango data and the experimental comparison results
in Section IV. Finally, we conclude our analysis with future
work proposed in Section V.

II. OBTAINING DATA FROM GOOGLE TANGLE

Fig. 1: Tango streaming system architecture

Google Tango is a technology platform that uses com-
puter vision to track its position relative to the surrounding
world [10]. The tango device model used in this research
is a Yellowstone tablet. It features an RGB-D sensor, an
IMU and a fish-eye camera. We developed a data streaming
system for extracting data from the Tango and feeding it into



a Linux PC running ROS. Communication between tablet
and PC is channelled via the USB network interface using
reverse-tethering technology [13]. Our software package is
essentially a two-driver system: a Tango data streamer running
on Android encompassing the ROS-Java framework; and a
Linux-side ROS driver node that decodes incoming data and
broadcasts repackaged Tango messages into Linux ROS space.
Within ROS, live Tango messages can be processed easily
by many popular ROS modules, e.g. ORB-SLAM for on-line
processing or image_saver for still image extraction and
off-line analysis. We also used in-house developed MATLAB
modules: Preintegration VINS and ParallaxBA to process the
saved images off-line for algorithm comparison. The software
architecture design is shown in Figure 1.

Data fetching in Tango is implemented as a real-time event
driven system relying on call-back functions. We developed
Pose and Image call-backs following Tango API C++ [11], and
IMU call-backs based on Android API Java [12]. Tango/PC
networking is implemented via the ROS-Java library. These
fixed-time callbacks all provide mechanisms for fetching
Tango generated sample timestamps. This implies all sampling
event times (including poses, IMU and images), are synchro-
nized on the same Tango clock. This view is confirmed in time
analysis experiments detailed in Section IV-A1. We package
all Tango timestamps into ROS messages for subsequent Linux
domain processing. This treatment allows a fair algorithm
comparison using precise timestamp correlation.

III. ALGORITHMS FOR COMPARISON

We briefly state the three SLAM algorithms that will be
compared using Google Tango data, outlining their rationale
and compelling features.

VINS is a system that fuses visual and inertial informa-
tion from low cost camera and IMU devices and provide a
trajectory with accurate scale information. The IMU sensor
provides a data stream several orders of magnitude faster than
the image rate, making a naive fusion of IMU and visual
observations impractical to realize in real-time. Preintegra-
tion VINS (abbreviated Preint-VINS throughout this paper),
proposed by Lupton and Sukkarieh [2] provides a convinc-
ing solution for real-time usage. The Preint-VINS algorithm
combines many IMU samples as a single observation before
fusion with camera images, resulting in a much reduced
state and observation dimension in the optimization step.
Further, inertial mathematical integration is performed in the
robot body frame: robot state with respect to this frame is
observable, hence its prediction uncertainty can be accurately
obtained through linearization. In this new parameterization,
the integrated inertial term (inertial delta) and feature pixels
are treated as the observations, their uncertainties are used as
weighting factors in optimizing for robot states and feature
positions. The robot initial conditions, such as initial velocity,
gravity and IMU bias, according to [2], can be automatically
recovered in a linear manner.

The Preint-VINS algorithm proposed in [2] has been im-
proved by using manifold representation [5] and continuous-

time integration [6]. However for the comparison performed in
this paper, we chose the Preint-VINS algorithm in [2] because
of: its relatively easy implementation; and the performance
improvements from [5] and [6] are only significant when the
rotation changes are close to the Euler angle singularity or the
IMU rate is low (neither of which apply in our experiments).
Evaluating better Preint-VINS algorithms such as those in [5]
and [6] is left as future research work.

A. ParallaxBA

BA is regarded as the gold standard for structure from
motion. By minimizing the reprojection error, BA optimizes
the feature positions and camera poses up to a scale [7]. The
particular BA method we focus on is ParallaxBA – a Bundle
Adjustment method proposed by Zhao et al. [3] that uses
parallax angles for feature parametrization. Such a parameter-
ization is more consistent with the projective nature of image
formation therefore it: successfully avoids many singularity
issues often found in along camera axis motion with traditional
XYZ parameterization; offers faster convergence rate; and
outputs more accurate motion and structure estimates [3]. Our
experimental results confirm this claim. The source code of
ParallaxBA back-end can be found on OpenSLAM website 1.

B. ORB-SLAM

ORB-SLAM is a real-time feature-based SLAM system. In
essence, it is a carefully orchestrated framework that splits
a traditionally computation intensive BA system into a few
inter-dependent parallel modules for the purpose of real-time
application. It includes: fast ORB feature extraction (viewpoint
and illumination invariant); a stringent initialization stage of
a reliable map that enables accurate feature tracking (avoids
brute-force correspondence formation); on-going map update
with new points and poses that are optimized in local region
BA only; and efficient loop closure detection and global pose
graph optimizaiton on essential nodes only. The ORB eco-
system coherently works together to produce robot trajectory
and mapping, yet avoiding excessive computation seen in full
BA whenever possible.

ORB-SLAM source code is available at ORB-SLAM
project webpage2 and is used in this work.

IV. EXPERIMENTS

A. Tango data analysis

1) Tango data time synchronization: To evaluate Tango
performance, we have performed extensive time sample anal-
ysis on collected IMU and pose samples. Applying least
squares fit on sample times and sample sequence number,
we saw negligible fit errors, therefore conclude the periodic
nature of Tango data sampling. Also from least squares fit,
we uncovered Tango gyroscope and accelerometer sampling
rates to be 100 and 127 Hz respectively, as shown in Figure
2. Using these rates, we are able to detect missing samples in

1https://openslam.org/ParallaxBA.html
2https://github.com/raulmur/ORB SLAM



long-term streaming and regenerate the missing ones. Preint-
VINS requires unified accelerometer and gyroscope sample
times, we therefore converted accelerometer data to match
with gyroscope’s sample times by linear interpolation. Once
live data is available on ROS, we then visually inspected IMU
and pose samples under various motion conditions. We are
able to observe that they exhibit matched time responses to
motion and conclude that they are well correlated in time.
Also through visual inspection, we observed that the Tango
reported pose values (translation and orientation) accurately
reflect device motion. These investigations confirm our view
that Tango is a reliable VINS data and Ground Truth provider,
it is beneficial to VINS researchers as we can avoid the nasty
engineering task of clock synchronization if a separate camera,
IMU and Ground Truth provider were used.

(a) (b)

Fig. 2: Least Squares fit on sample time and sequence number reveals
periodic sampling nature and rate: a) Accelerometer, b) Angular velocity.

2) Tango accelerometer bias analysis: Accurate estimation
of Tango IMU bias is vital to success in computing trajectory.
We used an empirical method to obtain good initial guesses
for the accelerometer bias. As shown in Figure 3, the tablet
is laid still on a flat surface. The gravity vector under such an
orientation should be [ 0, 0, -9.8 ] m/s2. The accelerometer
reading accflat should be:

accflat = −gflat + biasf (1)

Taking away g, the left over is bias (assuming IMU is
embedded flat inside Tango). Any further deviation from this
initial guess should be very small which, according to [5]’s
Monte Carlo analysis, should follow a linear relationship to
the actual inertial delta measurements. Therefore, the final bias
estimate can be safely obtained.

3) Tango gyroscope bias analysis: Tango’s gyroscope ex-
hibits excellent properties: we found it low in noise and have
close-to zero bias and slow to drift. Integrating the gyroscope
alone gives accurate measurement for device rotation: this
rotation matches well with Tango’s own reported orientation,
also matches rotation computed from epipolar geometry be-
tween image frames.

4) Tango cameras: At the time of writing this paper, we
are only able to decode Tango RGB camera images. The RGB
camera has a small field of view: 62o x 37o, is subject to auto-
white balancing and motion blur. Tango’s own motion tracking
system uses the Fisheye camera, it comes with global shutter

Fig. 3: Tango laid on a flat table to measure accelerometer bias

and 120o horizontal field of view, the richer feature resource
puts Tango motion-tracking function in a more advantaged
position than our own experiments using the RGB camera.

5) Tango calibration: Thanks to Google’s documentation,
all of Tango’s calibration settings, including those of the two
cameras (matrix and distortion coefficients), IMU noise level,
and IMU and camera transformations can be readily read from
the device.

B. Preint-VINS experimental setup

Motion with or without rotation can affect the VINS model.
We noticed that in straight line motion (rotation free), gravity
g and accelerometer bias biasf , being in the same reference
frame, are not separable. The inertial delta observation model
[2] becomes degenerate. Only when a rotational motion is ex-
perienced, g and biasf can be separated through optimization.

In [2], Lupton was able to obtain good initial guesses of
gravity and starting velocity, using first 3 observations from
a stereo system. We are unable to modify Tango as a stereo
system, therefore had to obtain initial conditions differently.
Our solution is to start Tango in a stationary state, i.e.
zero velocity, similar to Equation (1), Tango’s accelerometer
measurement should be the sum of biasf and g, subtracting
the bias measured in Section IV-A2, the result gives g in the
initial body frame.

Our in-house developed Preint-VINS module uses incre-
mental optimization, it outputs full SLAM solution at end of
processing. The initial stage performs batch processing on a
small data segment, generating a good initial estimate for g and
biasf , then performs optimization on each incoming frame.

C. ORB-SLAM initialization

ORB-SLAM requires observation of significant parallax in
order to triangulate for a set of initial map points reliable
enough for subsequent point tracking. It takes indefinite time to
start up, this drawback has been raised in [9] and encountered
by us frequently. Our solution is to start data collection with
a rotating motion around a scene in the center, giving both
Preint-VINS and ORB-SLAM a good chance to kick start,
then continue with random motion.



D. Compare results of four methods on same Tango data
For most experiments, we collected test data from a lab of

3m x 8m space, as shown in Figure 4(b). The only exception
is the fast rotation test which took place on a flat table facing
a scene hanging from the ceiling, shown in Figure 4(a).

(a) (b)

Fig. 4: a) Lab scene for long data collection. b) Fast rotation test scene: A
planar ceiling as viewed by Tango laying on a flat table.

1) All methods working: The first test case we present
here is that all four methods successfully produced results.
Tango, Preint-VINS and ParallaxBA are able to start from the
beginning and work till the end. ORB-SLAM took a short time
to initialize. This is why ORB-SLAM trajectory appears later
than others and not from location [0, 0, 0]. Moreover, Paral-
laxBA and ORB-SLAM do not produce scaling information.
Since there’s no Ground Truth in this test, we used Tango then
Preint-VINS respectively to provide scaling for comparison, as
shown in Figure 5.

In both cases, ParallaxBA’s trajectory follows closely with
the scale provider. ORB-SLAM shows obvious deviation from
other methods during a few segments. This is conceivable as
ORB-SLAM only performs BA in the current frame’s local
neighbourhood [4]. In the absence of loop closure, ORB-
SLAM will not recover from this error. Figure 6 shows a
detailed comparison on orientation. ParallaxBA has smallest
orientation error compared to other methods, ORB-SLAM
again has most erroneous results.

The Preint-VINS trajectory has a smaller scale compared
to Tango, this could be due to that our VINS implementation
enforces constant bias. The system would strive very hard
working out an optimal value for the entire 60 seconds of
data, some compromise would have been made. Despite this,
Preint-VINS is the only method that produced properly scaled
trajectory and map (shown in Figure 7), Google Tango does
not produce a map.

2) Tango and Preint-VINS work, ParallaxBA and ORB-
SLAM fail: In Figure 8, we present the test case where the
device is subject to fast small radius rotation over a duration
of 3 seconds, facing a largely planar scene. Preint-VINS
converged gracefully, producing a trajectory closest to Tango,
fitting well with the experimenter’s observation. ParallaxBA,
although was able to converge, gave erroneous results. ORB-
SLAM completely failed to kick-start. ParallaxBA builds its
initial guess using Epipolar Geometry. If the scene is planar,
finding the fundamental matrix is not well constrained [7][4],
attempting to recover the motion from the fundamental matrix
would produce wrong results. ORB-SLAM’s failure could be
explained by low feature match under fast rotation conditions.

(a) Using Tango scale, PBA very similar to Tango

(b) Using Preint-VINS scale, PBA very smilar to Preint-VINS

Fig. 5: rajectory comparison in XOZ plane: Tango, PreintVINS, ParallaxBA,
ORB-SLAM

Fig. 6: Compare orientation (in degrees): Tango, Preint-VINS, ParallaxBA,
ORB-SLAM

Preint-VINS worked well as anticipated, the IMU sensor
provided necessary information overcoming poor observability
of landmarks.

3) Tango, Preint-VINS and ParallaxBA work, ORB-SLAM
fails: In Figure 9, ORB-SLAM completely fails to start. The



Fig. 7: Preint-VINS is the only method that provides properly scaled
trajectory and map

Fig. 8: Trajectory comparison: ParallaxBA shows largest error

scene tested here is feature-rich, ORB-SLAM’s failure can
only be explained by low parallax angle encountered between
frames, see Section IV-C.

4) Tango, ParallaxBA and ORB-SLAM work, Preint-VINS
fails: In Figure 10, Preint-VINS fails to find a convergent
solution upon start-up. This may be overcome if we adopted
an initialization stage similar to ORB-SLAM that continuously
scans incoming data for convergence. However, that would
imply that initial conditions such as gravity and velocity
cannot be obtained in the manner described in Section IV-B.
An alternative is to treat Tango as a stereo system, requires
Fisheye images streaming, see Section IV-B.

E. Discussion

Our in-house developed Preint-VINS and ParallaxBA mod-
ules use same front-end for feature extraction, this front-end
uses SIFT [16] for feature detection and RANSAC [17] for
fundamental matrix calculation. Although such a method can
reject many outliers, but is not completely effective.

ParallaxBA, due to its unique way of feature parameteriza-
tion, is able to robustly handle outliers and challenging motion
conditions. It is able to converge for almost all test cases.

Our VINS system, currently using classic XYZ coordinates
for feature parameterization, does not cope well with outliers
or certain motion conditions. We choose to remove features

(a) Trajectory comparison in XOZ plane (ParallaxBA use
Tango scale)

(b) Orientation comparison (in degrees), all very similar

Fig. 9: Test case: Tango, Preint-VINS and ParallaxBA succeed, ORB-SLAM
fails

showing small parallax angles to keep the system stable.
Further, our implementation does not use a sliding window
approach as [2], and cannot handle variable IMU bias yet.
This makes the system prone to failure in mixed motion types
(stationary + dynamic). Possibly because IMU does not restore
to the same level when the device comes to rest. We have
noticed that ORB-SLAM can start up later yet last longer than
Preint-VINS.

ORB-SLAM requires certain motion conditions to initialize
properly. We have noticed ORB-SLAM fail in many test
scenarios due to inability to kick-start. Once initialized, ORB-
SLAM uses feature tracking to localize, this has the advantage
of fast data association in real-time application. However, track
loss also happens due to swift camera motion.

Counting all tests performed, ParallaxBA is found to be the
most robust method, it is always able to converge, results are
in general accurate except for extreme feature-poor cases.



(a) Trajectory comparison in XOZ plane (ParallaxBA and
ORB-SLAM use Tango scale)

(b) Orientation compairson (in degrees): ORB-SLAM shows
largest deviation

Fig. 10: Test case: Tango, ParallaxBA and ORB-SLAM succeed, Preint-
VINS fails

V. CONCLUSION AND FUTURE WORK

In this paper, we compared three types of feature-based
SLAM methods using data extracted from the Google Tango
tablet. We verified Tango as a convenient data acquisition
platform for producing synchronized IMU, visual and reliable
robot trajectory information. Feeding the same Tango data to
the three methods, we showed that Preintegration VINS can
produce poses and map with correct scaling, while both Par-
allaxBA and ORB-SLAM can produce unscaled camera poses
and feature locations. In terms of accuracy, Tango, Preint-
VINS and ParallaxBA all produce reliable pose estimates,
ORB-SLAM often deviates from the rest. In terms of compu-
tation time, Tango and ORB-SLAM both are functioning real-
time solutions. ParallaxBA is most robust under challenging
motion conditions. Preint-VINS can produce the most com-
plete results: pose, feature, scale and real-time application if
convergent conditions are met.

In comparing these algorithms, we treat Tango generated
pose as quasi-Ground Truth, our visual inspection shows they

do accurately reflect device motion. The three algorithms use
image input from Tango’s RGB-D sensor with long shutter
speed and narrow FOV, different to Tango’s internally accessed
wide view images. To avoid the chance of motion blur, our
data collections are of short-duration. Due to limitations in the
test environment, they do not include complete loops either.
As the next step, we will improve the current realization of
Preint-VINS [6] to enhance its robustness and computational
efficiency. We will also evaluate the algorithms further using
larger scale and loopy datasets collected by Tango.
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