
© [2008] IEEE. Reprinted, with permission, from [Sharifah Mashita Syed-Mohamad and Tom McBride, International
Conference on Computer Science and Software Engineering (CSSE 2008), 2008]. This material is posted here with
permission of the IEEE. Such ermission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Technology, Sydney's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it

Reliability Growth of Open Source Software using Defect Analysis

Sharifah Mashita SyedMohamad Tom McBride
Faculty of Information Technology, University of Technology, Sydney

{sharifah, mcbride}@it.uts.edu.au

Abstract

We examine two active and popular open source
products to observe whether or not open source
software has a different defect arrival rate software
developed in-house. The evaluation used two common
models of reliability growth models; concave and S-
shaped and this analysis shows that open source has a
different profile of defect arrival. Further investigation
indicated that low level design instability is a possible
explanation of the different defect growth profile.

Key Words- Open Source Software, Software
Reliability, Defect Classification.

1. Introduction

Open source software development has gained
popularity around the world. As open source
development does not necessarily adhere to traditional
software engineering, particularly in the area of formal
testing, the quality of open source software needs to be
examined. In open source model quality assurance
processes are performed in a different manner than
traditional software engineering [15].

Reliability is one of the more important
characteristics of software quality when considered for
commercial use. Adoption of reliable open source
products for commercial use can be a real challenge.
While open source software products routinely provide
information about product activity rank, number of
developers and the number of users or downloads, this
information does not convey information about the
quality of the open source product.

Here we measure open source software product
reliability using an approach frequently used in
commercial software development. As measuring defect
growth is a good empirical way of evaluating software
quality [6], we investigate whether or not open source
software has a different defect arrival rate compared to
in-house developed software. If it does then new tests
and models for analysing open source reliability must be
developed. If not, then the same tests of product
reliability can be applied.

We first describe common models used to measure
software reliability. Then we describe defect datasets

used in this examination and discuss which reliability
growth model is a better fit to the datasets. We then
briefly described defect classifications and discuss more
results of open source profile before drawing some
conclusions and note our further direction.

2. Software reliability analysis models

Reliability growth models, which are statistical
analysis of software failure data during development,
traditionally deal with prediction after making some
fundamental assumptions on the error detection process.
The models are essential measurement during the testing
phase of software development for examining the degree
of reliability, and thus quality, of the developed product.

Attributes of the reliability models have been
usually defined with respect to time with four general
ways to characterize reliability [11]: time of failure, time
interval between failures, cumulative number of faults
up to a period of time and failure found in a time
interval. A popular model compares the cumulative
numbers of fault to cumulative usage time (can be
calendar time or execution time) [13; 10].

When plotted over time, most reliability growth
models are represented by either the Concave or the S-
shaped curve [16]. Goel-Okumoto non-homogeneous
Poisson model [8] and Musa model are among the
earliest reliability models that show concave growth
curve (also called exponential). The Goel-Okumoto
model assumes that a software system is subject to
failures at random times cause by defects present in the
system, thus takes number of defects per unit of time as
independent Poisson random variables. Note that
Poisson distribution has been found to be an excellent
model in many fields of application where interest is in
the number of occurrences [7]. The mathematical
representation of concave model is:

)1()(bteat −−=µ where 0, >ba

and S-shaped growth function is:

))1(1()(btebtat −+−=µ where 0, >ba

The S-shaped model derives from a modification of

the Goel-Okumoto model. The S-shaped curve reflects
to the initial learning period at the beginning, as testing
people become familiar with the software, followed by
growth and then stabilizes as the residual faults become
more difficult to discover. Both models apply a same
parameter i.e. shape factor.

In this research, we will plot defect data using these
two common models and examine whether there is a
different in defect arrival between open source software
and in-house source software.

3. Data collection

3.1. Defect data

We identified two notable and active open source
projects from SourceForge.net (http://sourceforge.net/).
We will refer to these projects as Open Source A and
Open Source B. These are two of the most successful
and widely used among open source communities under
different topics or application domain. Both of the
chosen projects are considered stable, in production. We
collected defect data of the selected projects from the
SourceForge.net tracking tool. This captures all of the
standard defect attributes that have associations to
occurrence date. Table 1 and Table 2 list the information
of the projects.

Table 1: Open Source A details

Defects over the project lifetime Register date

Overall Accepted
Nov 2000 300 130

Table 2: Open Source B details

Defects over the
project lifetime

Defects reported
during 2007

Register
date

Overall Accepted Overall Accepted

June
2000

514 362 136 75

Note that we did not analyze the entire defect data

but removed from consideration trivial defects such as
cosmetic defect, design defects such ‘look and feel’ and
platform configuration defects. We also excluded

duplicated defects those invalid defects that had been
deleted by the open source project administrator.
Defects are given a severity from 1, lowest, to 9, highest
with most classified as severity 5. Our data set included
only defects with severity 4 or higher in order to achieve
a reliable defect profile for the open source software. As
can be seen in Table 1 and Table 2, the total number of
accepted defects is lower than the overall number of
reported defects.

Defect data for a software project developed in
house using normal commercial software development
processes was collected from an organization in the
telecommunications industry. Defect considered were
only those that had been discovered and reported by the
development team, as opposed to defects reported after
release [12]. The in house defect data is maintained in a
web-based bug tracking system Again, we perform the
same data cleaning activities to the defect data and a
summary of the in-house project is shown in Table 3.

Table 3: In-house project details

Defect
record
since

Overall
defects over
project life
time

Overall
defects
over year
2007

Accepted
defects over
year 2007

Sept
2005

926 106 100

4. Analysis and Findings

We analyzed the datasets using SPSS nonlinear
regression analysis in which each of the datasets is
transformed into two models for reliability analysis.

4.1. Reliability growth models

As mentioned earlier, concave and S-shaped growth
models apply the same parameter i.e. shape factor; and
this explains the spread of the data. The estimated
parameters and R squared are listed in Table 4. Briefly,
R squared as an indication of how good the correlation
between the cumulative number of defects to the project
lifetime.

Table 4: Estimated parameters (b) and R squared of
the reliability growth models

Concave model S-shaped model

Projects

b R
squared

b R
squared

Open Source
A

0.270 0.827 0.570 0.554

Open Source
B

0.008 0.641 0.230 0.799

In-house 0.150 0.967 0.315 0.995

)(tµ
The expected number of defects occurrences
for any time, t

a The expected total number of defects to be
observed eventually

b The shape factor or defect detection rate per
defect

We plotted cumulative defects found over the life of
open source (Figure 1 and Figure 2) and in-house
projects (Figure 3). The observed curves represent the
actual values of the projects, the predicted curves
correspond to the estimation of concave and S-shaped
curves. Obviously, both open source datasets did not
converge to the concave and S-shaped curves. The
predicted concave and S-shaped curves badly miss on
almost all of the observed values.

Figure 1: Project A reliability growth curve

Figure 2: Project B reliability growth curve

Interestingly, the overall growth curve of Open
Source A (Figure 1) seems to exhibits a reverse S-
shaped curve. It appears as a concave curve only in the
first period of the calculated project life span. A
different growth pattern can be seen for the Open Source

B (Figure 2), whereby the curve shows convex rather
than concave shape. As expected, we obtained a good fit
model for in-house product (Figure 3). The S-shaped
and concave curves did come very close to the observed
data.

Figure 3: In house project reliability growth curve

Examination of these results Table 4 shows a little
confusing of indications of the reliability models. For
instance, Open Source A has a high R squared result for
the concave model, but that is not the case if we look at
the predicted concave curve as illustrated in the graph
(Figure 1). In general, both of the open source products
did not exhibit either any of the common reliability
growth models, thus we conclude that open source
software exhibits a different defect arrival rate for the
projects examined so far. These findings deserve further
investigation on what could contribute to that difference.
Here we extend our work to examine the defect types
within the overall defect growth.

4.2. Defect classification

Defects can be classified by types. Many studies

have shown the use of defect type information as the
important means of assessing the relative quality of a
software system [2; 14]. IEEE Standard 1044 [1],
Hewlett-Packard (HP) defect scheme [9] and
Orthogonal Defect Classification (ODC) [3] are among
the well known defect classifications. In general, these
classifications comprise about the same information of
type of defects.

We used ODC defect types [12] to classify the
datasets. ODC has demonstrated its value in revealing
insights into software quality and software development
[5; 4]. Table 5 shows the ODC defect types and its
process associations used in this study.

Table 5: The defect type and process associations–[3]

Defect type Description of defect type Process
Associations

Function/Class/
Object

missing or incorrect
functionality

Design

Interface/O-O
Messages

affects the interaction of
components via macros,
call statements and/or
parameter lists

Low Level
Design

Timing/Serializ
ation

serialization of shared
resource is wrong or
missing

Low Level
Design

Algorithm/Met
hod

efficiency or correctness of
an algorithm or local data
structure

Low Level
Design

Checking missing or incorrect data
validation in conditional
statements.

Low Level
Design/Code

Assignment/Ini
tialization

values assigned incorrectly
or not assigned at all

Code

We manually classified the data and for each defect

and assign a qualifier of either missing or incorrect.
Accuracy in classifying defects may become an issue
although the ‘orthogonality’ defect classes reduce the
probability of misclassification. Examining relationships
between the ‘type’ and ‘qualifier’ can reveal weaknesses
in the explicit areas of software development, i.e. which
phase of process a defect is associated with, thus,
locating and fixing the process as well as the defect can
be quite straight forward.

To demonstrate the relative growth of defect types,
separate growth curves can be generated. We collapsed
the classes into their process associations to better
observe the growth in group. This was done by dividing
all the classified defect data (types) into three
categories: function, interface + serialization +
algorithm and assignment + checking. These categories
of defects are correlated to the phases of software
development process. As shown in Table 5 if a function
defect is found in the system test or unit test, it points to
the high-level design phase that the defect should be
associated with, interface + serialization + algorithm
refer to low level design and assignment + checking
refers to coding phase.

4.3. Defect type arrival rate

To permit a direct comparison, only defects

reported during 2007 for open source Project B and the
in house project were considered. The growth curves for
the collapsing of the categories of Open Source B
(Figure 4) and In-house project (Figure 5) are shown.
The timeline for the projects has been divided into three
periods: period 0, 1 and 2. The periods were arbitrary,
chosen only to better observe and analyze defect
developments and do not have any process or event

significance. Observe that the open source project does
not suffer major function or assignment + checking
defects and both of these categories are expected to
stabilize soon. The interface + serialization + algorithm
defects are clearly rising very rapidly in period 2 and
show no sign of stabilization.

Figure 4: Project B Defect arrival by type

Overall, the open source project is functionality
stable yet low level design unstable. Basically, a latest
version of open source software is released in alpha and
beta in which known issues have been fixed and new
features have been added, thus, the software might
suffer from low-level design issues. This is in contrast to
the in-house project (Figure 5) where all of the defect
types are stabilizing toward the end of the year.

Figure 5: In house project defect arrival by type

Further classification work reveals another quality
feature in open source product. Most of the defects
reported for open source Project B were reported as

incorrect rather than missing (Figure 6, Figure 7, Figure
8). This is in contrast to the in house project where a
significant proportion of the function and interface
defects were reported as missing rather than incorrect.

Figure 6: Frequency of defect type with qualifiers for
period 0

Figure 7: Frequency of defect type with qualifiers for
period 1

Figure 8: Frequency of defect type with qualifiers for
period 2

5. Discussion

The different pattern in defect arrival of open
source software seems to be a consequence of the open
source software development method itself. ‘Release
early and release often’ [15] affects the defects growth.
Open source developers tend to make abrupt changes
between subsequent releases due to meet new
expectations such feature requests and take advantage of
new technology. Despite the rapid evolution, open
source does not attract defect reports of missing function
and code, perhaps because of the large participation
from users. This implies that there is less adherence to a
formal list of requirements. Basically everyone
contributes their own skills and fulfill their own
requirement, thus, missing functionality is less likely in
open source software.

6. Conclusion and further research

In this study we evaluate quality characteristics of
open source software in an empirical way. We examine
whether or not open source software has a different
defect arrival rate compared to in-house developed
software. Defect analysis on two open source products
has shown that the common models of reliability
growth, the concave and S-shaped models, the do not fit
the data very well. Open source software products
appear to be unstable in the area of low level design, as
the observed reliability growth curves show no sign of
stabilization. Interestingly open source does not suffer
major missing function and code issues compared to in-
house developed software.

Defect analysis can be used as a constructive
reliability predictor. We will extend this investigation to
more open source projects to improve the external
validity of the research before reaching any firm
conclusions. This will enable us to develop and evaluate
reliability measures that can be given to the community
to assist with decisions about adopting open source
software products.

7. References

[1] (1994), 'IEEE standard classification for software
anomalies', IEEE Std 1044-1993.

[2] Butcher, M., Munro, H. and Kratschmer, T. (2002),
'Improving software testing via ODC: Three case
studies', IBM Systems Journal, Vol.41

 no 1, pp. 31 - 44.
[3] Chillarege, R., Bhandari, I. S., Chaar, J. K.,

Halliday, M. J., Moebus, D. S., Ray, B. K. and
Wong, M. Y. (1992), 'Orthogonal defect
classification-a concept for in-process
measurements', Software Engineering, IEEE
Transactions on, Vol.18, no 11, pp. 943-956.

[4] Chillarege, R. and Biyani, S. (1994), 'Identifying
risk using ODC based growth models', Proceedings
Software Reliability Engineering 5th International
Symposium, pp. 282-288

[5] Chillarege, R., Kao, W.-L. and Condit, R. G. (1991
), 'Defect type and its impact on the growth curve ',
Proceedings of the 13th international conference on
Software engineering Austin, Texas, United States
pp. 246-255

[6] David, N. C. (2002) Managing Software Quality
with Defects, In Proceedings of the 26th
International Computer Software and Applications
Conference on Prolonging Software Life:
Development and Redevelopment IEEE Computer
Society.

[7] Goel, A. L. (1985), 'Software Reliability Models:
Assumptions, Limitations, and Applicability',
Software Engineering, IEEE Transactions on,
Vol.SE-11, no no.12, pp. 1411-1423.

[8] Goel, A. L. and Okumoto, K. (1979), 'A Time
Dependent Error Detection Rate Model for Software
Reliability and Other Performance Measures', IEEE
Transactions on Reliability, Vol.28, no 3, pp. 206-
211.

[9] Grady, R. B. (1996), 'Software Failure Analysis for
High-Return Process Improvement Decisions',
Hewlett-Packard Journal, Vol.47, no 4.

[10] Lyu, M. R. (1996), Handbook of Software
Reliability Engineering, Michael, R. L. (Ed),
McGraw-Hill, Inc.

[11] Musa, J. D., Iannino, A. and Okumoto, K. (1987),
'Software reliability: measurement, prediction,
application', pp. 621.

[12] ODC ODC-5.11 (2004), IBM research, Available:
http://www.chillarege.com/,
http://www.research.ibm.com/softeng/ODC/ODC.H
TM, accessed 14th Nov 2007

[13] Ohba, M. (1984), 'Software reliability analysis
models', IBM Journal of Research and Development,
Vol.28, no 4, pp. 428-443.

[14] Pankaj, J., Rajesh, M. and Todd, P. (2007), 'The
When-Who-How analysis of defects for improving
the quality control process', J. Syst. Softw., Vol.80,
no 4, pp. 584-589.

[15] Raymond, E. S. (2000), 'The Cathedral and the
Bazaar', Vol.version 3.0.

[16] Wood, A. (1996), 'Predicting software reliability',
Computer, Vol.29, no 11, pp. 69-77.

