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Abstract The foundations of information-based agency are described, and the prin-
cipal architectural components are introduced. The agent’s deliberative planning
mechanism manages interaction using plans and strategies in the context of the rela-
tionships the agent has with other agents, and is the means by which those relation-
ships develop. Finally strategies are described that employ the deliberative mech-
anism and manage argumentative dialogues with the aim of achieving the agent’s
goals.

1 Introduction

This paper is in the area labelled: information-based agency [7]. Information-based
agency is founded on two premises. First, everything in its world model is uncertain.
Second, everything that an agent communicates gives away valuable information.
Information, including arguments, may have no particular utilitarian value, and so
may not readily be accommodated by an agent’s utilitarian machinery.

An information-based agent has an identity, values, needs, plans and strategies
all of which are expressed using a fixed ontology in probabilistic logic for inter-
nal representation and in an illocutionary language [6] for communication. All of
the forgoing is represented in the agent’s deliberative machinery. We assume that
such an agent resides in a electronic institution [1] and is aware of the prevail-
ing norms and interaction protocols. In line with our “Information Principle” [5],
an information-based agent makes no a priori assumptions about the states of the
world or the other agents in it — these are represented in a world model, M t , that
is inferred solely from the messages that it receives.

The world model, M t , is a set of probability distributions for a set of random
variables each of which represents the agent’s expectations about some point of

John Debenham
University of Technology, Sydney, Australia e-mail: debenham@it.uts.edu.au

1



2 John Debenham

interest about the world or the other agents in it. We build a history of interaction
by noting each commitment made (commitments to act, commitments to the truth
of information or to the validity of an argument), and by relating each of them to
subsequent observations of what occurs. Tools from information theory are then
used to summarise these historic (commitment, observation) pairs — in this way we
have defined models of trust, honour, reliability and reputation [6]. Further we have
defined the intimacy and balance of both dialogues and relationships [8] in terms of
our ‘LOGIC’ illocutionary framework. All of these notions make no presumption
that our agents will align themselves with any particular strategy.

An information-based agent may operate as a utility optimiser if its preferences
are known — e.g. if its preferences are expressed in terms of the ontology indepen-
dent of any world or agent states. For example, it may prefer to pay less than pay
more. If its preferences involve world or agent states then they will be modelled as
probability distributions in M t , where they can support a utilitarian strategy pro-
vided that the agent’s belief in them is sufficiently strong.

The intuition behind information-based agency is that all illocutionary acts give
away (valuable) information. We argue that information should not be valued in
terms of the agent’s preferences. In some situations, a utilitarian agent will have two
ways of evaluating an utterance. As a simple example, if I offer to sell you a bottle
of wine for e4 then you may evaluate this possible outcome in the utilitarian sense
against your valuation of the bottle, or you may evaluate this utterance in terms of
the information gain in, or reduction in uncertainty of, your model of what I am
prepared to sell it for.

It is natural to consider whether an information-based agent could be formulated
as a utilitarian agent. We believe that there is little merit in attempting to do this for
two reasons: first, because information-based agents are not predicated on an under-
standing of preferences over world or agent states, and second, because they are each
concerned with different aspects of the deliberative process. The information-based
machinery is concerned with the observation of each utterance received, and with
the continual revision of the world model in response to these observations. So the
information-based approach is concerned with modelling the speaker by observing
the interaction process. In contrast the utilitarian approach is primarily concerned
with outcomes, in particular with attempting to achieve the most preferred outcome.

We have described argumentation strategies. For example, the equitable informa-
tion gain strategy attempts to reply to an utterance with a response that will give the
opponent expected information gain that is similar to that which the agent observed
when the utterance was received. This strategy may be used in a rich argumenta-
tion setting to assist an agent to choose from a set of possible responses. In the
LOGIC negotiation framework [8] we show how inequitable information gain in
the responses may be used to gradually develop a relationship over repeated inter-
action rounds. Estimates of information gain across five classes of illocutionary acts
form the basis for an on-going relationship-building strategy that attempts to move
the relationship towards a ‘relationship target’. It is guided by estimates of intimacy
(the current degree of ‘closeness’ in the relationship) and of balance (the observed
degree of ‘fairness’ in the exchanges).
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In related papers we have focused on argumentation strategies, trust and honour,
and have simply assumed that the agent has a kernel deliberative system. In this
paper we describe the deliberative system for an information-based agent, and show
how it may accommodate utilitarian thinking if required.

Section 2 describes the kernel of the deliberative mechanism, that is employed in
a discussion of strategies in Section 3, and Section 4 concludes.

2 Deliberative mechanism

2.1 Plans

A plan p is p(ap,sp, tp,up,cp,gp) where:

• ap is a conditional action sequence — i.e. it is conditional on future states of the
world, and on the future actions of other agents. We think of plans as probabilistic
statecharts in the normal way where the arcs from a state are labelled with “event
/ condition / action” leading into a P symbol that represents the lottery, sp, that
determines the next state as described following:

• sp : S→ P(Sp = s) ≡ s where S is the set of states and Sp is a random variable
denoting the state of the world when ap terminates1.

• tp : S→ P(Tp = t) ≡ t where Tp is a random variable denoting the time that ap
takes to execute and terminate for some finite set of positive time interval values
for t.

• up : S→ P(Up = u)≡ u where Up is a random variable denoting the gross utility
gain, excluding the cost of the execution of ap for some finite set of utility values
for u.

• cp : S→ P(Cp = c) ≡ c where Cp is a random variable denoting the cost of the
execution of ap for some finite set of cost values for c.

• gp : S→ P(Gp = g)≡ g where Gp is a random variable denoting the expected in-
formation gain to α and to β of the dialogue that takes place during the execution
of the plan each expressed in G = F ×O .

The distributions above are estimated by observing the performance of the plans as
we now describe.2 In the absence of any observations the probability mass functions
for Sp, Tp, Up, Cp and Gp all decay at each and every time step by Equation ??.

The implementation of ap does not concern us. We do assume that the way in
which the plans are implemented enables the identification of common algorithms
and maybe common methods within different plans. Given two plans p and q, the
function Sim(p,q) ∈ [0,1] measures the similarity of their action sequences ap and

1 For convenience we assume that all action sequences have a “time out” and so will halt after
some finite time.
2 An obvious simplification would be to use point estimates for tp, up, cp and each element of gp,
but that is too weak a model to enable comparison.
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aq in the sense they their performance parameters are expected to be correlated to
some degree.

Estimating Sp. Denote the prior estimate by st. When a plan terminates, or is
terminated, the world will be in one of p’s end states. Call that state z. Then the
observed distribution for st+δ t will have the value 1 in position z. On the basis of this
observation the agent may be inclined to fix its estimate for st+1

z at γ where st
z ≤ γ ≤

1. The posterior distribution st+1 is defined as the distribution with minimum relative
entropy with respect to st: st+1 = argminr ∑ j r j log r j

st that satisfies the constraint
st+1

z = γ . If γ = st
z then the posterior is the same as the prior. If γ = 1 then the

posterior is certain with H(st+1) = 0. One neat way to calibrate γ is in terms of the
resulting information gain; that is to measure γ in terms of the resulting learning
rate µ:

H(st+1) = (1−µ)×H(st) (1)

where µ: 0 < µ < 1.
Estimating Tp, Up, Cp and Gp. Just as for estimating Sp, when the plan termi-

nates α will have observations for the values of these variables, and as a result may
wish to increase the corresponding frequency in the posterior to some new value.
Using the method described above for estimating Sp, the posterior distribution is the
distribution with minimum relative entropy with respect to the prior subject to the
constraint that the frequency corresponding to the observation is increased accord-
ingly.

Further, for these four variables we use the Sim(·, ·) function to revise the esti-
mates for ‘nearby’ plans. In [7] two methods for using a Sim(·, ·) function to revise
estimates are described — the situation here is rather simpler. Consider the variable
Cp. Applying the method in the paragraph ‘Estimating Sp.’, suppose a value had
been observed for Cp and as a result of which ct+1

j had been constrained to be γ .
Consider any plan q for which Sim(p,q) > 0. Denote P(Cq = c) by d. The poste-
rior distribution dt+1 is defined as the distribution with minimum relative entropy
with respect to dt: dt+1 = argminr ∑ j r j log r j

dt that satisfies the constraint: dt+1
j = γ ′

where γ ′ is such that:

H(dt+1) = (1−µ×Sim(p,q))×H(dt) (2)

where 0≤ Sim(p,q)≤ 1 with higher values indicating greater similarity.

2.2 Planning

If an agent’s needs could potentially be satisfied by more than one plan then a mech-
anism is required to select which plan to use. As the execution of plans incurs a cost
we assume that α won’t simply fire off every plan that may prove to be useful.
A random variable, Vp, derived from the expectations of Sp, Tp, Up, Cp, Gp and
other estimates in M t represents the agent’s expectations of each plan’s overall per-
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formance. Vp is expressed over some finite, numerical valuation space with higher
values being preferred.

The mechanisms that we describe all operate by selecting plans stochastically.
We assume that there is a set of P candidate plans {pi} with corresponding random
variables Vpi representing performance, and plan p j is chosen with probability q j
where ∑k qk = 1. Let N t = {V t

pk
}P

k=1. The integrity of the performance estimates for
random variable Vpi are maintained using the method “Estimating Sp” in Section 2.1.
If pi is selected at time t then when it terminates the observed performance, vt

pi,ob,
is fed into that method.

First, consider the naı̈ve mechanism that selects plan p j by: q j = 1 for j =
argmaxi E(Vpi). This mechanism is well-suited to a one-off situation. But if the
agent has continuing need of a set of plans then choosing the plan with highest ex-
pected payoff may mean that some plans will not be selected for a while by which
time their performance estimates will have decayed by Equation ?? to such a extent
that may never be chosen. An agent faces the following dilemma: the only way to
preserve a reasonably accurate estimate of plans is to select them sufficiently often
— even if they they don’t perform well today perhaps one day they will shine.

The simple method: qi = 1
P selects all plans with equal probability. The follow-

ing method attempts to prevent the uncertainty of estimates from decaying above a
threshold, τ , by setting q j = 1 where:

if ∃i ·H(Vpi) > τ then let j = argmaxk H(Vpk)
else let j = argmaxk E(Vpk)

this method may deliver poor performance from the ‘then’ and good performance
from the ‘else’, but at least it attempts to maintain some level of integrity of the
performance estimates, even if it does so in an elementary way.

A strategy is reported in [2] on how to place all of one’s wealth as win-bets
indefinitely on successive horse races so as to maximise the rate of growth; this
is achieved by proportional gambling, i.e. by betting a proportion of one’s wealth
on each horse equal to the probability that that horse will win. This result is in-
teresting as the strategy is independent of the betting odds. Whether it will make
money will depend on the punter’s ability to estimate the probabilities better than
the bookmaker. The situation that we have is not equivalent to the horse race, but it
is tempting to suggest the strategies:

qi =
E(Vpi)

∑k E(Vpk)
(3)

qi = P(Vpi > Vp j),∀Vp j ∈N , j 6= i (4)

For the second strategy: qi is the probability that pi’s performance is the better than
that of all the other plans. With this definition it is clear that ∑i qi = 1. Both strate-
gies will favour those plans with a better performance history. Whether they will
prevent the integrity of the estimates for plans with a poor history from decaying to
a meaningless level will depend on the value of λ in Equation ??, the value of µ in
Equation 1, and on the frequency with which plans are activated. As the estimates
for plans that perform well, and plans that perform badly, all decay to the maximum
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entropy decay limit D(Vpi) if they are not invoked, both of these strategies indirectly
take account of the level of certainty in the various performance estimates.

We consider now the stability of the integrity of the performance estimates in
time. If plan p j is not executed the information loss in X t

j for one time step due
to the effect of Equation ?? is: λ ×H(X t

j). If no plans in N are executed during
one time step then the total information loss in N is: λ ×∑k H(X t

k). If plan p j is
executed the information gain in X t

j due to the effect of Equation 1 is: µ ×H(X t
j),

but this observation may effect the other variables in N t due to Equation 2, and
the total information gain in N is: µ ×∑k Sim(p j, pk)×H(X t

k). Assuming that at
most one plan in N t is executed during any time step, and that the probability of
one plan being executed in any time step is χ; the expected net information gain of
N t+1 compared with N t is:

χ ·µ ·∑
j

q j ·∑
k

Sim(p j, pk) ·H(X t
k)−λ ·∑

k
H(X t

k) (5)

If this quantity is negative then the agent may decide to take additional steps to
gain performance measurements so as to avoid the integrity of these estimates from
consistently declining.

We now consider the parameters λ and µ to be used with the strategy in Equa-
tion 3. The effect of Equation ?? on variable Vi after t units of time is:(

1− (1−λ )t)×D(Vpi)+(1−λ )t ×V t0
pi

The probability that plan pi will be activated at any particular time is:

χ×
E(Vpi)

∑k E(Vpk)

and the mean of these probabilities for all plans is: χ

P . So the mean number of time
units between each plan’s activation is: N

χ
. In the absence of any intuitive value for

λ , a convenient way to calibrate λ is in terms of the expected total decay towards
D(Vpi) between each activation — this is expressed as some constant φ , where 0 <
φ < 1. For example, φ = 1

2 means that we expect a 50% decay between activations.
The value of λ that will achieve this is: λ = 1− (1− φ)χ÷N . Then the value for
µ is chosen so that the expression (5) is non-negative. Using these values should
ensure that the probability distributions for the random variables Vi remain within
reasonable bounds, and so remain reasonably discriminating.

It would be nice to derive a method that was optimal in some sense, but this is
unrealistic if the only data available is historic data such as the Vpi . In real situations
the past may predict the future to some degree, but can not be expected to predict
performance outcomes that are a result of interactions with other autonomous agents
in a changing environment. As a compromise, we propose to use (4) with values for
λ and µ determined as above. (4) works with the whole distribution rather than (3)
that works only with point estimates, but is algebraically simpler. These methods
are proposed on the basis that the historic observations are all that α has.
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3 Strategies

An information-based agent’s deliberative logic consists of:

1. The agent’s raison d’être — its mission — this may not be represented in the
agent’s code, and may be implicit in the agent’s design.

2. A set of values, Π , — high level principles — and a fuzzy function υ : (S×A×
Π)→ fuz, that estimates, when the world is in state s ∈ S, whether the agent
performing action a ∈ A supports or violates a value π ∈Π .

3. A strategy that provides an overarching context within which the plans are ex-
ecuted — see Section 3.2. The strategy is responsible for the evolution of the
relationships between the agents, and for ensuring that plans take account of the
state of those relationships.

4. A hierarchy3 of needs, N, and a function σ : N→P(S) were σ(n) is the set of
states that satisfy need n ∈ N. Needs turn ‘on’ spontaneously, and in response to
triggers, T ; they turn ‘off’ because the agent believes they are satisfied.

5. A set of plans, P — Section 2.1.

In this model an agent knows with certainty those states that will satisfy a need,
but does not know with certainty what state the world is in. Before describing
information-based strategies in Section 3.2 we discuss the role of preferences in
managing the information revelation and discovery process.

3.1 The role of preferences

Agent α’s preferences is a relation defined over an outcome space, where s1 ≺α s2
denotes “α prefers s2 to s1”. Elements in the outcome space may be described either
by the world being in a certain state or by a concept in the ontology having a certain
value. If an agent knows its preferences then it may use results from game theory
or decision theory to achieve a preferred outcome in some sense. For example, an
agent may prefer the concept of price (from the ontology) to have lower values than
higher, or to purchase wine when it is advertised at a discount (a world state). In
practice the articulation of a preference relation may not be simple.

Consider the problem of specifying a preference relation for a collection of fifty
cameras with different features, from different makers, with different prices, both
new and second hand. This is a multi-issue evaluation problem. It is realistic to sug-
gest that “a normal intelligent human being” may not be able to place the fifty cam-
eras in a preference ordering with certainty, or even to construct a meaningful prob-
ability distribution to describe it. The complexity of articulating preferences over
real negotiation spaces poses a practical limitation on the application of preference-
based strategies.

3 In the sense of the well-known Maslow hierarchy [4], where the satisfaction of needs that are
lower in the hierarchy take precedence over the satisfaction of needs that are higher.
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In contract negotiation the outcome of the negotiation, (a′,b′), is the enactment
of the commitments, (a,b), in that contract, where a is α’s commitment and b is β ’s.
Some of the great disasters in market design [3], for example the Australian Foxtel
fiasco, could have been avoided if the designers had considered how the agents
were expected to deviate (a′,b′) from their commitments (a,b) after the contract is
signed.

Consider a contract (a,b), and let (Pt
α(a′|a),Pt

α(b′|b)) denote α’s estimate of
what will be enacted if (a,b) is signed. Further assume that the pair of distributions
Pt

α(a′|a) and Pt
α(b′|b) are independent4 and that α is able to estimate Pt

α(a′|a) with
confidence. α will only be confident in her estimate of Pt

α(b′|b) if β ’s actions are
constrained by norms, or if α has established a high degree of trust in β . If α is
unable to estimate Pt

α(b′|b) with reasonable certainty then put simply: she won’t
know what she is signing. For a utilitarian α , (a1,b1) ≺α (a2,b2) if she prefers
(Pt

α(a′2|a2),Pt
α(b′2|b2)) to (Pt

α(a′1|a1),Pt
α(b′1|b1)) in some sense.

One way to manage contract acceptance when the agent’s preferences are un-
known is to found the acceptance criterion instead on the simpler question: “how
certain am I that (a,b) is a good contract to sign?” — under realistic conditions this
is easy to estimate5.

So far we have not considered the management of information exchange. When
a negotiation terminates it is normal for agents to review what the negotiation has
cost ex post; for example, “I got him to sign up, but had to tell him about our plans
to close our office in Girona”. In Section ?? we argued that it is not feasible to attach
an intrinsic value to information that is related to the value derived from enactments.
Without knowing what use the recipient will make of the “Girona information”, it is
not possible to relate the value of this act of information revelation to outcomes and
so to preferences.

While this negotiation is taking place how is the agent to decide whether to re-
veal the “Girona information”? He won’t know then whether the negotiation will
terminate with a signed contract, or what use the recipient may be able to make of
the information in future, or how any such use might affect him. In general it is un-
feasible to form an expectation over these things. So we argue that the decision of
whether to reveal a piece of information should not be founded on anticipated ne-
gotiation outcomes, and so this decision should not be seen in relation to the agent’s
preferences. The difficulty here is that value is derived from information in a fun-

4 That is we assume that while α is executing commitment a she is oblivious to how β is executing
commitment b and vice versa.
5 In multi-issue negotiation an agent’s preferences over each individual issue may be known with
certainty. Eg: she may prefer to pay less than pay more, she may prefer to have some feature to
not having it. In such a case, if some deals are known to be unacceptable with certainty, some are
known to be acceptable with certainty, and, perhaps some known to be acceptable to some degree
of certainty then maximum entropy logic may be applied to construct a complete distribution rep-
resenting ‘certainty of acceptability’ over the complete deal space. This unique distribution will be
consistent with what is known, and maximally noncommittal with respect to what is not known.
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damentally different way to the realisation of value from owning a commodity, for
example6.

An agent should reveal information if: it assists the dialogue towards a satisfac-
tory conclusion, it deepens the relationship (if that is desired), he can confide in the
recipient not to broadcast it, and can trust the recipient not to be malicious with it.
In general, information revelation and discovery should be seen in the context of the
evolution of the social relationship between the agents; it should not be managed by
a utilitarian strategy.

A preference-based strategy may call upon powerful ideas from game theory. For
example, to consider equilibria α will require estimates of Pt

β
(a′|a) and Pt

β
(b′|b) in

addition to Pt
α(a′|a) and Pt

α(b′|b) — these estimates may well be even more specu-
lative than those in the previous paragraph. In addition she will require knowledge
about β ’s utility function. In simple situations this information may be known, but
in general it will not.

3.2 Information-based strategies

We now describe the strategic reasoning of an information-based agent. This takes
account of the, sometimes conflicting, utilitarian and information measures of utter-
ances in dialogues and relationships. This general definition may be instantiated by
specifying functions for the ψi in the following.

The following notation is used below. Rt
i denotes the relationship (i.e. the set

of all dialogues) between α and βi at time t. Intimacy is a summary measure of a
relationship or a dialogue and is represented in G . We write It

i to denote the intimacy
of that relationship, and I(d) to denote the intimacy of dialogue d. Likewise Bt

i and
B(d) denotes balance.
The Needs Model. α is driven by its needs. When a need fires, a plan is chosen
to satisfy that need using the method in Section 2.2. If α is to contemplate the
future she will need some idea of her future needs — this is represented in her
needs model: ν : T → ×n[0,1] where T is time, and: ν(t) = (nt

1, . . . ,n
t
N) where

nt
i = P(need i fires at time t).

Setting Relationship Targets. On completion of each dialogue of which α is a
part, she revises her aspirations concerning her intimacy with all the other agents.
These aspirations are represented as a relationship target, T t

i , for each βi, that is
represented in G . Let It = (It

1, . . . , I
t
o), Bt = (Bt

1, . . . ,B
t
o) and Tt = (T t

1 , . . . ,T t
o ), then

Tt = ψ1(ν ,It ,Bt) — this function takes account of all βi and aims to encapsulate an
answer to the question: “Given the state of my relationships with my trading part-
ners, what is a realistic set of relationships to aim for in satisfaction of my needs?”.

6 If a dialogue is not concerned with the exchange of anything with utilitarian value, then the two
agents may feel comfortable to balance the information exchanged using the methods in Section ??.
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Activating Plans. If at time t, some of α’s active needs, Nt
active, are not adequately7

being catered for, Nt
neglect, by existing active plans, Pt

active, then select Pt+1
active to take

account of those needs:

Pt+1
active = ψ2(Pt

active,N
t
neglect,N

t
active,I

t ,Tt)

The idea being that α will wish select Pt+1
active so as to move each observed intimacy

It
i towards its relationship target intimacy T t

i . Having selected a plan p, E(Up) and
E(Gp) assist α to set the dialogue target, Dt

i , for the current dialogue [8]. In Sec-
tion 2.2 we based the plan selection process on a random variable Vp that estimates
the plan’s performance in some way. If α is preference-aware then Vp may be de-
fined in terms of its preferences.
Deactivating Plans. If at time t, a subset of α’s active plans, Pt

sub ⊂ Pt
active, ade-

quately caters for α’s active needs, Nt
active, then:

Pt+1
active = ψ3(Pt

active,N
t
active,I

t ,Tt)

is a minimal set of plans that adequately cater for Nt
active in the sense described

above. The idea here is that Pt+1
active will be chosen to best move the observed intimacy

It
i towards the relationship target intimacy T t

i as in the previous paragraph.
The work so far describes the selection of plans. Once selected a plan will deter-

mine the actions that α makes where an action is to transmit an utterance to some
agent determined by that plan. Plans may be bound by interaction protocols speci-
fied by the host institution.
Executing a Plan — Options. [8] distinguishes between a strategy that determines
an agent’s Options from which a single kernel action, a, is selected; and tactics that
wrap that action in argumentation, a+ — that distinction is retained below. Suppose
that α has adopted plan p that aims to satisfy need n, and that a dialogue d has
commenced, and that α wishes to transmit some utterance, u, to some agent βi. In a
multi-issue negotiation, a plan p will, in general, determine a set of Options, At

p(d)
— if α is preference aware [Section 3.1] then this set could be chosen so that these
options have similar utility. Select a from At

p(d) by:

a = ψ4(At
p(d),Π ,Dt

i, I(d),B(d))

that is the action selected from At
p(d) will be determined by α’s set of values, Π ,

and the contribution a makes to the development of intimacy.
If d is a bilateral, multi-issue negotiation we note four ways that information

may be used to select a from At
p(d). (1) α may select a so that it gives βi similar

information gain as βi’s previous utterance gave to α . (2) If a is to be the opening

7 For each need n, σ(n) is the set of states that will satisfy n. For each active plan p, P(Sp =
s) is probability distribution over the possible terminal states for p. During p’s execution this
initial estimation of the terminal state is revised by taking account of the known terminal states
of executed sub-plans and P(Sp′ = s) for currently active sub-plans p′ chosen by p to satisfy sub-
goals. In this way we continually revise the probability that Pt−1

active will satisfy α’s active needs.



Information-Based Planning and Strategies 11

utterance in d then α should avoid making excessive information revelation due to
ignorance of βi’s position and should say as little as possible. (3) If a requires some
response (e.g. a may be an offer for βi to accept or reject) then α may select a
to give her greatest expected information gain about βi’s private information from
that response, where the information gain is either measured overall or restricted to
some area of interest in M t . (4) If a is in response to an utterance a′ from βi (such
as an offer) then α may use entropy-based inference to estimate the probability that
she should accept the terms in a′ using nearby offers for which she knows their
acceptability with certainty [7].
Executing a Plan — Tactics. The previous paragraph determined a kernel action,
a. Tactics are concerned with wrapping that kernel action in argumentation, a+. To
achieve this we look beyond the current action to the role that the dialogue plays in
the development of the relationship:

a+ = ψ5(a, ,T t
i , It

i , I(d),Bt
i,B(d))

In [8] stance is meant as random noise applied to the action sequence to prevent
other agent’s from decrypting α’s plans. Stance is important to the argumentation
process but is not discussed here.

4 Conclusion

In this paper we have presented a number of measures to value information includ-
ing a new model of confidentiality. We have introduced a planning framework based
on the kernel components of an information-based agent architecture (i.e. decay, se-
mantic similarity, entropy and expectations). We have defined the notion of strategy
as a control level over the needs, values, plans and world model of an agent. Finally,
the paper overall offers a model of negotiating agents that integrates previous work
on information-based agency and that overcomes some limitations of utility-based
architectures (e.g. preference elicitation or valuing information).
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