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3D I-SLSJF: A Consistent Sparse Local Submap Joining Algorithm for
Building Large-Scale 3D Map

Gibson Hu, Shoudong Huang and Gamini Dissanayake

Abstract— This paper presents an efficient and reliable algo-
rithm for autonomous robots to build large-scale three dimen-
sional maps by combining small local submaps. The algorithm
is a generalization of our recent work on two dimensional map
joining algorithm — Iterated Sparse Local Submap Joining
Filter (I-SLSJF). The 3D local submap joining problem is
formulated as a least squares optimization problem and solved
by Extended Information Filter (EIF) together with smoothing
and iterations. The resulting information matrix is exactly
sparse and this makes the algorithm efficient. The smoothing
and iteration steps improve the accuracy and consistency of
the estimate. The consistency and efficiency of 3D I-SLSJF is
demonstrated by comparing the algorithm with some existing
algorithms using computer simulations.

I. INTRODUCTION

For an autonomous robot to navigate in an unknown
environment, it is necessary to build up the knowledge of
the map of the environment and be aware of the location
of the robot itself within the map. Simultaneous localization
and mapping (SLAM) is the process of building a map of an
environment while concurrently generating an estimate for
the location of the robot (also called “robot pose”). SLAM
has been an active research topic for the past decade due to
its numerous applications [1].

Recently a number of research has been focused on three
dimensional SLAM problems. For 3D SLAM using laser
or vision sensors, some approaches are “trajectory SLAM”
where scan/image matching based techniques are used to
obtain the relative poses between frames and then nonlinear
optimization is applied to optimize the robot trajectory
[4][5][20][15]. The problem of this kind of approaches is
that the map model and the map uncertainty is not very
well presented, and the map is not updated directly using
the observation information.

For 3D feature based SLAM, most of the existing algo-
rithms are using Extended Kalman Filter (EKF) or Extended
Information Filter (EIF) related techniques [8][19]. The
algorithms can be made more efficient by applying the local
map strategies [12][18]. In local submap joining, a sequence
of small sized local submaps are built by a SLAM algorithm
(e.g. EKF SLAM [7] or maximal likelihood (ML) approach1)
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1In this paper, the ML approach means to find the maximal likelihood
of all the robot poses and all the observed feature positionsusing all the
information available. It is also called Smoothing and Mapping (SAM) [6].

and then combined into a large-scale global map. However,
the consistency of the map estimate using EKF/EIF based
approach needs to be carefully analyzed [2][11].

Recently, some efficient graph optimization based ap-
proach [6][10] are developed using the sparse graph represen-
tations of the SLAM problem. Optimization based approach
can provide more consistent estimate as compared with
the filter based approach. However, a major issue of these
approaches is that the state dimension is very high because
all the robot poses are included [6][10][14][17].

Very recently, we proposed the Iterated Sparse Local
Submap Joining Filter (I-SLSJF) algorithm [13]. In I-SLSJF,
the map joining problem was formulated as a least squares
problem and was solved by using multiple iterations at each
map fusion step. Two dimensional large-scale simulation and
experimental results show that the estimation results fromI-
SLSJF is more consistent as compared with that of EKF
SLAM [7] or Sparse Local Submap Joining Filter (SLSJF)
[12].

In this paper, the 2D I-SLSJF algorithm [13] is generalized
to 3D to provide an efficient and consistent algorithm for
large-scale 3D map building. In order to improve the quality
of the global map, we propose to use ML to build the
local maps and then use 3D I-SLSJF to join the local maps
together.

The paper is organized as follows. The process of 3D
local map building is stated in Section II. The idea and
steps of the 3D I-SLSJF algorithm is described in Section
III. Simulation results are provided in Section IV. Finally,
Section V concludes the paper.

II. THE 3D LOCAL MAP BUILDING

Consistent local maps are needed in I-SLSJF such that
consistent global map can be obtained. In order to improve
the quality of the local maps, the ML approach instead of
EKF is used to build the 3D local maps.

A. The observation and odometry information

The observation information describes the relative position
of features with respect to the robot pose at which the
observation is made. Suppose the robot pose is

Xr = (xr, yr, zr, αr, βr, γr), (1)

where (xr, yr, zr) denotes the 3D robot position and
(αr, βr, γr) are the ZYX Euler angles [16] describing the
orientation of the robot. Let the position of featurei be
denoted as

Xi = (xi, yi, zi), (2)



then the relative position between the feature positionXi

and the robot poseXr is

h(Xi,Xr) = Rot(αr, βr, γr)
T
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whereRot(α, β, γ) is the rotation matrix.
Suppose the observation value is denoted asZi, then the

observation equation can be written as

Zi = h(Xi,Xr) + wi (4)

wherewi is the observation noise which is assumed to be
Gaussian with zero-mean and covariance matrixPZi

.
The odometry information describes the relative pose of

the two consecutive robot poses. Suppose the two poses
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can be obtained as follows. Forδxr, δyr, δzr,
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For δαr, δβr, δγr, using the relationship between the ro-
tation matrices
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1
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r ), (7)

one gets (because the rotation matrix is orthogonal)

Rot(δαr, δβr, δγr) = Rot(α2
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r )Rot(α1
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1
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r )T .

(8)
Now the ZYX Euler anglesδαr, δβr, δγr can be obtained

from the rotation matrixRot(δαr, δβr, δγr) [16].
Suppose the odometry information is denoted asO2

1, then
the odometry equation can be written as

O2
1 = g(X2

r ,X1
r ) + w2

1. (9)

where w2
1 is the odometry noise which is assumed to be

Gaussian with zero-mean and covariance matrixPO2
1
. The

function g can be obtained by combining (6) and (8).

B. Build local map using ML

The ML approach finds the maximal likelihood of the
robot poses and the observed feature positions using all the
odometry and observation information available. And this
process is performed after each step when new information
arrives. This is arguably the best one can do for estimating
the feature positions and the robot poses.

Due to the Gaussian assumption on the observation and
odometry noises, the ML estimation problem is equivalent
to a least squares formulation [6]. The least squares problem
can be formulated using (4) and (9) similar to that in [6].

Since both the number of robot poses and the number
of features involved in the local map are small, ML is
computationally efficient in building good quality local maps.

C. Marginalize out previous robot poses

The required format of the local maps for 3D I-SLSJF is

(X̂L, IL) (10)

whereX̂L (the superscript ‘L’ stands for the local map) is
an estimate of the state vector

XL = (XL
r ,XL

1 , · · · ,XL
n ) (11)

and IL is the associated information matrix (the inverse
of the covariance matrix). The state vectorXL contains
the robot final poseXL

r and all the local feature positions
XL

1 , · · · ,XL
n .

Since all the robot poses are included in the state vector
of ML, the previous robot poses need to be marginalized out
such that the local map will have the format (10).

Since the information matrix of the whole state vector
(denoted asIML) is available in the ML result. The infor-
mation matrix corresponding to the statêXL in (10) can be
computed by the Schur Complement of the corresponding
block in IML.

III. THE 3D I-SLSJF ALGORITHM

The input to the 3D I-SLSJF is a sequence of 3D local
maps each with the format (10). It is assumed that the robot
starts to build local mapk + 1 as soon as it finishes local
map k. Therefore the robot end pose of local mapk is the
same as the robot start pose of local mapk + 1.

A. State vector of the global map

The coordinate frame of the global map is the same as that
of the first local map. The state vector of the global map are
created by fusing each local maps together in sequence.

After local maps1 to k are fused into the global map, the
global state vector is denoted asXG(k) (the superscript ‘G’
stands for the global map) and is given by

XG(k)
= (XG

1 , · · · ,XG
n1

,XG
1e,

XG
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,XG

2e,
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,XG

ke)
(12)

whereXG
n1+1, · · · ,XG

n1+n2
are the global positions of those

features in local map2 but not in local map1. The subscript
‘e’ stands for robots ‘end pose’. When fusing local mapk+1,
only new featuresXG

n1+···+nk+1, · · · ,XG
n1+···+nk+nk+1

and
the final poseXG

(k+1)e, from the local mapk + 1, are added
to (12) to form the new global stateXG(k + 1).

B. Local map fusion as a least squares problem

Suppose local mapj is given by (X̂L
j , IL

j ) and suppose
the features involved in local mapj are XG

j1, · · · ,XG
jn in

the global map, then the local map state estimateX̂L
j can be

regarded as an observation of the true relative positions from
the robot start poseXG

(j−1)e to the featuresXG
j1, · · · ,XG

jn

and the robot end poseXG
je. That is,

X̂L
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G(k)) + Wj (13)
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where h is given by (4) andg is given by (9), andWj

is the zero-mean Gaussian “observation noise” whose co-
variance matrix isPL

j = (IL
j )−1 (when j = 1, XG

(j−1)e =
(0, 0, 0, 0, 0, 0)).

So the problem of fusing local maps1 to k is to estimate
the global stateXG(k) using all the local map information
(13) for j = 1, · · · , k. This problem can be formulated as a
least squares problem:

min
XG(k)

k
∑

j=1

(X̂L
j − Hj(X

G(k)))T IL
j (X̂L

j − Hj(X
G(k))).

(14)

C. Overall structure of 3D I-SLSJF

The details of 3D I-SLSJF is similar to that of 2D I-SLSJF
[13]. The main steps of the algorithm are listed below. For
the details of each step, please refer to [13] and [12].

The overall structure of the algorithm is presented in
Algorithm 1.

Algorithm 1 Overall structure of 3D I-SLSJF
1: Set local map1 as theglobal map

2: For k = 1 : p− 1 (p is the total number of local maps),
fuse local map k + 1 into theglobal map

3: End

The steps used in fusing local mapk + 1 into the global
map are listed in Algorithm 2.

Algorithm 2 Fuse local mapk + 1 into global map
1: Data association
2: Initialization using EIF
3: Update using EIF
4: Use least squares to do smoothing when necessary

D. Data Association

Data association here refers to finding the features in local
map k + 1 that are already included in the global map and
their corresponding indices in the global state vector. It can
be performed using the same procedure as that in SLSJF [12]
as described in Algorithm 3.

E. Smoothing using least squares

The steps for smoothing using the least squares method
are listed in Algorithm 4.

Algorithm 3 Data association between local mapk + 1 and
the global map
Require: global map and local map k + 1

1: Determine the set of potentially overlapping local maps
2: Find the set of potentially matched features
3: Recover the covariance submatrix associated withXG

ke

and the potentially matched features
4: Use statistical data association approach to find the

match

Algorithm 4 Smoothing using least squares

1: Recompute the information matrixI(k + 1) and the
information vectori(k + 1)

2: Compute the Cholesky Factorization ofI(k + 1)
3: Recover the global map state estimateX̂G(k + 1)
4: Repeat the above process untilX̂G(k + 1) converges.

F. Efficiency and Consistency of I-SLSJF

Since each local map only involves some “nearby objects”
— the features and the robot start/end poses involved in the
local map, the information matrix in 3D I-SLSJF is exactly
sparse [12][13].

As pointed out in [13], the main reason why I-SLSJF
is more consistent as compared with SLSJF is because
smoothing and iterations are used and the Jacobians are
evaluated at the final estimate. This avoids the scenarios
where the Jacobian with respect to the same feature/pose be
evaluated at different estimate data, which is one of the major
causes of inconsistency for EIF/EKF SLAM algorithms [11].
In fact, the state estimate obtained in I-SLSJF is the optimal
solution of the least squares problem (14).

IV. SIMULATION RESULTS

In this section, simulations results are presented to illus-
trate the consistency and efficiency of the 3D I-SLSJF over
EKF SLAM and ML (the simulation data is available online:
http://services.eng.uts.edu.au/˜sdhuang/research.htm).

A. Simulation results using a small data set

This relatively small data set is used to compare the
consistency of three different algorithms — 3D I-SLSJF,
EKF SLAM and ML.

The100m×100m×15m simulation environment contains
a total of 1125 features distributed uniformly into5 layers.
The robot starts from the center of this environment and
moves in a square shaped trajectory at the same time pivoting
in the z axis. The trajectory has a total of100 steps. The
robot is able to observe previous features on its path which
allows for loop closure, as shown in Fig. 1(a).

We assume the robot can observe all features within a
distance of20m in front of it with a viewing angle±90
degrees. The observation data is generated by adding Gaus-
sian noise on the relative 3D position between the robot pose
and the observed features. Subsequently the odometry data is
obtained by adding noise on the relative pose between two



TABLE I

NEESOF THE MAP ESTIMATES FROM DIFFERENT ALGORITHMS USING

THE 100 STEPS DATA SETS.

ODOMETRY NOISE: diag(0.5, 0.5, 0.5, 0.1.0.1, 0.1);

OBSERVATION NOISE: diag(0.01, 0.01, 0.01)

simulation run ML 3D I-SLSJF EKF 95% χ2 gate
1 57.95 108.41 52567 277.14
2 54.03 138.74 341320 277.14
3 51.89 157.94 42100 277.14
4 55.12 231.84 32379 277.14
5 95.72 180.93 1097500 277.14
6 96.63 1009.58 479490 277.14
7 129.92 362.84 102980 277.14
8 111.63 571.53 412390 277.14
9 68.46 323.47 81293 277.14
10 77.84 189.63 43154 277.14

consecutive robot poses. The total number of observations
made is672 and the total number of features observed is80.

The odometry and the observation data are used to build
the map by three different algorithms: 3D I-SLSJF, EKF and
ML. 3D I-SLSJF involves dividing the data up into20 local
maps and then fuse them using the 3D I-SLSJF algorithm.

Ten simulation data sets were generated each with the
same parameters but different random seeds for the noises
(Monte Carlo runs). The results from one of the data sets
are shown in Fig. 1(b) to 1(d). Fig. 1(b) shows the 3D
map obtained by EKF SLAM algorithm where the estimated
feature positions (red circles) are significantly different from
the true feature positions (blue crosses). Fig. 1(c) shows the
map obtained by 3D I-SLSJF while Fig. 1(d) shows the map
obtained by ML. The estimated feature positions of these
two algorithms are very accurate.

To compare the consistency of the different mapping algo-
rithms, the normalised estimation error squared (NEES) [3]
of the map estimates from different algorithms are computed.
The formula is

NEES = (x̂ − xtrue)
T I(x̂ − xtrue) (15)

wherex̂ is the estimate of the map (the observed feature posi-
tions) andxtrue is the corresponding true feature positions.
I is the information matrix (the inverse of the covariance
matrix) obtained from the algorithm.

Table I shows the NEES results of the different algorithms
for the 10 runs and the95% χ2 (chi-square) gate. It is clear
that the EKF result can not be accepted to be consistent while
the results of 3D I-SLSJF and ML are both acceptable.

B. Simulations results using a large data set

The same simulation environment is used with100m ×

100m× 15m in size and 1125 features. This time, the robot
starts from the center of the cuboid, first closing a smaller
loop then a larger one shown in Fig. 2(a). The robot moves
a total of 880 steps to complete its trajectory.

The odometery and observation data are generated in the
same way as the100 step data set. The total number of
observation made is5555 and the total number of observed
features is570.

Fig. 2(b) shows the 3D map obtained by ML. For 3D I-
SLSJF,44 small sized local maps are built by ML using the
odometry and measurement information. Fig. 2(c) shows XY
top view generated by fusing the44 local maps using 3D
I-SLSJF. It can be seen that the feature position estimates
computed by 3D I-SLSJF methods are very close to the
true feature positions. Fig. 2(d) shows the sparse information
matrix from the 3D I-SLSJF result. There are192866 non-
zero elements and19742

− 192866 = 3703810 exactly zero
elements. The sparseness of the information matrix makes
the 3D I-SLSJF efficient.

The XY views of the map obtained by ML and the map
obtained by EKF SLAM are shown in Fig. 2(e) and Fig. 2(f).
It is clear that the map obtained by EKF is not accurate.

The number of poses involved in ML is significantly larger
than that of 3D I-SLSJF (880 vs 44). Table II compares some
key factors of EKF SLAM, ML and 3D I-SLSJF in terms of
efficiency and consistency. The table shows that the results
of the 3D I-SLSJF appears to be acceptable although more
Monte Carlo runs are necessary to have a proper consistency
check using average NEES [2].

V. CONCLUSION

This paper extend the 2D I-SLSJF into 3D I-SLSJF to
efficiently build consistent 3D point feature based maps. By
treating each local map as an observation and including
robot start/end poses in the global state vector, the map
joining problem is formulated as a least squares problem.
EIF combined with the linearized least squares approach
are used in the map fusion step. As compared with filter
based mapping algorithm, the consistency of the map is
improved. As compared with the optimal ML approach,
the computational cost is significantly reduced. Simulation
results demonstrated the efficiency and consistency of the
proposed map joining algorithm.

A number of techniques can be applied to further reduce
the computational cost of the 3D I-SLSJF algorithm. One
way is to use the “divide and conquer” idea [18] or tree
presentation [9] instead of the sequential map joining cur-
rently being used. However, if the sequential map joining
is not used, then the data association is a critical issue to
be resolved. Another way is to use the graph optimization
techniques [10] for the smoothing step of 3D I-SLSJF. In
this case, the correlation among the local map features need
to be taken into account.

Currently we are in the process of testing the 3D I-SLSJF
using large-scale experimental data. In the future, we aim to
develop the robot path planning strategies such that it can
perform the mapping tasks more effectively and efficiently.
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