
© [2009] IEEE. Reprinted, with permission, from Mehboob Zafar, Zowghi Didar, and

Lowe David 2009, 'An Approach for Comparison of Architecture Level Change

Impact Analysis Methods and their relevance in Web Systems Evolution', ASWEC

2009: 20th Australian Software Engineering Conference, pp. 162-172.This material is

posted here with permission of the IEEE. Such permission of the IEEE does not in

any way imply IEEE endorsement of any of the University of Technology, Sydney's

products or services. Internal or personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution must be obtained from

the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this

document, you agree to all provisions of the copyright laws protecting it

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Edgar,%20J.A..QT.&newsearch=partialPref

An Approach for Comparison of Architecture Level Change Impact Analysis
Methods and their relevance in Web Systems Evolution

Zafar Mehboob, Didar Zowghi, David Lowe
Faculty of Engineering and Information Technology

University of Technology, Sydney,
Australia

{zafar,didar}@it.uts.edu.au, david.lowe@uts.edu.au

Abstract

Change impact analysis (CIA) methods have been
developed to identify the consequences of making
changes to system artifacts and to support decision
making with regards to that change. There is a
growing body of research on CIA methods that
specifically addresses changes and their impacts at a
system architecture level. Most of the methods have
been developed and validated on software system
domain. However, there is little research consensus
on: (i) the features that architectural CIA methods
should comprehensively address; and (ii) which
existing methods are comparatively suitable in a
particular system domain such as Web systems. This
paper presents a comparison approache that offer
guidance on the selection of the most appropriate
method for CIA activity and suitability of these
methods in the context of Web systems.

1. Introduction

Change impact analysis (CIA) is a crucial part of the
change management process, as software systems are
generally exposed to changing requirements. Bohner
and Arnold [1] define impact analysis as ‘identifying
the potential consequences of a change, or estimating
what needs to be modified to accomplish a change’.
This definition is general and talks about the scope of a
change not limited to any development phase or
activity. Most research about impact analysis focuses
on program code level, although CIA undoubtedly
plays an important role in the entire system life cycle
such as for requirements [2], architectural design [3, 4]
and testing phases [5].

The problem of developing and maintaining
complex and evolvable systems has led to a realization

that architecture description can play an important role
in successfully understanding and managing complex
and volatile systems [6]. Researchers and practitioners
have also recognized that quality attributes such as
maintainability of systems are mainly constrained by
the architecture [7] and this is why it is also crucial to
specifically investigate change impacts during
architecture design. To address this concern, there are
different CIA methods developed specifically to
address changes and their impacts at system
architecture level. However, it has been argued that the
phenomena of system evolution are not universal and
vary according to systems domain [8] and thus a
developed method may not be suitable for all other
domains except the one which it is developed for.
Given the importance of architecture level CIA and
possible variation of these methods in different system
domains, there is surprisingly little consensus on (i) the
features that an architecture level CIA method should
address and (ii) on the suitability of these methods in a
particular system domain such as Web systems.

A comparison of existing methods can better inform
consideration of the desirable features of CIA methods
and their usefulness in a specific system domain (an
explanation of system domain are given in section III
A). We have developed an approach to compare
different architecture level CIA methods. The main
contributions of this paper are (i) to present a
comparison approach based on the features that
architecture level CIA methods should
comprehensively address in order to offer guidance on
the selection of the most appropriate CIA method. By
utilizing these comparison results (ii) to further
discover the shortcoming of these methods with respect
to the Web systems domain and to better inform on the
suitability of these methods in Web systems domain.
An initial work for the comparison of CIA methods has
been done at program code level and focused more on

mailto:@it.uts.edu.au
mailto:lowe@uts.edu.au

cost-precision tradeoff [9]. Similarly another
comparison of dynamic CIA methods has been done to
specifically focus on the scalability feature of selected
methods at code level [10]. Both of these comparisons
are limited in their application at the program code
level only and exclusively address the tradeoff analysis
such as cost-precision, time-space overhead and
scalability aspects. Our comparison approach is
different in three ways. Firstly, it is concerned with the
study of architecture level CIA methods. Secondly, it is
based on the features that these methods should address
and more importantly illustration of these features as
selection criteria and lastly it offers guidance on the
suitability of these methods in Web systems domain.
Furthermore, we have developed our comparison
approached based on a set of evaluation elements and
categorized these elements into four components of
NIMSAD framework [30].

Given the importance of architecture, there are
surprisingly few methods developed to assess the
changes and their impact at architecture level. For our
comparison, we have selected three most representative
architecture level CIA methods that largely encompass
other available methods. These three architecture level
CIA methods are based on design rationale [4, 11],
architectural slicing [3], and crosscutting in
architectural design [12] respectively. In the rest of the
paper we will refer to these three methods as method 1,
method 2 and method 3 respectively. In the next
section of this paper, we will discuss the nature of the
Web development process in general and
characteristics of Web systems architecture in
particular. Section 3 presents our approach for methods
comparison and its components. Section 4 provides an
overview of architecture level CIA methods and
application of our comparison approach. Section 5
provides discussion and comparison results.
Conclusions and future work can be found in section 6.

2. Characteristics of Web Systems and
their relevance in CIA

There is a growing body of literature regarding the
differences in the development processes of Web
systems and traditional software systems. Numerous
authors have reported that the Web development
process is different from traditional software processes
in many ways [13-15]. These differences include
aspects such as: co-evolution of business and solution
under development [16] and rapidly changing
requirements [17]. Furthermore, the architecture of
Web systems tend to be characterized by a tighter
linkage between business architecture with both

complex information architecture and a highly
component-based technical architecture [18]. In this
paper we will specifically focus on two distinct
characteristics of Web systems including (i) co-
evolution of business processes and solution under
development (ii) tighter linkage between business
model and technical architecture. Subsequently we will
report the shortcomings of current architecture level
CIA methods while addressing these characteristics.

2.1. Co-evolution of business processes and
solution under development

In traditional software development, where
architecture design is typically preceded by
requirement elicitation, change identification and
analysis of architecture (such as functional and system
architecture) are well supported by suitable CIA
methods. Conversely in Web systems, business needs
and architecture solutions both co-evolve mainly as a
result of lack of domain understanding and domain
uncertainty [19]. Catering for the changes and their
impacts early when business processes and supporting
architecture is emerging, current CIA methods do not
seem adequate for identification of impacts on the
architecture as a result of changing business needs.

This specific characteristic is most noticeable in
highly incremental web development processes which
tend to often remove the distinction between
requirements specifications and architectural design
[14]. The iterative/incremental development in Web
systems, however, is intended mostly not to evaluate
solutions against a known set of business needs (as it is
the case with traditional software systems) but rather to
actually help the client and let developers formulate
architecture design solution [20]. As a consequence,
many of the requirements are actually captured during
architectural design [21].

The reliance on an architectural solution/
specification and the incremental development
indicates that we need to support high degree of
cohesion between changing business needs and their
possible impact on supporting architectural. Any flaw
while analyzing the impacts of a change from business
models to architecture design solution (such as the
inability to adequately reflect changing business needs
at a suitable level of architecture abstraction) will result
in derelict architecture and ultimately inadequate
solutions. Furthermore, at the stage of joint exploration
of business needs and supporting architecture solution,
an early identification of change impact may become
rather complex while addressing other characteristics
of Web systems such as tight coupling between

business model and supporting technical architecture
[18].

2.2. Tighter linkage between business processes
and technical architecture

The architecture of Web systems is highly
constrained by the technological and infrastructure
supports (e.g. limitation of Web browsers, data and
documents format-XML/DTD, security and availability
constraints etc.) [18]. It means that there is a high
degree of limitations places on the form of the
architecture that a specific architecture solution may
take. As a result of these constraints the architecture is
much more directly related to the business needs being
addressed and the resultant business models. This
aspect creates a tight coupling between business
models and supporting architecture. Due to relative
tight coupling, changes in business models often lead to
fundamental changes in the solution and potentially
influences supporting architecture [15]. It has been
urged that Web systems architecture must be a clear
reflection of rapidly changing businesses requirements
[17]. With a high degree of architecture
interdependencies, Web system maintenance may
become difficult and negatively effect web-based
business success largely as a result of late identification
of impact at latter stages of development. In general,
changes in Web systems are largely as a result of high
degree of volatility and frequent modifications to
improve the quality and functionality they offer. The
early identification of these changes and their impacts
is crucial for development/maintenance and can
possibly results in cost and risk reduction. Many of the
secondary impacts caused by change-propagation may
go undetected or identified very late while using the
existing CIA methods [22].

Previous research highlights that the CIA methods
are developed by both an understanding of the
interdependencies between components or sub-systems
[23] as well as the process [24, 25] which derives from
a set of requirements through design and ultimately to
the implementation. This focus may lead us to the
supposition that if the system architecture or the
process of development is fundamentally changed, then
the CIA methods should also be changed accordingly.
This is particularly relevant in the context of Web
systems, given that the literature indicates that these
systems often have a specific set of characteristics
related to differences both in their architecture and the
process through which they are developed. As Web
systems become ubiquitous it has become increasingly
important to be aware of the various characteristics-

which are different from software systems-and hence
the methods and techniques for change assessment.
That is to say, unless we improve our understanding of
Web systems characteristics within the scope of change
analysis methods, we may not be able to utilize the real
strength of change impact analysis.

The difference in the characteristics and natures of
changes in Web systems motivate us to compare
existing architectural CIA methods and to investigate
the suitability of these methods in the context of Web
systems. Our comparison approach has drawn upon a
number of different previous work including the
comparison framework and survey for modeling [26],
design [27], analysis [28] and evaluation [29] methods.
These comparison approaches are quite valuable in
guiding and motivating us for the comparison of
architecture level CIA methods.

3. Description of comparison approach

Based on the characteristics of Web systems and the
lack of adequate research with a focus on explicitly
comparing architectural CIA methods, we propose a
comparison approach that is based on two sources. The
first is a well known framework for comparing
information system methods: the NIMSAD (Normative
Information Model-based Systems Analysis and
Design) framework [30]. This framework for method
comparison has also been widely used in other contexts
including product line development [27] and software
engineering [28, 29]. Since the NIMSAD framework
uses the entire problem solving process as the basis for
comparison [30], we believe it can be used to evaluate
methods in any category. According to NIMSAD, there
are four essential components for method comparison.
Firstly, the method is evaluated from the perspective of
the problem situation, i.e. the method context. The
second component is the problem solver, i.e. the
user/stakeholder of the method. The third component is
the problem solving process, i.e. the method itself. The
last component is the validation of the method. The
second source for our approach is the applications of
NIMSAD framework for the comparison of
component-based system development methods [31],
architectural evaluation methods [29], and architectural
analysis methods [28]. Before discussing and
describing each component and elements of our
approach, it is important to define other key concepts
i.e. architecture and change to architecture.

A commonly used definition for architecture is
proposed [32] as ‘The software architecture of a
program or computer is the structure or structures of
the system, which comprises software components, the

Table 1. Criteria for comparison of Architecture level CIA methods
NIMSAD

Components
Elements of Comparison

Approach
Descriptions

Context

System Architecture
definition

Does the method explicitly considered a particular definition of System
architecture?

Specific goal What is the particular goal(s) of the method?

Applicable stage Which is the most appropriate development phase to apply the method?

Input & output What are the inputs required and outputs produced?

System domain What is the system domain where method mostly applied?

Stakeholder Stakeholders’ involvement Which stakeholders are required to participate in the CIA activity?
Process support How much support is provided by the methods to support other processes?

Contents
Method’s activities

What are the activities to be performed and in which order to achieve the
goals?

SA description What form of SA description is required?
CIA approaches What types of CIA approaches are used by the method?

Tool support Are there tools to support the method?

Reliability
Maturity of method What is the level of maturity of method?

Validation of method Has the method been validated?

externally visible properties of those components, and
the relationships among them.’ This definition
emphasises on system structure and we will also use the
same concept of architecture in this paper. A change to
architecture could refer to the addition, deletion or
modification to the underlying architecture entities,
component, connectors (relationships) and links from
one component to other components, or a combination
of these factors [33]. We have based our comparison
approach on NIMSAD framework and adopt the basic
criterion (i.e. context, stakeholder, content, and
validity). Additionally, the elements of each component
are drawn from other sources including extensive
literature review of CIA methods, similar research for
methods comparison and desirable features as reported
by CIA researchers. We have categorised these
elements and mapped them to four components of
NIMSAD. Furthermore, we have provided a short
description of each element as shown in table 1 and
covered in section 3.1. We believe that an architecture
level CIA method should address these elements as
desirable features of a method.

3.1. Context

Architectural definition- A well defined description
of architecture is important, as it is substantially related
to the scope of the method. Most of the methods do not
specifically provide any concrete definition for
architecture. Methods goal - The goal of the method is
important while attaining maximum benefit of a
method, guiding user during decision making and
selecting desired goal(s) from a set of objective. CIA
can be performed for a number of goals. Mainly it

helps to reduce the cost and risk [1, 2] caused by
unanticipated impacts. At architecture level, the goal of
CIA method is to determine architecture artefacts
affected by a change and thus facilitate tracing the
change effect to other artefacts.

Applicable stage- Architecture level CIA is mostly
performed before the implementation phase, or after
the development of architecture design (for example
adding quality attribute after development [34]).
Previous research reported three significant stages for
architecture evaluation including early, middle, and
post-deployment [28]. These stages are typically
mapped to (i) initial high-level architectural design
(early), (ii) during the elaboration of the architecture
design (middle), (iii) and after complete system design,
its implementation and deployment (post-deployment)
[28]. We believe that architecture level change
assessment should be performed as soon as potential
changes are being identified. This may facilitate CIA
activity at early stages of development life cycle and
can significantly reduce the maintenance cost at later
stages of development [22].

Input and output- As a part of process activities,
inputs and outputs are important to specify the starting
point and result of a method. Most of the methods
require some form of formal, informal or Architectural
Description Languages (ADL) based on architecture
representation and provide impacts set as output.

System domain- By system domain, we mean a
collection of problems that have something in
common, usually (but not always) the nature of the
problem [35]. Previous researchers have reported
different system domains (e.g., avionics, mobile
robotics, software systems, web systems, method

engineering, and languages development) along with
their specific requirement, architecture, development
methodology and languages to address specific
domains requirements [35]. Given the fundamental
difference that system domains have [36], there is an
intrinsic need to first adequately understand the
characteristics of that domain whilst selecting any
method.

3.2. Stakeholder

Involved stakeholder- A stakeholder is an entity
(person or organization) that can be affected by the
results of software development project [37]. It is
evident that stakeholder may influence architectural
change decision in various ways [38]. For a successful
CIA method it is important to identify all the
stakeholders along with their individual and common
objectives (e.g. impacts’ prioritization and decisions
making [39]) during change impact analysis process.

Process support- CIA comprises several number of
activities (including examine change specification,
trace potential impact, perform changes and verify
changes [1]), input, output and the users of the process.
The process support is vital in any architecture level
CIA method to provide guideline, input, output, and a
sequence of steps to follow.

3.3. Contents

Method activities- In support of the process, there
are usually a number of activities that a method should
employ to perform CIA. The number, sequence,
complexity and granularity of activities may differ from
one method to another method. Most of the methods
suggest at minimum a common set of activities
including examination of proposed change, selection of
architectural chunk/component, application of analysis
approach, and implication of method results.

Architectural description- Architectural description
indicates different levels of information details for
communication and expression of stakeholders needs
[32]. Given that most of systems are developed with
different Architecture Description Language (ADL)
and with different architectural views, it is evident that
there is a lack of single standard of architectural
modeling and recognized a number of architectural
views. Therefore, it is important that an architecture
level CIA method should provide specific details of
required architectural description.

Change impact analysis approaches- There are two
basic approaches of CIA methods referred in research
literature, one is dependency analysis and another is

traceability analysis [1]. However, at architecture level,
many methods employ a relatively fine-grain analysis
approach such as static or dynamic dependency
analysis [40, 41]. Broadly, dependency analysis refers
to the analysis of system artefacts at the same level of
abstraction (e.g., source code to source code or design
to design) and attempts to assess the effects of a change
based on the semantic dependencies (static or dynamic)
among system entities.

Tool support- Automation and tool support for CIA
are essential while solving some important problems
such as change propagation, inconsistency detection,
traceability and dependency analysis [42]. Mainly tools
are used to reduce maintenance effort and execution
time [1] while performing CIA activities.

3.4. Reliability

Maturity of method- Maturity of a method can
significantly influence its selection from a set of
alternatives. Therefore, it is one of the important
criterions for any CIA method. Previous related work
defines three level of method maturity as: inception,
development, and refinement [28].

Validation of method- Method validation is an
essential mean to encourage users and to foster their
confidence on methods’ usage [43, 44]. It is also
important to validate a method in different domains to
demonstrate their general applicability.

4. Comparison of architecture level CIA
methods

In this section we will describe three architecture
level CIA methods and compare them one by one with
the elements of our comparison approach.

4.1. Design rationale (Method 1)

An initial method based on a structured set of
architectural decision knowledge was developed to use
design decisions whilst predicting change impact at an
architecture level [11]. This basic method is further
extended by exploring dependencies between
architectural change decision and architectural
elements; and then uses probability calculus to quantify
these dependencies [4]. We will use the extended
version of this method for the purpose of comparison
due to its comprehensive approach and
implementations.

4.1.1. Context. System architecture definition-
Method 1 follows the IEEE 1471-2000 standard’s

definition for architecture where multiple view-points
of architecture is used including requirement,
information, computation and engineering [45].
Specific goals- The goal is not sufficiently concrete to
state for method 1. However, generic goal(s) has been
mentioned by researchers such as (1) reduction of
maintenance cost and (2) better prediction of CIA cost.
Applicable stage- A combination of requirement and
architecture change decisions are focused in method 1.
More specifically, this method is applicable during and
after the development of architecture design. When a
change decision is made, method 1 support to analyze
the underlying causes of that design change at different
architectural elements including design components,
data models and implementation components [4]. Input
& output- Inputs of method 1 are architecture elements
along with the knowledge of their design rationale (e.g.
design change decision, constraints, assumptions,
design alternative and criteria for design selection),
whereas output is a precise set of architecture element
(refined and modified after the implementation of
architectural changes). System domain- Method 1 is
developed and applied in the domain of traditional
software systems where architecture design and
modeling process is normally proceeded by business
requirement process (i.e. once the requirements are
sufficiently being elicited) [46]. In other systems such
as Web systems most of the requirements are captured
during initial architectural specification. It means that
in Web systems, classically architecture design may be
treated as a mean for requirements elicitation and may
be a more volatile system artifacts [20]. Additionally
method 1 focuses on those system domains where
change identification and assessment process typically
initiated at later stages of detail architecture design [4].

4.1.2. Stakeholder. Stakeholders’ involvement-
Method 1 assist designers and system architect to
understand design decision dependencies and to
carryout CIA activities. Process support- Method 1 is
supported by both the architecture design process and
the design reasoning process. Specifically, this method
is intertwined with design modeling process to serve
the dual-purpose (i) facilitates design specification and
(ii) leverage design rationale representation.

4.1.3. Contents. Method’s activities- There are four
activities in method 1 including architectural
rationalizing (ARM) to capture architecture rationale
and element linkage, developing a graphical model for
characterization of captured linkage (referred as AREL
model), building BBN(Bayesian Belief Network) to
represent AREL model, and reasoning about change

impact with AREL. Architectural description- Method
1 uses the UML based notation and stereotypes both
for design elements and design rationale modeling.
Change impact analysis approach- Method 1 employ
static dependency analysis approach to capture the
relationships between architectural decisions and
design elements, and to quantify theses relationships
using BBN. Tool support- An integrated set of tools
support is developed to support multiple activities
including to facilitate architecture design process, to
capture design rationale, to quantify relationship
between architectural decisions and architectural
elements, and to provide traceability and integration
support. Method 1 employ a UML tool named as
Enterprise Architect, Netica, and AREL tools [4].

4.1.4. Reliability. Method’s maturity- Method 1 is in
the refinement stages as it is being implemented in
commercial setting. However, its implementation is
limited only to software system domain at the moment.
Method’s validation- A few experimental and
commercial implementations of method 1 have been
reported for the validity purpose [4]. However, a large
numbers of industrial implementations or repeated
practices are necessary for a rigorous validation.

4.2. Slicing and chopping (Method 2)

Method 2 supports CIA at architecture level by
utilizing architectural slicing and chopping techniques
[3]. Method 2 uses a formal representation of
architecture named as WRIGHT.

4.2.1. Context. System architecture definition- Method
2 does not provide any explicit definition of
architecture. The perception of architecture is more
focused toward WRIGHT specification and perceives it
as a combination of components and connectors. The
goal(s) of method 2 are not explicitly stated in
corresponding research. However, as changes are being
analysed early at the architecture level and it mainly do
not require implementation details, therefore authors
implies that method 2 is an efficient way to reduce the
cost of changes management process. CIA can be
performed at different phases/stages of system
development. Among these stages, method 2 focuses
on architectural evolution and maintenance stages.
WRIGHT architectural specifications are the main
input for method 2. The output of method 2 is a set of
information about components and connectors that may
affect, or be affected directly or indirectly by any
change made to the architecture. Method 2 is
developed and validated suitably in software systems

Table 3. The comparison results of architecture level CIA methods using our approach
Methods

Elements
Method 1 Method 2 Method 3

System Architecture
definition

Provided Not specifically provided Left for user to perceive

Specific goal Reduction in maintenance
cost and better prediction of

change impacts

Partially address the reduction
in change management cost

Conservative impacts set

Applicable stage Mainly during and after the
development of architecture

design

During architecture evolution
and maintenance

During development and
maintenance of

architecture design
Input & output Input: Architecture elements

along with their design
rationale & Output: modified

architecture elements

Input: WRIGHT architecture
specification

Output: Set of information about
impacted architecture

component

Input: dependency matrix
& Output: impacts set

consist of two subsets: (i)
set of elements that need
to be changed and (ii) set

of elements that need to be
preserved

System domain Software systems Software systems Software systems
Stakeholders’
involvement

Architects and system
designers

Various stakeholder including
maintenance programmer,

architects and project manager

Maintenance programmer

Process support Intertwined with design
modeling process

Not explicitly addressed Not explicitly addressed

Method’s activities 4 activities 3 phases whereas phase 2 and 3
comprises of 2 activities each

3 activities

System Architecture
description

UML based graphical
notation and stereotypes

WRIGHT architecture
representation

An informal description of
architecture

CIA approaches Static dependency analysis Static dependency analysis Static analysis of
dependencies

Tool support An integrated tools support is
available

Partially available Not available

Maturity of method Refinement stage Development phase Inception phase
Validation of method Validated on software

systems domain
Not results reported on

validation
Not validated yet

domain where architecture level interdependencies and
the coupling between business and technical
architecture are not as complex and exaggerated as in
Web systems domain.

4.2.2. Stakeholder. Stakeholders’ involvement-
Method 2 describes various stakeholders’ roles
including maintenance programmer, architecture
designer and project manager. A significant
involvement of stakeholders in method 2 sets up a
common understanding of CIA to leverage future
system maintenance. Process support- Method 2 does
not provide knowledge of how to support overall
process of CIA. As such the guideline on when and
what actions are taken along with the inputs/outputs are
typically embedded within the method metaphors.

4.2.3. Contents. Method’s activities-There are three
phases in method 2 including building architectural
flow graphs (AFG), computing architectural slices and

computing chops. Phase 2 and 3 both uses two
activities each: (i) finding slices and chops and (ii) then
deriving architectural slices and chops. Method 2
provides detailed information for the activities of last
two phases but does not significantly explain activities
to develop AFG. Architectural description- In method
2 a formal representation of architecture (WRIGHT) is
required. This architectural description is used to
specify system structure in term of components,
connector and their configuration. Change impact
analysis approach- Method 2 uses static change impact
analysis approach during each phase. Additionally,
WRIGHT representations are also analysed statically.
Tool Support- For method 2, there is no research work
reported as a tool support. However, a preliminary
description of Ciasa tool [3] was described but no
industrial implementations of this tool is available yet.

4.2.4. Reliability. Method’s maturity- It can be
inferred that method 2 is at the development phase as it

is being realized by the implementation of Ciasa [3].
Method’s validation-There is no significant empirical
results are reported for the validation of method 2.

4.3. Crosscutting (Method 3)

Method 3 supports CIA at the architecture level by
employing cross-cutting technique. Method 3
investigates crosscutting dependencies between
architecture elements and describe that it may yield a
conservative impact set.

4.3.1. Context. System architecture definition- Method
3 does not clearly provide any specific definition of
system architecture. However, it leaves the definition
for users to perceive themselves. Specific goals- A
relatively imprecise goal of method 3 is identification
of a conservative impact set. This set consists of both
the artefacts that need to be change and that need to be
preserved. Applicable stage- Method 3 can be typically
applied during the development and maintenance of
system architecture. Moreover, it also provides a broad
coverage while synchronising the architecture changes
both with requirement and implementation changes.
Input & output- The input for method 3 is dependency
matrix as a starting point, whereas the output is impact
set that consists of two subsets: (i) set of elements that
need to be change and (ii) set of elements that need to
be preserved. System domain- The domain of method 3
are those systems that typically employ change impact
analysis during architecture modification and after
architecture design [28]. Therefore we may assume that
the nature of these systems is like that where changes in
business requirements do not necessary influence on
architecture during the early stage of system
development. As a result during the early stages of
architecture design, potential changes are usually
minimal or less important to analyse.

4.3.2. Stakeholder. Stakeholders’ involvement- The
maintenance programmer is the main stakeholder as
described by method 3. We believe that the role of
designer is being played by the same maintenance
programmer while updating variety of system elements
including requirement, design and code elements.
Process support- There is no explicit process support or
any such description provided by method 3.

4.3.3. Contents. Method’s activities- There are three
steps described in method 3 as: (i) trace dependency
relationship (i.e. dependency matrix) between the
source and the target of change (ii) construct

crosscutting matrix from dependency matrix and (iii)
apply impact analysis algorithm. Details of each step
are provided in method 3 description. Architectural
description- Method 3 requires an informal description
of architecture that can facilitate users adequately to
depict the dependency information among architectural
elements. Change impact analysis approach- Method 3
is based on static approach to analyze the dependency
information, specifically from architecture design to
requirements, to implementation and vice versa. Tool
Support- There is no tool support available for method
3. However, authors have proposed a tool as a future
work to scale method 3 in industrial projects.

4.3.4. Reliability. Method’s maturity- There is no
progression after the initial work done two years ago. It
implies that method 3 is in the inception phase.
Method’s validation-There is no empirical work or case
study reported for method 3. Authors have proposed
validation of method 3 as a future research work.

5. Discussion and comparison results

The goals of this paper are to present a comparison
approach to evaluate different architectural CIA
methods to offer guidance on the selection of most
appropriate method for CIA activity, and thus to
discover methods shortcomings and suitability with
respect to the Web systems domain. To achieve these
goals, firstly we have focused on discovering
similarities, differences among architectural CIA
methods and their comparison as described in table 2.
These comparison results better inform consideration
of desirable features of architectural CIA methods and
offer guidance on the selection of most appropriate
method. Secondly, we have demonstrated how our
comparison approach (based on the features that a CIA
method should comprehensively address), can be used
to identify possible shortcomings of architectural CIA
methods whilst addressing the specific characteristics
of Web systems (as shown in table 3).

From table 2, the comparison results reveal that
several elements are supported by most of the methods.
Almost all methods specify either precise or an
imprecise goal(s), applicable stages, inputs/outputs and
systems domain in which method should be applied.
There is no standard definition of software architecture
available for all the methods to follow. Method 2 and
method 3 do not specifically provide any definition of
architecture and mainly left it for users understanding.
Method 1 has adopted IEEE 147-2000 definition for
architecture. The involvement of stakeholder(s) is also
duly addressed in all three methods. However, the roles

of stakeholders vary from one method to another. The
process support is only adequately described in method
1. Method activities, architecture description, CIA
approaches are clearly describe in all three methods.
However, method 3 does not provide adequate details
about the architecture description as a starting point for
the method. All these methods also reveal that none of
the available tools alone can support method
automation. Therefore, method 1 employs an
integrated set of tools for implementation coverage.
Most of the methods investigated in this paper are at
the inception or refinement phase of their maturity.
This may be due to lack of adequate industrial
experiments, empirical works or case studies to
validate these methods.

Table 3. The relevance of architecture level CIA
methods in Web systems domain

Web systems’
Characters-

tics

Methods

Co-evolution of
business process

and solution
under

development

Tighter linkage
between business
process and their

supporting
architecture

Method 1 Focus only on
detail design

level

Discuss
functional/system
level architecture

inter-dependencies

Method 2 Primarily discuss
detail design

level change and
their impacts

Does not address
architecture and

business coupling

Method 3 Not explicitly
addressed

Not explicitly
addressed

Method validation encourages users to select a
method from a set of alternatives [44]. This means that
it will be beneficial to validate a method by employing
them in a number of system domains to exhibit their
broad usability. However, our approach implies that
most of the methods are neither characteristically
developed nor adequately validated to other system
domains except software system domain as described
in Table 2 (see row 6). As discussed in section II that
the specific characteristics of Web systems differentiate
these systems from software systems, and these
characteristics are important to address while selecting
any architectural CIA method in the context of Web
systems. The suitability and possible shortcomings of
three architectural CIA methods whilst addressing the
specific characteristics of Web systems are shown in
table 3. It has also been described in table 3 that
method 1 and method 2 primarily focus on detail

design level change impacts and do not adequately
address the change impacts resulting from the co-
evolution of business process and their supporting
architecture. Additionally, both of these methods
support change impact identification at functional and
system architecture and therefore they may overlook
impacts arising due to the tighter linkage between
business process and architecture. Whereas, method 3
neither explicitly supports the identification of change
impact due to co-evolution nor due to tight coupling
between business process and their supporting
architecture. It has been reported that as a result of this
tight coupling, a single change in business process can
often leads to fundamental impact on architecture [18].
Based on the above supportive arguments, it can be
deduced that current architectural CIA methods do not
adequately address the complex nature of change and
architecture interdependencies at early stage- where
business process and supporting architecture solution
both emerges together in Web systems domain.
Conversely, most of the methods studied in this paper
support software system domains where change
identification and their assessment typically initiated at
later stages of detail system design. As we have
discussed in section II that change impacts resulting
from co-evolution of architecture design and
complexity of impacts need to be addressed early in
Web systems development before it becomes
prohibitively expensive to address them. Furthermore,
It has also been reported that the problems of
maintaining Web systems have led to a realization that
architecture evaluation at early stage of architecture
design can play an important role in successful
evolution and maintenance of these systems [34].
Tables 2 and 3 better inform us on the suitability of
architectural CIA methods in Web system domains
(based on the elements of comparison approach- where
the system domain is an important criterion for the
selection of architectural CIA method). Additionally,
these results also assist web developers to make well
informed decisions while recognizing the possible
shortcomings of existing architectural CIA methods.

The discussion from section IV reveals that most of
the architecture level CIA methods developed
specifically to address software system domain and
therefore are suitable to apply in that domain. It will be
worthwhile to recognise that these architecture level
CIA methods may not be suitable to apply in other
system domain such as Web systems. This is largely
true due to the potential differences in the development
process, characteristics of architecture and nature of
architectural changes in Web systems. However, we
believe that current architectural CIA methods can be

extended to specifically address the differences that
Web systems have as a separate system domain. A
workable architecture level CIA method for Web
systems should be able to capture the changes that arise
as a consequence of co-evolution of business process
and system under development. Similarly, a method
should also adequately address the complex
interdependency and multi-dimension interactions at
early stage of architecture design resulting from tighter
linkage between business processes and their
supporting architecture [17].

6. Conclusions and future work

In this paper we have presented an approach for
comparing different architecture level CIA method and
to offer selection criteria for the selection of suitable
method. Given that the selection of a suitable method
depends on how well the comparison elements fit into a
specific need, we have also proposed the concept to
understand the architecture characteristics for different
system domains. This aspect leverages our perception
of how method suitability may differ from software
systems domain to Web systems domain.

The paucity of research focus on handling
characteristics of Web systems at architecture level
CIA, and based on earlier related work [14, 16, 18] we
can speculate that a architecture level CIA method can
be extended or customised to accommodate the specific
characteristics of Web systems. Considerable work still
remains to be carried out in this area, both in terms of
examining further supportive arguments to extend
current methods, and more exploration of other
architecture level CIA methods. We formalise this as
our future research work to develop a model as a
possible extension of current architecture level CIA
method specifically for Web systems domain.

7. References

[1] S. A. Bohner and R. S. Arnold, Software Change
Impact Analysis. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1996.

[2] M. Lindvall, "An Empirical Study of Requirements-
Driven Impact Analysis in Object-Oriented Software
Evolution," in Dept. of Computer and Information
Sciences, Ph.D. thesis, University of Linköping,
Linköping, Sweden, 1997, p. 252.

[3] J. Zhao, H. Yang, L. Xiang, and B. Xu, "Change
impact analysis to support architectural evolution "
Journal of Software Maintenance, vol. 14, no.5, pp.
317-333, 2002

[4] A. Tang, A. Nicholson, Y. Jin, and J. Han, "Using
Bayesian belief networks for change impact analysis in

architecture design," J. of Soft. Maint., vol. 80, no.1,
pp. 127-148, 2007.

[5] A. Orso, T. Apiwattanapong, and M. J. Harrold,
"Leveraging Field Data for Impact Analysis and
Regression Testing," in Proc. of the 9th European
software engineering conference, Helsinki, Finland
2003, pp. 128 - 137

[6] P. Clements, R. Kazman, and M. Klein, Evaluating
Software Architectures: Methods and Case Studies,
New York: Addison-Wesley, 2002.

[7] P. Bengtsson, "Towards Maintainability Metrics on
Software Architecture: An Adaptation of Object-
Oriented Metrics," in First Nordic Workshop on
Software Architecture (NOSA'98), Ronneby, Sweden,
1998.

[8] S. Cook, R. Harrison, M. Lehman, and P. Wernick,
"Evolution in software systems: foundations of the
SPE classification scheme," Journal of Software
Maintenance and Evolution, vol. 18, no. 1, pp. 1-35,
2006.

[9] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel,
and M. J. Harrold, "An Empirical Comparison of
Dynamic Impact Analysis Algorithms," in Proceedings
of the 26th International Conference on Software
Engineering, Scotland, UK: IEEE Computer Society,
2004.

[10] B. Breech, M. Tegtmeyer, and L. Pollock, "A
Comparison of Online and Dynamic Impact Analysis
Algorithms," in Ninth European CSMR’05,
Manchester, UK: IEEE Computer Society, 2005.

[11] L. Bratthall, E. Johansson, and B. Regnell, "Is a
Design Rationale Vital when Predicting Change
Impact? A Controlled Experiment on Software
Architecture Evolution," in Proceedings of the Second
International Conference on Product Focused
Software Process Improvement, Oulu, Finland, 2000,
pp. 126-139.

[12] K. v. d. Berg, "Change Impact Analysis of
Crosscutting in Software Architectural Design," in
Workshop on Architecture-Centric Evolution (ACE
2006),Nantes, France, 2006.

[13] A. McDonald and R. Welland, "Web Engineering in
Practice," in Fourth WWW10 Workshop on Web
Engineering, Hong Kong: ACM Press, 2001.

[14] R. S. Pressman and D. Lowe, Web Engineering- A
practitioner's Approach, New York: McGraw Hill,
2008.

[15] D. Lowe and J. Eklund, "Development issues in
specification of Web systems," in AWRE'2001: 6th
Australian Workshop on Requirements Engineering,
Sydney, Australia, 2001.

[16] N. Yusop, D. Lowe, and D. Zowghi, "Impacts of Web
Systems on their Domain," Journal of Web
Engineering, vol. 4, no. 4, pp. 313-338, 2005.

[17] D. Lowe and B. Henderson-Sellers, "Impacts on the
development process of differences between web
systems and conventional software systems," in SSGRR
2001, L'Aquila, Italy, 2001.

[18] D. Lowe and B. Henderson-Sellers, "Characterising
Web Systems: Merging Information and Functional

Architectures," in Architectural Issues of Web-Enabled
Electronic Business, N. S. Shi and V. K. Murthy
(Eds.), London: Idea Group Publishing, 2003, pp. 227-
293.

[19] G. Sinha, "Build a Component Architecture for E-
Commerce," in e-Business Advisor, 1999.

[20] D. Lowe and J. Eklund, "Client Needs and the Design
Process in Web Projects," Journal of Web
Engineering, vol. 1, no.1, pp. 23-36, 2002.

[21] L. Gates, "Analysis and Design: Critical yet
Complicated," in Application Development Trends,
2001.

[22] H. Kagdi and J. I. Maletic, "Software-Change
Prediction: Estimated + Actual," in IEEE SE'06,
Philadelphia, Pennsylvania, USA: IEEE Computer
Society, 2006.

[23] M. D. Jacyntho, D. Schwabe, and G. Rossi, "A
Software Architecture for Structuring Complex Web
Applications," Journal of Web Engineering, vol. 1, no.
2, pp. 37-60, 2002.

[24] B. Ramesh, J. Pries-Heje, and R. Baskerville, "Internet
Software Engineering: A Different Class of Processes "
Annals of Software Engineering, vol. 14, no. 4, pp.
169-195, 2002.

[25] Z. Walter and G. Scott, "Management issues of
internet/web systems " Commun. of ACM, vol. 49,
no.3, pp. 87-91, 2006.

[26] M. H. Alalfi, J. R. Cordy, and T. R. Dean, "A Survey
of Analysis Models and Methods in Website
Verification and Testing," in ICWE'07, Como, Italy,
2007, pp. 306-311.

[27] M. Mari, "Comparison of Software Product Line
Architecture Design Methods: COPA, FAST, FORM,
KobrA and QADA," in Proc. of the 26th International
Conference on Software Engineering, IEEE Computer
Society, 2004.

[28] L. Dobrica and E. Niemelä, "A Survey on Software
Architecture Analysis Methods" IEEE Transaction on
Software Engineering, vol. 28, no. 7, pp. 638-653,
2002.

[29] M. A. Babar and I. Gorton, "Comparison of scenario-
based software architecture evaluation methods," in
(APSEC'04) Busan, Korea: IEEE Computer Society
2004.

[30] N. Jayaratna, Understanding and evaluating
methodologies: NIMSAD: a systematic framework,
London: McGraw-Hill, 1994.

[31] N. Boertien, M. W. Steen, and H. Jonkers, "Evaluation
of Component-Based Development methods," in the
6th CAISE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis
and Design, Interlaken, Switzerland, 2001.

[32] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 2nd Edition ed., New York:
Addison-Wesley, 2003.

[33] L. Francisco, F. M. S. III, R. Furuta, U. Karadkar, and
A. Arora, "Perception of Content, Structure, and
Presentation Changes in Web-based Hypertext," in
HT'01, Aarthus, Denmark, ACM Press, 2001.

[34] P. Bengtsson, N. Lassingb, J. Boschc, and H. v. Vliet,
"Architecture-level modifiability analysis (ALMA)"
Journal of Systems and Software, vol. 69, pp. 129-147,
2004.

[35] R. L. Glass and I. Vessey, "Toward a taxonomy of
software application domains: history," Journal of
Systems and Software, vol. 17, pp. 189-199, 1992.

[36] I. Vessey, "Focusing on the Application Domain:
Everyone Agrees It's Vital, but Who's Doing Anything
About It?" in Proceeding of 31st Annual Hawaii
Interernational Conference on System Sciences,
Kohala Coast, Hawaii, USA, 1998, pp. 187-196

[37] D. M. Ahern, A. Clouse, and R. Turner, CMMI
Distilled: A Practical Introduction to Integrated
Process Improvement, Indiana:Addison-Wesley
Professional, 2003.

[38] B. Sonia, L. Chung-Horng, and F. Mark, "A
stakeholder-centric software architecture analysis
approach," in Joint proceedings of the second
international software architecture workshop (ISAW-2)
and international workshop on multiple perspectives in
software development (Viewpoints '96) on SIGSOFT
'96 workshops, San Francisco, California, United
States, ACM press, 1996.

[39] P. Jonsson and C. Wohlin, "A Study on Prioritisation
of Impact Analysis Issues: A Comparison Between
Perspectives," in 5th Conference on Software
Engineering Research and Practices in Sewden-
(SERPS'05), Vasteras, Sweden, 2005, pp. 11-19.

[40] G. F. Dror, O. S. A. Tokunbo, B. Daniel, E. Yoav, M.
Gabor, P. O. Esteban, S. Sameer, S. Karlkim, X.
Minhui, and R. S. Stephen, "Fine-grain analysis of
common coupling and its application to a Linux case
study," Journal of Systems and Software, vol. 80, no.
8, pp. 1239-1255, 2007.

[41] F. Tie and I. M. Jonathan, "Applying Dynamic Change
Impact Analysis in Component-based Architecture
Design," in Proc. of the 7th ACIS Int. Conf. on Soft.
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing: IEEE Computer
Society, 2006.

[42] T. Mens and T. D'Hondt, "Automating Support for
Software Evolution in UML," Automated Software
Engg., vol. 7, no. 1, pp. 39-59, 2000.

[43] E. C. Jonathan and L. W. Alexander, "Software
process validation: quantitatively measuring the
correspondence of a process to a model," ACM Trans.
Softw. Eng. Methodol., vol. 8, no. 2, pp. 147-176,
1999.

[44] S. Mary, "The coming-of-age of software architecture
research," in Proceeding of the 23rd International
Conference on Sofware. Engineering, Toronto,
Ontario, Canada, IEEE Computer Society, 2001.

[45] IEEE, "IEEE Recommended Practice for Architecture
Description of Software-Intensive System," IEEE
Computer Society, New York, 2000.

[46] P. Soffer, "Scope Analysis: Identifying the Impact of
Changes in Business Process Models," in Journal of
Software Process: Improvement and Practices, vol. 10,
no.1, pp. 393–402, 2005.

