
© [2008] IEEE. Reprinted, with permission, from [Parakhine, Artem; O'Neill, Tim;

Leaney, John. Design Guidance Using Simulation-Based Bayesian Belief Networks,

15th Annual IEEE International Conference and Workshops on the Engineering of

Computer Based Systems ECBS 2008]. This material is posted here with

permission of the IEEE. Such permission of the IEEE does not in any way imply

IEEE endorsement of any of the University of Technology, Sydney's products or

services. Internal or personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution must be obtained from the

IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,

you agree to all provisions of the copyright laws protecting it

Design Guidance Using Simulation-Based Bayesian Belief Networks

Artem Parakhine1,2, John Leaney2 and Tim O‘Neill2

1. Faculty of Information Technology
2. Institute for Information and Communication Technologies

University of Technology, Sydney
aparakhi@it.uts.edu.au

John.Leaney@uts.edu.au
tim.oneill@avolution.com.au

Abstract

In our work, the task of complex computer-based sys-
tem design optimization involves exploration of a number
of possible candidate designs matching the optimisation
criteria. However, the process by which the possible can-
didate designs are generated and rated is fundamental to
an optimal outcome. It is dependent upon the set of sys-
tem characteristics deemed relevant by the designer given
the systems requirements. We propose a method which is
aimed at providing the designer with guidance based upon
description of the possible causal relationships between
various system characteristics and qualities. This guidance
information is obtained by employing principles of mul-
tiparadigm simulation to generate a set of data which is
then processed by an algorithm to generate a Bayesian
Belief Network representation of causalities present in the
source system. Furthermore, we address the issues and
tools associated with application of the proposed method
by presenting a detailed simulation and network generation
effort undertaken as part of a significant industrial case
study.

1. Introduction

The contemporary state of art for system design and con-
struction incorporates a variety of technologies and methods
which are aimed at ensuring that specific non-functional
qualities such as scalability and modifiability are observed
when large sets of functional elements are integrated to
form a single complex system. However, there are no defini-
tive guidelines concerning which specific factors within the
design may be affecting the qualities most favoured for ac-
quisition. Furthermore, as the design space is explored over
time and new functionality is added the system may start
to exhibit unexpected characteristics and new, previously

omitted, factors may start to yield influence over qualities of
interest, or perhaps a conflict between a number of qualities
may arise.

The unexpected characteristics of the target system may
have their roots in its structural properties, the unforeseen
shortcomings of its comprising elements or in assumptions
made by the designer, the latter being a possible reason for
decisions made which lead to the former. In some cases the
assumptions made by the designer may focus on a limited
range of factors affecting the system qualities and thus the
set of candidate solutions created based on these assump-
tions might not address all changes necessary to ensure non-
functional qualities of the target system. In a context of
a given system the designer defines the factors of interest
based on empirical observation on the said system, various
modelling approaches or previous personal experiences.

Consequently, it is imperative to ensure that the process
of system design possesses faculties to determine possible
causal relationships between specific properties of the sys-
tem and its non-functional qualities. It should be equipped
with a way to manage possible conflicts and prevent any
single non-functional quality from taking overwhelming
precedence over others.

Previously [8] we proposed a heuristic-based system
design and optimisation framework. A brief overview of the
framework for the proposed process is shown in Figure 1.
As shown on the diagram the proposed framework contains
a feedback loop introduced to allow iterative application of
heuristic-encoded design decisions to find a solution which
represents an optimal compromise on competing system
qualities.

To achieve a favourable outcome the process first re-
quires a baseline design as well as a list of goals and con-
straints. The original design is then evaluated to establish a
base line understanding of its capabilities and shortcomings.
Consequently this information is used by the “Optimisation
Guidance” component to generates inputs which can be

Figure 1. Overview of heuristic-based optimi-
sation framework

used by the “Heuristic Selection” module to determine
which heuristics should be considered as candidates for
future application. The format and nature of information
pertaining to system changes is stored as heuristics in the
“Heuristic Library” is described by Maxwell [7]. Once a
candidate solution has been generated, the “Architectural
Refinement Verification” [5] module validates that the out-
come functionally corresponds to the original design.

The modular structure evident in the proposed frame-
work was chosen to ensure that various areas of it can
advance with a degree of independence. Thus the frame-
work can take advantages of different, possibly domain
specific, libraries of heuristics as well as a range of quality
evaluators.

In the context of the framework the “Optimisation Guid-
ance” component is charged with tying together the de-
sign goals, candidate solutions, metrics and heuristics. To
achieve that the component must be able to determine which
structural or parametric properties of the architecture have
to be addressed using available heuristics to ensure progress
towards the stated goals under the specified constraints.
Previously [10] we proposed Bayesian Belief Networks
(BBNs) supported by Multi-Paradigm Simulation (MPS)
as a possible avenue of obtaining a method by which the
guidance component will be able to create specific design
suggestions that fulfil the aforementioned criteria.

The approach used to realise the proposed methodology
employing BBNs and MPS as the main decision aid is the
focus of this paper. The content is structured as follows:
Section 2 provides background information on the concepts
related to BBN generation. Following that, Section 3 con-
tains details of an example where the proposed method has
been applied with success and Sections 4 and 5 provides a
discussion of conclusions and future work.

1.1. The Need for Guidance

Having being given or specified the non-functional re-
quirements such as Scalability or Modifiability the designer
attempting to achieve them in the context of some complex
computer-based system faces the problem of having to
define the set of variables which affect the target goal. Con-
sider the diagram in Figure 2. It depicts possible causality
arcs which show the specific factors affecting Scalability
and Modifiability properties in the context of a hypothetical
system.

Figure 2. Possible causalities in a hypotheti-
cal system

On the diagram the nodes represent the following mea-
surable system characteristics:

• Operational Factors - How does an increase in system
size consume operational resources? If the system is to
be split geographically or, perhaps, its structure to be
modified to create multiple nodes performing the same
type of task in parallel then how will it affect the sup-
port staff size, costs incurred due to changed hardware
and network requirement, ease of feature deployment
and roll-back? All these factors are omitted in Figure 2
and would appear as causal parents of the Operational
Factors node.

• Transactional Performance - What is the transactional
capacity of the system? The metric for this quality may
be a simple number of successful transactions per unit
of time, however in real systems not all transactions are
created equal and therefore the metric should reflect
that in some way.

• Data Management - Is the system capable of efficient
data management? In this case “efficiency” of man-
agement refers to how a data access policy affects
the scalability of the system. The view of the data
modularised based on multiple levels of importance
is considered more efficient then a strictly monolithic
view [4].

• Scalability - Overall scalability of the system
expressed as a direct result of the combined
observations of its causal primitives.

• Modifiability - The ease with which new features can
be added to this system. In this hypothetical case a
good overall measure of Scalability means that each
new feature can be developed without spending too
much time and resources optimising the existing ar-
chitecture to allow for increase in transactions or re-
sources consumption.

The problem is that the architect may not be completely
aware of the relationships represented in Figure 2. The
architect may have access to information about the structure
of the system modules (conceptual/source/deployment),
may possess resource consumption telemetry obtained
during system operation, information about typical user
behaviour, knowledge of operational and development
procedures, etc. However in order to combine all of
these pieces of knowledge into a coherent network of
interrelated variables the architect will have to employ ad
hoc processes based on domain knowledge and previous
experience. As a result it is possible that a dependency
between Data Management properties of the system
and Scalability may be missed, leading the architect to
concentrate on Transactional and Operational aspects of
the system design. Given time and resources, there is no
doubt that the architect will be able to succeed at vastly
improving these aspects and, by implication, the Scalability
of the system. However, eventually the Data Management
problems would surface and negate some or, in the worst
case scenario, all advantages gained in other areas.

Hence the aim of the guidance approach is to provide the
architect with an analysis tool that could be used to explore
the effects particular changes would have on the interrelated
properties of the system.

We envisage that the process would require the architect
significant historical understanding the nature of the system.
From the available information the architect should be able
to create one or more models which describe the system
operation, behaviour and structure. Following that, these
models are tested with various input data sets which are
mapped to possible event scenarios considered by the ar-
chitect. A typical scenario may be based on external factors
(e.g. “if Users really love a certain feature”) or internal
drivers such as “if the product range increases by a factor of

10 or if the company is to expand to Europe”. During and
after simulating the system under a variety of conditions the
guidance component should collect statistics on the state
of various variables of interest. Once a sufficiently big set
of data is obtained the guidance component can employ an
automatic structure discovery algorithm discussed further to
build a BBN which can be used as a decision tool to further
the design activities.

2. Supporting Elements for Design Guidance

The efficiency and overall success of the proposed de-
sign guidance methodology are based on two supporting
concepts: multi-paradigm or hybrid simulation and auto-
matic discovery of causality relationships between systems
characteristics and its qualities. The former is required to
provide the designer with a facility capable of modelling
the current as well as possible structural and behavioural
characteristic of the system. The latter of the two is nec-
essary to ensure that data collected during the successive
runs of modelling and exploration phase is aggregated into
a meaningful graph of causalities which can be used to
understand the drivers behind the specific non-functional
qualities of the system.

The interaction between elements described above is
depicted in Figure 3. Two elements interact to produce the
most comprehensive picture of goings-on in the system
with respect to the requirements and constraints imposed
onto the designer. The aim is to ensure that no factor is
omitted from exploration and consequent analysis unless
the designer wishes it so. Within such an approach it is
necessary to ensure that the simulation of the system is
flexible enough to represent the ramifications of possibly
very large and complex changes both on system structure
and on plausible outside elements such as user base or
external processes.

2.1. Hybrid Simulation

In order to achieve such flexibility the simulation must
be able to deal with concepts from three major paradigms
which currently dominate the field of simulation modelling
[3]:

• System Dynamics - required to be able to represent
effects of policy introduction or modification at the
highest levels of abstraction as well as analysis of
trends and other system properties-of-the-whole.

• Discrete Events - required to understand issues asso-
ciated with utilisation of various resources available
to the system as well as effects of various scheduling
decisions.

Figure 3. Interaction of guidance support ele-
ments

• Agents - this paradigm allows to simulate elements
which can only be meaningfully represented as active
objects with individual, purposeful behaviour.

The combination of the modelling techniques is pro-
posed by Borshchev [3], [2] with special emphasis made
on Agent-based modelling to accentuate both its flexibility
and pragmatism. Contrariwise to other approaches from the
list above, Agent-based modelling is, at its core, based on
principles of decentralisation. In order to use this paradigm,
the designer is not required to have the precise knowledge
of the way system operates. Instead, this approach allows
to achieve emergence of global system properties by ex-
amining the interactions of various system elements over
time. Therefore, this approach may be more pragmatic in
situations where the complete information about the system
is not available.

The multi-paradigm or hybrid simulation approach
which has been proposed by Borshchev [3], possesses
both the abstract characteristics (system dynamics, discrete
events) and pragmatic behavioural properties (agents).
Combined together these approaches provide a modelling
paradigm that has been shown to be flexible and powerful
enough to address the simulation optimisation needs of
problems ranging from supply chain management [1] to
enterprise IT cost analysis [11].

The overall aim of the method is to provide a recom-
mendation on a list of changes considered by the designer.
To this end the simulation approach should is necessary
to allow testing various quality scenarios similar to the
ones mentioned in Section 1.1. Once the source model of

the original system has been built it becomes possible to
translate partial use case scenarios targeted, for example, at
exploring the scalability of the system into a set of valid
inputs for the simulation of the model.

It is possible that multiple runs of the simulation will
be required in order to obtain a better understanding of
the causal relationships between various observed system
factors and its overall qualities. Furthermore, it is up to the
designer to determine which factors should be included into
the observation set. Additionally, the designer is required
to provide some form of measurement methodology for the
system qualities which will be applied by the framework
after each successive run of the simulation. Eventually, the
framework will be able to output a large set of aggregated
data combining information on the effects of variations in
system factors on the system qualities measurements. This
resultant set of data will serve as an input for the automatic
casual discovery algorithm.

2.2. Causality Discovery and Representation

In Figure 3 the causal discovery part of the method is
represented by “BBN discovery algorithm” entity. In this
context we are referring to an automatic way of learning the
topology of a Bayesian Belief Network from a large set of
observational data.

A Bayesian Belief Network (BBN) is a directed acyclic
graph, a mathematical construct that compactly represents
a joint probability distribution for a set variables [6].
However, this approach to representation allows one
to show how the system-wide probability distribution
is broken down into a set of local distributions in a
subset of variables. This gives the BBNs the ability to
dramatically reduce the amount effort required to specify
a joint probability distribution in a system with sparse
interaction between the observed variables. Furthermore,
the localisation feature of BBNs allows one to examine
partial probability distributions associated with some
specific chain of causality which may be of particular
interest to the designer. Due to the aforementioned
characteristics, BBNs are frequently employed for
modelling domain knowledge in Decision Support Systems
[14].

In the context of our methodology a BBN elucidated
from the simulation output data is used as a Causal Quality
Model of the system being examined. In this capacity, its
function with respect to the designer is somewhat similar to
that of a Decision Support System. Its aim is to show the
designer which factors within the system have the greatest
measure of effect on the system qualities specified as acqui-
sition concerns.

There have been few examples when BBNs were used
to represent the causal relationships between various at-

tributes of a system and its qualities. Gurp [15] proposed
a BBN which was inspired by McCall’s Factor-Criteria-
Metric model [9]. Trendowicz [13] on the other hand pro-
posed an iterative process by which the final structure of the
BBN representing the Causal Quality Model is built over
time based on heavy involvement of domain experts and
an extensive data collection effort. However, the result of
both Gurp’s and Trendowicz’s work is a BBN with a static
structure targeted at re-use for a software product line.

In a large system with multiple observed variables which
influence multiple system qualities, the effort involved in
building a single static BBN that encompasses all possi-
ble causal relationships manually is very costly from an
engineering standpoint. Additionally, the resulting static
BBN structure has to be validated every time the system
is changed or a new variable is introduced. Therefore it is
desirable, for systems that need to address a broad range of
problems, to be able to dynamically establish the causality
links between factors and qualities.

The problem of learning the structure of a Bayesian
network from a set of data has emerged as a major focus
for research, since under the conditions when source data
can be represented by a time series the edges in the graph
of a Bayesian network can be used to infer possible causal
relations [12]. In order to build the Causal Quality Model
in our framework we propose to use the Max-Min Hill-
Climbing (MMHC) algorithm developed by Tsamardinos
et al. [14]. This algorithm draws upon a variety of ideas
from search-and-score and local learning techniques such
as Markov Blanket discovery to construct the skeleton of a
Bayesian network corresponding to the source data and then
perform a Bayesian-scoring greedy hill-climbing search to
orient the edges within the graph. One of the most attractive
features of the MMHC algorithm is that it has been proven
to work well with the highly dimensional data sets from the
biomedical domain of research [14].

However, the Direct Acyclical Graph (DAG) of the BBN
produced as a result of MMHC application does not repre-
sent the complete Causal Quality Model. Additional calcu-
lations have to be performed. Specifically, to determine for
each variable X that has a set of states Sx the probability
of X being in the state s ∈ Sx for each combination of
states of its parents Px. In order to perform this calculation
a new algorithm was developed to combine the source data
from the simulation with the structural information obtained
from the application of MMHC algorithm. In the sections
to follow we provide a detailed description of an example
application of the proposed methodology.

3. Example Application

The problem described in this section is based on an
actual situation faced by a medium sized company operation

in the domain of on-line travel servicing mostly the USA
market. The company has between 50 and 100 employees
in spread over two offices situated on the opposite sides of
the Pacific Ocean. Due to the fact that the core business
of the company is travel, the level of demand for its ser-
vices steadily increases through the year until it peaks in
summer (June - August). It is during the middle stages of
this gradual increase that the production system started to
sporadically experience a failures that can only be described
as catastrophic. The company relies wholly on Open Source
products to deliver its services.

The service provided by the company is supported by the
system is comprised of 3 types of nodes:

• Service type processes the users request and generates
one or more requests to the Database node. There are
several nodes of this type in the system. The system
also remembers which node accepted the first request
from a new user and routes all following requests from
that user to the same Service node. This node uses a
Java application server.

• Database type there is only one node of this type in
the system. It acts as a centralised repository of data
accessed by service nodes.

• Routing type accepts users request and forwards them
to the appropriate Service node. There is only one node
of this type in the production system. This node em-
ploys a simple round-robin policy to distribute requests
only to Service nodes it determines to be operational.

It was known that the system was failing when one of
the Service nodes would stop operating due to memory
shortage. Consequently the router would detect that the
node has failed and would stop sending it both requests from
new users and new requests from users already registered
with the failed node. This, in turn, would increase the
pressure on the Service nodes that were still operational.
Sometimes a sharp increase in user requests would cause
another Service node to fail. At this point the overall system
would become unstable and, unless the failed nodes were
promptly restarted, would degrade to the point at which
quick recovery was impossible and a complete restart was
required.

Additionally, the following items of information were
known about the system operation generally and at the time
of failure:

1. The Database node never suffered any degradation of
service .

2. From testing and empirical observation it wasps known
that a Service node can process up to 50 requests
concurrently without experiencing any memory con-
sumption or CPU utilisation problems or serious per-
formance degradation.

3. It has been observed that the Service node fails once it
occupies all of the available memory at which point the
specifics of JVM implementation used by the Service
node cause the CPU usage to increase to the available
maximum. It was also known that immediately before
the failure the CPU utilisation is between 10% and
20% of available capacity.

4. The only time memory usage was observed to increase
significantly (up to 30% of available capacity) in a
short period of time (less then 15 minutes) was imme-
diately after the Service node has been restarted. After
that the memory increase was gradual until allocated
capacity has been exhausted. Furthermore, memory
consumption monitoring has shown that Service nodes
reached 95-99% memory consumption after about 4
hours and continued to operate successfully for up to
24 hours.

5. The main non-functional requirement posed by the
business owners of the system has been to ensure fast
user experience. To fulfil this requirement the technical
owners of the system introduced aggressive caching
at various levels of the system. However only one of
those caches was based in memory of the Service node.

The problematic situation described above was causing
massive reduction in the availability of the system. The
technical owners of the system have posed a number of the-
ories to explain the recurring failure. The theories proposed
ranged from unexpected user behaviour to performance
problems to a banal memory leak due to programming error.
These theories were proposed based on the way all available
data was interpreted by various technical owners of the
system. Obviously, each of the owners had a bias towards
his personal experience and parts of the system he knew.

At this point the only method by which a positive corre-
lation between system properties and its availability charac-
teristics could be found was by long and costly process of
trial an error performed on a scaled down copy of the pro-
duction environment. In the next section we will describe
the method, and explain its application to this case study.

3.1. Model

The proposed methodology consists of five distinct steps:
creation and simulation of the model, conversion of the
simulation output into format appropriate for causal dis-
covery algorithm, application of the algorithm to obtain a
DAG structure of the BBN, calculation of the probability
distribution values from the source data based on DAG
structure, and finally, creation of a visual representation of
the network which can be used for analysis.

The first step in the proposed method is to build a model
of the system which can be used to explore the scenario

of interest. In this case we were interested in simulating
the failure scenario of a single server and exploring the
factors that may contribute towards the server’s eventual
demise. To build the model we chose to use AnyLogic
tool (http://www.xjtek.com/) which provides facilities for
creation of hybrid simulations.

The Figure 4 shows the discrete event model of the
Service node. In the diagram enter and Exit elements are
used to communicate with agent entities from the collec-
tion denoted by label user. Periodically, an event labelled
varyUserAmount is fired at which point the function user-
InFlux is used to determine how many new agents of type
User should attempt to use the service. The values returned
by the userInFlux function are based on the survey of
real time usage information collected in the production
environment.

Figure 4. AnyLogic screen shot of the Service
node model

Every time an agent tries to communicate with the ser-
vice the type of the sent message is used in the allo-
cateMemory function to determine how much memory is
required to service it and attempt to reserve this memory for
the service. If the latter operation fails the JVM GC event is
fired to clear out unused memory as per the standard be-
haviour of the Java Garbage Collector. Should the Garbage
Collect fail to free enough memory the message is marked
and the selectOutput entity routes it to failedExit at which
point it is translated back into agent semantics. However, if
memory has been successfully reserved then the message

is added to the queue of the service. The service entity
allocates a processing resource from the resourcePool for
each message which is then processed over time t. Once
t has expired the resource is returned to the pool and the
message is communicated back to its originating agent via
workedExit entity.

Figure 5. AnyLogic screen shot of the User
agent model

The state diagram which defines the behaviour of the
User agent attempting to use the Service node is depicted
in Figure 5. The Users submit two types of messages:
Search and Book. It was known from the survey of user
behaviour that only 1.5% of all requests are of type Book.
To reflect that the User agent was built to repeat the Search
request numerous times before proceeding to send the Book
message to the Service node. Should the agent receive an
error message issued due to the fact that the service was
unable to obtain enough memory or should the request time
out the agent will leave.

The simulation was performed a number of times and it
was decided that the following metrics should be collected:

• Users: number of happy, number of unhappy due to
search, number of unhappy due to booking problems,
total number;

• Memory: JVM Tenured Memory (long-living objects)
left and JVM YoungGen Memory (short-lived objects)
left;

• Resources: CPU, the size of the queue to access the
service and the number of active threads (occupied
resources from the resourcePool;

The measurements were collected periodically during
runs and stored into an external file. Once the simulation
has been stopped, the aggregated data has been converted
from scalar values into state values based on the range of
values observed for each variable. For example, CPU has
been broken down into 10 state values each corresponding
to a 10% range. Following that the state data has been used
as an input for causal discovery algorithm.

3.2. Causal Discovery

The implementation of the Max-Min Hill-Climbing
algorithm we used is distributed as part of the
Causal Explorer tool kit written for MATLAB
software package and provided by its authors [14]
(http://discover1.mc.vanderbilt.edu/discover/public/). The
results of MMHC application to the data collected from
simulation were represented by an adjacency matrix where
the value of 1 in the ith row and jth column showed
that i is a parent of j. Based on the adjacency matrix
and the specific probability distribution values collected
from the simulation output we were able to generate an
XML document in a format suitable for use in the GeNIe
environment (http://genie.sis.pitt.edu/) which provides a
good quality interface for manipulation and analysis of
Bayesian networks. The resultant BBN is shown in Figure
6.

From the network shown in Figure 6 it can be clearly
visible that the greatest influences on memory consump-
tion (jvm tenured left) come from queued and happy users
nodes. The first arc of influence is supported by the knowl-
edge that memory consumption increased during short-lived
spikes in the user activity. However, the arc leading from the
happy users node to the jvm tenured left node required more
investigation. Since the main way a User agent can affect
the memory consumption by the Service is by initiating
search requests, our attention naturally turned towards the
caching facilities of the system. After some investigation it
was discovered that a number of individual decisions made
by different developers over the lifetime of the system have
lead to a very unstructured caching policy which resulted
in a large number of aggregated results duplicated under
certain conditions of user behaviour that emerged during
the seasonal increase in load. Once a new, better structured,
caching policy has been implemented the system was able
to maintain stability for the desired period of time.

Figure 6. GeNIe screen shot of the BBN pro-
duced from the simulation results

4. Conclusions and Future Work

In this paper we have explored a design guidance
methodology based on a combination of hybrid simulation
of the system coupled with Bayesian structure learning
aimed to discovering possible causal relationships that may
link system attributes and non-functional qualities. We
have also shown a practical application of the proposed
methodology and the possible benefits that it can render.

Following the discussion of in this paper, we believe the
next step is to further develop the modelling and Bayesian
structure learning aspects of the framework with the aim of
broadening the range of possible applications. Additional
study to be undertaken into the effects which variations
of the MMHC algorithm parameters have on the emitted
structure of metric-criteria-quality dependencies in various
system.

Also, it is necessary to further develop a software plat-
form that can support the simulation, causal discovery and
provision of visualisation required for successful operation
of the guidance framework. We also aim to incorporate
empirically collected heuristics that can be used to guide
variation of various system factors during successive simu-
lation runs. Ultimately, the aim is to create a comprehensive
environment which can be used by the system designer to
perform architectural optimisation.

References

[1] C. Almeder and M. Preusser. A hybrid simulation optimiza-
tion approach for supply chains. In Proc. EUROSIM 2007,
Ljubljana, Slovenia, 9th-13th September 2007.

[2] A. Borshchev. System dynamics and applied agent based
modeling. In In Proceedings of International System Dy-
namics Conference, Boston, MA, July 2005.

[3] A. Borshchev and A. Filippov. From system dynamics and
discrete event to practical agent based modeling: Reasons,
techniques, tools. In In Proceedings of The 22nd Interna-
tional Conference of the System Dynamics Society, Oxford,
England, July 2004.

[4] G. Bucci and D. N. Streeter. A methodology for the design of
distributed information systems. Commun. ACM, 22(4):233–
245, 1979.

[5] M. Denford. Practical Architecture-Based Refinement of
Computer Based Systems. PhD thesis, Faculty of Engineer-
ing, University of Technology, Sydney, 2005.

[6] P. Haddawy. An overview of some recent developments
in bayesian problem solving techniques. In AI Magazine
Special Issue on Uncertainty in AI, July 1999.

[7] C. Maxwell, T. O’Neill, and J. Leaney. A framework for un-
derstanding heuristics in architectural optimisation. In 13th
Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS 2006),
Potsdam, Germany, March 2006.

[8] C. Maxwell, A. Parakhine, M. Denford, J. Leaney, and
T. O’Neill. Heuristic-based architecture generation for com-
plex computer systems. In 12th Annual IEEE International
Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2005), 4th-7th April 2005.

[9] J. A. McCall. Encyclopedia of Software Engineering, vol-
ume 2 O-Z, chapter Quality Factors, pages 958–969. John
Wiley & Sons New York, 1994.

[10] A. Parakhine, J. Leaney, and T. O’Neill. Application of
bayesian networks to architectural optimisation. In 14th
Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS 2007),
2007.

[11] T. Popkov, Y. Karpov, and M. Garifullin. Using simulation
modeling for it cost analysis. Technical report, Distributed
Computing and Network Department, St.Petersburg State
Technical University, St.Petersburg, Russia, 2006.

[12] P. Spirtes, C. Glymour, and R. Scheines. Causation, Predic-
tion, and Search. The MIT Press, 2000.

[13] A. Trendowicz, J. Heidrich, J. Münch, Y. Ishigai,
K. Yokoyama, and N. Kikuchi. Development of a hybrid
cost estimation model in an iterative manner. In ICSE ’06:
Proceeding of the 28th international conference on Software
engineering, pages 331–340, New York, NY, USA, 2006.
ACM.

[14] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-
min hill-climbing bayesian network structure learning algo-
rithm. Machine Learning, 65(1):31–78, September 2006.

[15] J. van Gurp. On The Design & Preservation of Software
Systems. PhD thesis, Rijksuniversiteit Groningen, February
2003.

	Introduction
	The Need for Guidance

	Supporting Elements for Design Guidance
	Hybrid Simulation
	Causality Discovery and Representation

	Example Application
	Model
	Causal Discovery

	Conclusions and Future Work

