
  

  

Debating the OO debate: Where is the problem? 

Anders Berglund 
Uppsala Computing Education Research Group 

Department of Information Technology 
P.O. Box 337 

SE- 751 05 Uppsala 
Sweden 

Anders.Berglund@it.uu.se 

Raymond Lister 
Faculty of Information Technology 
University of Technology Sydney 

P.O. Box 123,  
Broadway 2007, Sydney 

Australia 
raymond@it.uts.edu.au 

 

Abstract 
In this paper we discuss problems related to the teaching 
of object-oriented programming (OOP). We argue that 
more research on how the computer science teacher 
understands OOP would be beneficial. Our argument 
takes its point of departure in three sets of studies: (1) an 
ongoing study on how computer science teachers 
understand core concepts of OOP, (2) a study of how the 
teaching of OOP is discussed within the CS community, 
and (3) a set of studies that discuss the different ways in 
which CS teachers experience their teaching. This paper 
reports on an ongoing study of the different ways in 
which computing science teachers understand object-
oriented programming, and what they mean when use the 
term objects first.. The phenomenographic research 
approach has been applied to the analysis of a discussion 
that occurred in the SIGCSE-members mailing list. Two 
understandings of objects first have been identified: (1) as 
an extension of imperative programming, and (2) as 
conceptually different from imperative programming. 
These two understandings are illustrated via the differing 
ways in which computing science teachers use the term 
polymorphism. 

Keywords:  Object-oriented programming, objects-first, 
phenomenography. 

1 Introduction 
Object-oriented programming (OOP) is hard for students 
to learn and hard for teachers to teach. The learning and 
teaching of OOP is often discussed at Computing 
Education Research (CER) conferences, and articles 
about it appear regularly in the CER journals. 

Many attempts have been made to improve the learning 
and teaching of OOP. Among theses initiatives, to name 
but a few, are: environments for teaching Java (Kölling, 
Quig, Patterson, & Rosenberg, 2003); research into the 
students’ experience of learning OOP (Bruce et al., 2004; 
Eckerdal & Berglund, 2005); explorations through the 
lenses of various learning theories (Ben-Ari, 2001, 2004; 
                                                           

Copyright  2008, Australian Computer Society, Inc. This paper 
appeared at the Seventh Baltic Sea Conference on Computing 
Education Research (Koli Calling 2007), Koli National Park, 
Finland, November 15-18, 2007. Conferences in Research and 
Practice in Information Technology, Vol. 88. Raymond Lister 
and Simon, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

Robins, Rountree, & Rountree, 2003); analysis of the 
properties of languages  (Mannila, Peltomäki, & 
Salakoski, 2006); and changes to teaching approaches 
(Pedroni & Meyer, 2006). Despite these many initiatives, 
the learning and teaching of OOP remains a problem, 
with low passing rates and high attrition rates.  

2 Broadening the perspective on the debate 
In this paper we argue that our teaching community 
would benefit by broadening the current debate, which 
emphasises the technology of OOP and the learning of 
CS students, to include an examination of ourselves, the 
teachers, and our own understanding of what OOP means. 
We will base our argument on an ongoing project on the 
various ways in which CS teachers understand some core 
concepts in OOP, as illustrated in an analysis of a 2004 
SIGCSE mailing list debate on objects early (Lister et al., 
2006).   

2.1 How do CS teachers understand core 
concepts? 

In the third and fourth weeks of March 2004, there was a 
vigorous discussion about teaching OOP on the SIGCSE-
members mailing list (SIGCSE, 2004a & 2004b).  A list 
of the 99 postings is given elsewhere (Lister et al., 
2006b). The discussion focused on when object 
orientation should be introduced in beginners’ 
programming courses: should objects be introduced early 
(objects first), or should objects be preceded by 
imperative programming (imperative first)? An ITiCSE 
working group, chaired by the two authors of this paper 
and Tony Clear, Auckland University of Technology, 
New Zealand, studied this discussion from several 
different research perspectives (Lister et al., 2006).   
When reading and re-reading the mailing list postings, we 
came to realize that the discussants understood 
fundamental concepts in different ways and thus put 
different meanings into terms such as objects first and 
polymorphism. To explore this question, we decided to do 
a phenomenographic analysis of how the list discussants 
understood objects first. 

2.1.1 Phenomenography 
Phenomenography is an empirically based, pedagogically 
anchored research approach, aimed at exploring how 
something is understood by a group of people (Marton & 
Booth, 1997). The outcome of a phenomenographic 

Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.



research project is an ordered description of the different 
meanings that the phenomenon under investigation (in 
our study objects first) has for the members in the group. 
Phenomenography is a qualitative, non-positivistic 
approach, which during the past few years has come to 
play an important role in CER (Berglund, 2006; 
Berglund, Box, Eckerdal, Lister, & Pears, 2008).  

2.1.2 Objects first is understood in two ways by 
the discussants 

Our preliminary results show that objects first is 
understood in two different ways, corresponding to two 
phenomenographic categories. We wish to stress that 
these categories do not express the main theme of the 
debate, objects first or imperative first. They ‘only’ 
describe different meanings of the first of these stands. 

Objects first can be understood   

1. as an extension of imperative programming, 

2. as something conceptually different from 
imperative programming. 

2.1.3 Understanding the categories 
The phenomenographic categories are constructs that 
summarise and ‘abstract’ different meanings. They do not 
illustrate individuals; an individual can see something in 
one or many ways.  A category can be analysed into (or 
‘is constituted by’) different Dimensions of Variation 
(DoV) or parameters, where each DoV can take certain 
‘atomic’ values, or be un-instantiated.  

Table 1 shows the two categories, their dimensions of 
variation and the values of these dimensions. Since the 
purpose of this paper is to encourage a debate, rather than 
to present the final outcome of a research project, we will 
here only illustrate the values of one DoV, 
Polymorphism, with two quotes, one corresponding to 
each value of the DoV, and thereby to different 
categories. A further discussion on the empirical data will 
be published in the future. 

The first, by McConnell, illustrates Polymorphism 
understood as different objects: 

I still think that selection, repetition, variables, 
arrays, are still critical foundational CS1 topics. 
[…] I firmly believe that students leaving a CS1 
class should have these foundational topics first 
but with an understanding of objects.  Decker 

and Hirshfield's "The Object Concept" had its 
problems, but I think it is a good book because: 
(1) its of a reasonable size, (2) it introduces 
objects early, (3) it concentrates on foundational 
topics, and (4) it introduces "advanced" object 
concepts, such as operator overloading, 
inheritance, and polymorphism at the end. 

We interpret the second, by Joe Berger, as an indication 
of the understanding Objects interact polymorphically: 

Note that this is consistent with my thesis that 
polymorphism "means" that an object just knows 
what it is and behaves like it does without fuss 
or bother. […] Note that I don't explain all this to 
students unless they ask (rarely) in any early 
course.  Polymorphism just "works" consistent 
with the "object is in control" metaphor … 

As predicted by phenomenography, there is a hierarchical 
relationship between the categories. The second category 
is more advanced (in the phenomenographic sense) than 
the first, since the second presupposes the first –  if 
imperative programming is not known to someone, then it 
is impossible for that person to view OOP as something 
different from imperative programming,. However, no 
one (at least today) needs to understand objects first in 
order to understand imperative programming. The 
phenomenographic theory predicts this kind of 
hierarchical structure. It indicates that the categories are 
related and thus that they are categories of the same 
phenomenon.  

2.1.4 Our interpretation of the findings 
We argue that these different ways of understanding 
objects first not only relate to teaching, but also, and more 
importantly, describe different ways of understanding 
object-orientation. We base this argument in the content 
of the categories, in our reading of the mailing list 
discussion and in the hierarchical structure of the 
categories. The arguments for objects first that are given 
along the lines of category one are not open to an 
interpretation of object-orientation as an interaction or a 
calculation on its own right. Thus they show a more 
delimited view of object-orientation.  

Although these results are preliminary, we do not expect 
any important changes in our future work. We will 
investigate further concepts and might ‘fine-tune’ the 
description of the categories and elaborate on their 
constituents. We thus believe that the fact that objects 

  Category 1.  Objects first as an extension 
of imperative programming 

Category 2. Objects first as something 
conceptually different from imperative 
programming 

DoV1 Program execution Objects are passive and are used when the 
program is run 

Objects are active. Object interaction gives 
the algorithm 

DoV2 Polymorphism Polymorphism as different objects Objects interact polymorphically 

DoV3 Modifications Modification as changing code Modifications as adding to holes and hooks 

Table 1. The dimensions of variation of objects first. In the column of each category, the values of the Dimensions of 
Variation (DoV) are shown. 

Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.



  

  

first has two fundamentally different meanings, and the 
fact that there are corresponding underlying meanings in 
the interpretation of object-orientation, are stable.  

The question we now ask ourselves is in what ways these 
contradictions of the understanding of object-oriented 
programming within our community influence our 
teaching and, ultimately, our students. 

One could argue that our different interpretations do not 
constitute a problem for our students’ learning, since they 
normally meet only one teacher and thus only one point 
of view. Our answer to this imaginary argument is related 
to the integrity of computer science. If it does not matter 
which of these interpretations our students meet, what is 
then the core of computer science?  

2.2 Insights from an analysis of the objects 
early debate 

In the phenomenographic (Marton & Booth, 1997) 
portion1 of the previously mentioned multiple research 
perspective analysis of the e-mail discussion (Lister et al., 
2006), we explored what the different arguments in the 
debate focused upon. The purpose was to reveal what the 
discussants ‘talked about’, and through this to better 
understand both the debate and its topic.  

According to our analysis, the arguments in favour of an 
early introduction focused on three major, 
incommensurable, themes: (a) a narrow domain in focus, 
(b) a broad domain in focus, and (c) pedagogy in focus. 
Each of these themes could then be argued for, or 
understood, in four qualitatively different ways. For 
example, arguments in theme a could be categorised into 
the following categories: (a1) particular Java features, 
(a2) specific CS constructions, (a3) teaching, and (a4) 
students as students. In the paper describing these 
findings, we also demonstrate that the categories form a 
hierarchical structure and that the discussions in favour of 
imperative early can also be described according to a 
similar pattern. 

In our conclusions, we argue that this structure helps in 
understanding the debate: 

With this structure of themes and categories, it is 
easy to see that several misunderstandings have 
their origins in a bad match between two 
arguments. That is, two participants might 
believe they disagree, when in fact they are 
arguing about different things. For example, one 
participant might be focusing on language 
features, while another is arguing about an 
aspect of pedagogy. 

The twelve categories, and the interrelationships 
of the categories, reveal the complexity of this 
discussion. It is not a discussion solely about 
programming languages or about how OO 
should be taught. Statements arguing that the 
‘solution’ lies in a single concept (such as for 

                                                           
1 This portion of the paper was mainly authored by Anders 
Berglund, with the support of Raymond Lister. 

example a new teaching tool) are 
oversimplifications. The reality is more 
complex. A broad range of questions need to be 
further analysed and discussed before a 
community consensus will emerge. (Lister et al., 
2006, p. 156) 

2.3 Teachers’ experience of their teaching 
In a meta-study, Kember (1997) reviews and condenses a 
set of independent studies on how teachers experience 
their own teaching. He states that this body of research 
shows a distinction between two broad orientations2: 
teacher-centred/content-oriented and student-centred/ 
learning-oriented. Recently these orientations have been 
confirmed for teachers in CS (Lister et al., 2007; Pears et 
al., in press).  

Kember argues, from a phenomenographic perspective, 
that the student-centred approach is more advanced, or 
more complex, in that it presupposes the teacher-centred 
approach. To focus on the student a teacher must be 
capable of taking a step ‘outside’ herself3 and seeing her 
acts not as an aim in itself, but in relation to the student. 
The rather few studies that have quantified these 
orientations with individual teachers confirm that the 
student-focused orientation is less common than the 
teacher-focused one. 

The insights from Kember’s work tell us that the attitude 
of the teacher is important for how she teaches. It is worth 
exploring what it is that makes some teachers take the 
step to see their teaching and the object of their teaching 
from the perspective of their students. By learning about 
this development, we learn something important about the 
CS teacher.  

3 Summary 
We believe that our discussions in section 2 pose more 
questions than they answer about our community and our 
own relation to OOP. The common thread in these three 
discussions is the community. In section 2.1 we 
demonstrate that the members of the community, the 
teachers, understand key concepts in different ways. In 
the following section (2.2), our argument is that the 
debate that takes place between the members of the 
community is often carried out in a way that is too 
‘simple’ to be capture the complexity of the issue. 
Finally, in section 2.3, we show that we know 
surprisingly little about the teacher, despite far-reaching 
evidence of her importance. 

                                                           
2 Kember uses the term orientation. An alternative term, 
developed from the language of computer science and object-
oriented programming, is super-category. 
3 We have chosen to refer to a teacher as “her” throughout this 
paper. Certainly, our claims are as valid (or as invalid) for a 
male teacher.  

Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.



4 Open questions 
Our insight, when working on the different constituents 
that form this paper, is that more research is needed 
concerning the CS teacher, her understanding of herself, 
her thoughts about her students, and the relationship 
between these entities.  More precisely, what is it that we 
need to learn about the teacher? And how should such 
research be performed?  

5 References 
Ben-Ari, M. (2001). Constructivism in Computer Science 

Education. Journal of Computers in Mathematics and 
Science Teaching, 20(1), 45 - 73. 

Ben-Ari, M. (2004). Situated Learning in Computer 
Science Education. Computer Science Education, 
14(2), 85 - 100. 

Berglund, A. (2006). Phenomenography as a way to 
research learning in computing. Bulletin of the National 
Advisory Committee on Computing Qualifications, 
BACIT, 4(1). 

Berglund, A., Box, I., Eckerdal, A., Lister, R., & Pears, 
A. (2008). Learning educational research methods 
through collaborative research: The PhICER initiative. 
In  Simon & M. Hamilton (Eds.), Proceedings of the 
Tenth Australasian Computing Education Conference 
(ACE 2008), Wollongong, NSW, Australia. CRPIT, 
78, 35 - 42. 

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., 
Roggenkamp, M., & Stoodly, I. (2004). Ways of 
experiencing the act of learning to program:  A 
phenomenographic study of introductory  programming 
students at university. Journal of Information 
Technology Education, 3, 143 - 160. 

Eckerdal, A., & Berglund, A. (2005). What Does It Take 
to Learn 'Programming Thinking'? In Proceedings of 
the 1st International Computing Education Research 
(ICER) Workshop, Seattle, WA, USA, 135 -143. 

Kember, D. (1997). A reconceptualisation of the research 
into university academics' conceptions of teaching. 
Learning and instruction, 7(3), 255 - 275. 

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. 
(2003). The BlueJ System and its Pedagogy Computer 
Science Education, 13(4), 240 - 268. 

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., 
Avram, C., Bower, M., Carbone, A., Davey, B., de 

Raadt, M., Doyle, B., Fitzgerald, S., Mannila, L., 
Kutay, C., et al. (2007). Differing Ways that 
Computing Academics Understand Teaching. 
Australian Computer Science Communications, 29(5), 
97-106. 

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-
Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly, A., 
Sanders, K., Schulte, C., & Whalley, J. (2006). 
Research Perspectives on the Objects-Early Debate. 
SIGCSE Bulletin Inroads, 38(4), 173 - 192. 

Lister et al. (2006b) ITiCSE 2006 Working Group: 
Research Perspectives on the Objects-Early Debate. 
http://wwwstaff.it.uts.edu.au/~raymond/iticse06workin
ggroup/ [Feb. 2008] 

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What 
about a simple language? Analyzing the difficulties in 
learning to program Computer Science Education, 
16(3), 211 - 227. 

Marton, F., & Booth, S. (1997). Learning and awareness. 
Mahwah, New Jersey, USA: Lawrence Erlbaum 
Associates. 

Pears, A., Berglund, A., Eckerdal, A., East, P., Kinnunen, 
P., Malmi, L., McCartney, R., Moström, J. E., Murphy, 
L., Ratcliffe, M., Schulte, C., Simon, B., Stamouli, I., 
& Thomas, L. (in press). What’s the Problem? 
Teacher’s experience of student learning. In 
Proceedings of the 7th Baltic Sea Conference on 
Computing Education Research, Koli Calling, Koli, 
Joensuu, Finland. 

Pedroni, M., & Meyer, B. (2006). The inverted 
curriculum in practice. In Proceedings of the 37th 
SIGCSE technical symposium on Computer science 
education Houston, TX, USA, 481 - 485   

Robins, A., Rountree, J., & Rountree, N. (2003). 
Learning and teaching programming: A review and 
discussion. Computer Science Education 13(2), 137 - 
172. 

SIGCSE (2004a) SIGCSE-MEMBERS Archives March 
2004, Week 3. http://listserv.acm.org/scripts/wa.exe? 
A1=ind0403c&L=sigcse-members  [February 2008] 

SIGCSE (2004b) SIGCSE-MEMBERS Archives March 
2004, Week 4. http://listserv.acm.org/scripts/wa.exe? 
A1=ind0403d&L=sigcse-members  [February 2008] 

 

 

Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.



Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.

CONFERENCES IN RESEARCH AND PRACTICE IN 

INFORMATION TECHNOLOGY 

VOLUME 88 

KOLI CALLING 2007 

AUSTRALIAN 
COMPUTER 
SOCIETY 



Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.

KOLI CALLING 2007 

Proceedings of the 
Seventh Baltic Sea Conference on Com put in Education 
Research, --~ 

Koli National Park, Finlan , 15-18 November 2007 

Raymond Lister and Simon, Eds. 

Volume 88 in the Conferences in Research and Practice in Information Technology Series. 
Published by the Australian Computer Society Inc. 

Published in association with the ACM Digital Library. 

iii 



Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.

Roli Calling 2007. Proceedings of the Seventh Baltic Sea Conference on Computing Education Research, 
Koli National Park, Finland, 15-18 November 2007 

Conferences in Research and Practice in Information Technology, Volume 88. 

Copyright © 2008, Australian Computer Society. Reproduction for academic, not-for-profit purposes 
permitted provided the copyright text at the foot of the first page of each paper is included. 

Editors: 
Raymond Lister 
Faculty of Information Technology 
University of Technology Sydney 
Australia 
E-mail: raymond@it.uts.edu.au 

Simon 
School of Design, Communication and Information Techn logy 
University of Newcastle 
Australia 
E-mail: simon@newcastle.edu.au 

Series Editors: 
Vladimir Estivill-Castro, Griffith University, Queensland 
John F. Roddick, Flinders University, South Australia 
Simeon Simoff, University of Technology, Sydney, NS 
crpit~infoeng.flinders.edu.au 

ublisher: auSGalian Computer Society Inc. 
PO Box Q534, QVB Post Office 
Sydney 1230 
New South Wales 

stralia. 

Conferences in Research and Practice in Information Technology, Volume 8 
ISSN 1445-1336 
ISBN 978-1-920682-69-9 

"--PrmtetH=i!-:l8tl8-ibve-riffitlrtllnlllvveeirrssii11 ;Vy'11nruf· FP;;:nir·nrtt~, ~N;;a~t~h:an~C;am::pus, Kessels Rd. Nathan, 4111, QLD, Australia. 
Cover Design by Modern Planet Design, (08) 8340 1361. 

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of 
peer-reviewed research in an areas of Information Technology. Further details can be found at http://crpit.com/. 

iv 




