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Abstract 

 
Human action recognition is often approached in 

terms of probabilistic models such as the hidden 
Markov model or other graphical models. When 
learning such models by way of Expectation-
Maximisation algorithms, arbitrary choices must be 
made for their initial parameters. Often, solutions for 
the selection of the initial parameters are based on 
random functions. However, in this paper, we argue 
that deterministic alternatives are preferable, and 
propose various methods. Experiments on a video 
dataset prove that the deterministic initialization is 
capable of achieving an accuracy that is comparable 
to or above the average from random initializations 
and suffers from no deviation thanks to its 
deterministic nature. The methods proposed naturally 
extend to be used with other graphical models such 
as dynamic Bayesian networks and conditional 
random fields. 

 
1. Introduction 

 
Human action recognition is a very active research 

area in computer vision with main applications to 
video surveillance, video retrieval, human-computer 
interaction and others. Understanding human 
behavior is a high-level task relying on several, 
lower-level tasks such as segmentation, tracking and 
posture recovery. The typical goal of automatic 
action recognition is the classification of a given 
image sequence as one of several classes of pre-
defined actions. 

Many different approaches for action recognition 
have been proposed over the past two decades. The 
most recent surveys in [1, 2] offer a good overview. 
However, it is a common opinion that many open 
issues still affect the efficacy of action recognition. 
As a main challenge, the instances of the same action 
by various people are significantly different; 
moreover, every individual performs each action in a 

different manner over various instances, both in space 
and time. This can be formulated as a problem of 
high, intrinsic within-class variability.  Further, the 
visual appearance of the individual performing the 
action varies with the viewpoint and illumination 
conditions, motivating ongoing research for invariant 
feature sets. Adding to the challenge, the number of 
samples available for training is typically limited 
compared to the parameters, preventing a “brute 
force” approach. 

In terms of recognition approaches, two main lines 
of investigations have been followed: 1) recognizing 
the action directly in the time domain; and 2) 
recognizing the action by probabilistic models. The 
former group has dynamic time warping (DTW) as its 
main representative; the latter has the hidden Markov 
model (HMM). Despite the recent renaissance in 
interest in time warping approaches, probabilistic 
models such as HMM have maintained widespread 
adoption for their recognized strength against the 
intrinsic variations of action instances. Other 
probabilistic graphical models such as dynamic 
Bayesian networks (DBN) and conditional random 
fields (CRF) have also been used with a significant 
degree of a success. However, certain problems with 
the training of probabilistic models are still partially 
unresolved. The main principle guiding the learning 
of a model from a set of action samples, X={x1,..xN}, 
is to learn its parameters, λ, with maximum 
likelihood (or maximum a posteriori, wherever prior 
distributions for the parameters are available). The 
expression of the likelihood, p(X|λ), is typically too 
complicated to suggest a direct maximization in the 
parameters and therefore Expectation-Maximization 
(EM) algorithms have been predominant solutions.  
However, it is well known that EM algorithms can 
only find local maxima for the likelihood, and that 
such maxima strongly depend on the arbitrary 
initialization made for EM. Moreover, the problem of 
the quality of the maxima and the generalization to 
unseen examples is often exacerbated  by the scarcity 



of training samples. For this reasons, this paper 
investigates and presents a number of approaches that 
can improve the effectiveness of model learning from 
a limited set of samples. 

The rest of the paper is organized as follows. 
Section 2 offers a brief review of the related work. 
Section 3 summarizes HMM to the extent required by 
the paper. In Section 4, we present the various HMM 
initialization strategies, while in Section 5 we present 
the simple feature set used for the experiments. 
Experimental results are reported and discussed in 
section 6. Finally, conclusions are presented. 

 
2. Related work 

 
Using HMM for human action recognition goes a 

long way back. The first paper that we are aware of, 
from Yamato et al., dates 1992 [3]. The authors used 
HMM to recognize six different tennis actions. In 
their work, each frame is background-subtracted and 
the extracted foreground object is partitioned into a 
grid of blocks, centred on the centroid. The number 
of foreground pixels in each block is the feature 
vector that is then mapped onto a symbol by vector 
quantization. Discrete-output HMMs with 36 states 
are used for recognition. This early work already 
epitomises two major problems of action recognition: 
a) the adoption of a discriminative and workable 
feature set and b) the choice of a suitable recognition 
approach. 

For the feature set, a variety of approaches have 
been exploited, including optical flow [4], body parts 
tracking [5, 6], silhouettes [7] space-time interest 
points [8] and local interest points [9, 10]. 
Researchers are left with the decision whether to use 
a rich feature vector, possibly invariant to the 
viewpoint (e.g. [11]), or a simple, fast-to-extract 
feature vector designed with opportunistic action 
discrimination in mind. Along the latter lines, 
Fujiyoshi and Lipton introduced a “star skeleton” 
method that identifies 5 points with high convex 
curvature along the silhouette contour; such points 
represent the top of the head and the extremities of 
the four limbs [12]. In the approach, the distance 
between each contour point and the centroid is first 
calculated to produce a distance function along the 
curvilinear co-ordinate. The function is then 
smoothed and five local maxima found by the 
derivative zero-crossings. Although this feature 
vector is view dependent, it is fast to extract and low 
dimensional. 

Chen et al. in [9] developed the work of [12] and 
reported that the star skeleton method often achieves 
incorrect association between maxima and the 

expected body parts. For this reason, they proposed 
an adaptive smoothing filter that always detects only 
and exactly five maxima and relaxed the association 
of such maxima with physical parts. Also Li and Xu 
in [10] used the star skeleton feature vector, but 
introduced posture priors to compensate the 
observation probabilities of an HMM. In this work, 
we make use of a simple feature vector showing 
similarities with the star skeleton, but we enforce 
anatomical priors restricting the search for maxima to 
pre-determined angular sectors.  

Various graphical models have been used for 
recognising actions from observation sequences. 
While the main model has been the HMM, other 
models such as HMM variants (coupled, hierarchical, 
layered, entropic etc.), DBNs, CRFs have been used 
(e.g. [13, 14, 15]). However, they are all highly 
parametric models and the tuning of their parameters 
may prove unsatisfactory. In particular, EM learning 
is sensitive to the choice of the initial parameter 
assignment, and this problem was recognised and 
addressed by various authors. For instance, Ferrer et 
al. in [16] reviewed various HMM initialization 
methods based on random techniques and introduced 
their own method based on averaging multiple 
random runs. Unfortunately, random initializations 
are prone to performance variance. In a recent work, 
Toledano et al. have explored three different ways of 
initializing HMM training: 1) by a fixed template for 
all classes; 2) by historical averages; and 3) by oracle 
initialization (this last only to establish offline upper 
bounds) [17]. While these methods remove undesired 
randomness, they are not adaptive in the training 
samples. Therefore, in this paper we propose various 
deterministic initialization methods, yet adaptive on 
the actual training set. 

 
3. Action classification using HMM  

 
Using HMM for action recognition converts the 

recognition problem into classification of time series. 
A much-cited tutorial on HMM and its three main 
problems – evaluation, decoding and estimation – can 
be found in [18]. Let us call C the set of K action 
classes, C = {C1,…,Ck,…,CK}. Given an HMM for 
each class, noted by its set of parameters, λk, k=1..K, 
maximum-likelihood classification of a time series 
can be achieved as: 

               ( )( )k
k

k OpC λ|maxarg* =  (1) 

where p(O|λk) is a likelihood function that can be 
effectively computed based on the forward or 
backward algorithm [18]. If full Bayesian 



classification is sought, priors and costs can be easily 
added. 

 
3.1.  Hidden Markov model 

 
HMM is a probabilistic graphical model in which 

the modeled system has observed outputs, or 
observations, but the states are hidden. The 
observation sequence is noted as O={o1,...,oT}, where 
T is the length of the observation sequence. An HMM 
with N states is represented by the following 
parameter set: 
                            { }πλ ,, BA=  (2) 

where A is the N x N state transition probability 
matrix, B are the observation probabilities and π are 
the N x 1 initial state probabilities. In our case, the 
observations are continuous, multivariate random 
variables and their distribution in each state is 
modeled by a mixture of M Gaussian components 
(Gaussian Mixture Model - GMM): 
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In (3), µjl and Σjl are the mean and covariance of 
the l-th Gaussian and cjl is its weight in the mixture. 
Hence, the total size of B is (N * M * sizeof {µjl, Σjl, 
cjl}). Such a number is typically high and confirms 
that an HMM is a highly parametric model. 

 
3.2.  HMM training 

 
During training, the HMM parameters are 

estimated to fit the training observation sequences 
with maximum likelihood [18]. The most popular 
HMM training algorithm is the Baum-Welch re-
estimation algorithm [18], which is of EM style. Like 
all EM algorithms, it guarantees convergence to a 
local optimum (or a saddle point) of the data 
likelihood, and the position and quality of such a 
maximum depend in turn on the initialization 
parameters. Moreover, the set of HMM parameters, 
λ, contains two hyperparameters: the number of 
states, N, and the number of Gaussian components in 
each bj(o), M. For these two parameters, we simply 
adopt exhaustive search over a plausible range, N, M 
∈ {1…5}. As software, we have used and extended 
Kevin Murphy’s HMM toolbox for Matlab [19]. 

 
4. HMM parameters initialization 

 
The Baum-Welch re-estimation algorithm requires 

an initial assignment of the HMM parameters to 

initiate training. While all the parameters influence 
the outcome of training, in the following we focus 
only on B because of its typically overwhelming size. 
For instance, in an HMM with N = M = 5, F = 10-
dimensional observations (a conservative figure) and 
full covariance matrices, the size of B is equivalent to 
1,645 scalar parameters. 

The problem with initialization stems from the 
fact that only a set of training observation sequences 
is given, without knowledge of the states generating 
the observations. The training data permit us to easily 
estimate p(o), the observation probability 
marginalised over the states; yet, our estimation 
targets are the conditional observation densities, 
bj(o):=p(o|q=j). Before we start describing our 
initialization approaches, we illustrate a conventional 
method taking Murphy’s toolbox as the reference. 
Parameter B requires to be initialized with N * M sets 
of weighted Gaussian components, {µjl, Σjl, cjl}. 
Murphy’s toolbox obtains such values by initially 
training a single GMM with N * M components and 
then “dispatching” M components to each state in an 
arbitrary order. The single GMM is, at its turn, 
learned with a k-means algorithm whose N * M initial 
centroids are chosen randomly from the data 
themselves (strictly speaking, k-means does not 
assume Gaussian distributions for the clusters, but we 
will treat it as such hereafter). While this procedure 
can produce effective initialization, it might have to 
be applied several times before satisfactory 
parameters can be found. Conversely, all the methods 
that we propose in the following provide 
deterministic initialization grounded in the data. They 
develop over two separate steps (Fig. 1): 
1. Cluster creation: The first step provides N * M 
Gaussian clusters as its output. The input consists of 
N * M chosen centroids and learning is provided by a 
k-means algorithm. 
2. Cluster dispatching: The N * M clusters are 
dispatched over the N states (M clusters to each 
state). 

 
Figure 1. The main steps of HMM learning. 
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4.1.  Cluster creation methods 
 
As mentioned above, we train the GMM by a k-

means algorithm. This algorithm requires a set of 
initial centres for each cluster (initCentres). In order 
to devise a practicable deterministic strategy, we 
proceed as follows: we consider each training 
sequence {Oe}e=1..E, with length Te, and we divide it 
into (N*M + 1) consecutive segments {Sep}p=1..(N*M+1), 
each of Te/N*M length; then, we collect their 
boundary points as {Mep}p=1..N*M.  
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Figure 2. The cluster creation methods. 

The aim of this procedure is to sample the training 
sequence along the time in order to extract sensible 

starting points for the formation of the observations’ 
clusters and, in turn, the bj(o) densities. While the 
dynamic of the human action is certainly not linear in 
general, this procedure provides useful starting 
values; the discovery of the non-linearities is the task 
of the following HMM training stage. As the second 
requirement for the GMM training, we need to 
specify the set of samples (observData). We 
articulate our choices of initCentres and observData 
as follows:  

1. Random centres (reference method): initCentres 
are chosen randomly and the observations from all 
the training data sequences are coalesced into a single 
observData “supervector” (Fig 2.a). 

2. Average of training instances: initCentres, Mep, 
are calculated as described at the beginning of this 
section for each training data sequence and then 
averaged over all the instances; observData is the 
supervector (Fig. 2.b). 

3. Average of GMM parameters: Each training 
data instance is separately used for initCentres 
calculation and as observData. The parameters in 
output are then averaged before cluster dispatching 
(Fig. 2.c). We care to note that this is an empirical 
procedure as GMM parameters, and in particular the 
covariance parameters, are not linear. However, we 
can assume that the various trained models are not 
too different from one another, and that their linear 
combination is an acceptable approximation. 

4. Average of HMM parameters: Each training 
data instance is separately used for initCentres 
calculation and as observData. Parameters are 
dispatched and used to train individual HMMs. The 
trained HMM parameters are averaged (again, under 
a small-signal linear assumption) and such averages 
are used as the input for the final HMM learning (Fig. 
2.d). 

 
4.2.  Cluster dispatching methods 

 
The clusters created during the previous stage 

need then to be “dispatched” as modes of the 
observation distributions of the HMM states. This 
action may be regarded as non critical since it may 
appear that changes to the modes’ assignments will 
be compensated by corresponding changes to A, the 
state transition probabilities. However, this cannot 
account for the different constructive interference of 
modes. We propose two cluster dispatching methods 
contrasting them to the reference method: 

1. Appearance order (reference method): 
Dispatching clusters based on their appearance order 



in the set is the simplest way to proceed, but 
completely arbitrary. 

2. Nearest neighbours: The goal of this method is 
to put clusters with the mutually closest centres in the 
same state. First, we compute all the Euclidean 
distances between pairs of clusters’ centres. Then, we 
create all the possible partitions of clusters onto states 
and for each partition we compute its corresponding 
overall Euclidean distance. Finally, the partition with 
minimum overall Euclidean distance is selected as 
the best dispatching. The total number of possible 
partitions, TP, for an N-state HMM with M modes per 
state is given by: 
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As can be seen, TP is, unfortunately, very high and 
the combinatorial exploration proves extremely time-
consuming even for reasonably low values of N and 
M. 

3. Feature sorting: The goal of this method is to 
approximate the nearest-neighbour dispatching with a 
much lower computational load. The clusters’ centres 
are F-dimensional vectors: therefore, they can be 
seen as an F x (N * M) matrix. Here, each row is first 
sorted in value order and the ranking of each cell in 
the sorted row retained. Then, the average of the 
ranks along each column is used to determine the 
global rank of each cluster. Clusters are eventually 
dispatched to states in global ranking order. This 
method has a favourable ( )nnO log  complexity in 
(M * N). 

 
5. Sector extreme points as feature set 

 
The various methods proposed for cluster creation 

and dispatching provides a deterministic approach to 
model learning. A complementary aspect to the 
choice of the model is the feature vector to adopt. 
Given the tight real-time constraints of video 
surveillance, we chose to extract a minimal set of 
shape descriptors with the following procedure: we 
first extract the human silhouette from the 
background and divide it into five circular sectors 
centred around the silhouette’s centroid. Then, for 
each sector we determine the silhouette’s contour 
point farthest from the centroid. We call the resulting 
five points ‘sector extreme points’ and we assume 
that they would be in frequent correspondence with 

anatomical points. While this is not meant as an exact 
tracking procedure, the trajectory of these five points 
proves action-discriminative. Fig. 3 shows an 
example of sector extreme point trajectories. Further, 
to also encode the absolute position of the object, we 
add the centroid’s coordinates to the feature vector. 

 
5.1.  Feature processing by standardisation  

 
Many of the values in the feature vector are 

affected by the anthropometry of the subjects i.e. 
their height and limbs’ length. In some cases, the 
feature values for different subjects would be in 
totally different ranges and cause over-estimates of 
the observations’ covariances when learning from 
multiple subjects. In turn, this would affect the 
classification accuracy. One way to address this 
problem is to normalise the feature values by 
common preprocessing techniques, such as 
standardisation or whitening. For this work, we 
decided to standardise the observations over the 
sequence they belong to as: 
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6. Experiments 

 
We have tested our action recognition approach 

with the popular Weizmann human action video 
dataset [7]. The dataset includes 10 actions (Run, 
Walk, Skip, Bend, Side, Jack, Jumping Jack, Jump, 
Pjump, Wave1 and Wave2) performed by 9 different 
subjects and the videos are stored in low resolution 
AVI format (180*144 pixels). Alongside the original 
videos, the dataset also includes the silhouettes 
(median background subtraction) of the video 
sequences. While this dataset is of relatively small 
size (93 samples) and somehow simplistic, we 
decided to use it in this work as it allows direct 
comparison with most of the literature. As validation, 
we used “leave-one-out” cross validation i.e. in each 
run we leave one subject out during training and we 
use it for testing. The final accuracy result is the 
average of the nine runs over the various subjects. 

 
6.1.  Experiments on feature processing 

 
We ran the first set of experiments to find the 

influence of feature processing. Table 1 compares the 
results between the original features and the 
standardised features using Average of GMM 



parameters for cluster creation and Appearance order 
for cluster dispatching. 

Table 1: Classification accuracy (%) with the 
original and the standardised features. 

Original features 
 M=1 M=2 M=3 M=4 M=5 

N=1 82.8 75.3 73.1 72 72 

N=2 74.2 74.2 74.2 73.1 72 

N=3 73.1 73.1 73.1 71 69.9 

N=4 73.1 72 68.8 68.8 59.1 

N=5 73.1 67.7 66.7 59.1 63.4 
 

Standardised features 
 M=1 M=2 M=3 M=4 M=5 

N=1 94.6 92.5 92.5 91.4 93.5 

N=2 94.6 91.4 93.5 94.6 90.3 

N=3 94.6 93.5 86 93.5 81.7 

N=4 89.2 91.4 92.5 78.5 52.7 

N=5 88.2 90.3 82.8 51.6 46.2 

 
The results clearly show the effectiveness of 

applying standardization to the feature set. Using the 
other methods for cluster creation and cluster 
dispatching confirmed this conclusion. Hence, for the 
following experiments we used the standardised 
feature set. 

 
6.2.  Experiments on cluster creation methods 

 
In the second set of experiments, we compared our 

various cluster creation methods with the reference 
method. Here, the cluster dispatching needs to be 
fixed to one of the proposed methods discussed in 
section 4.2; we chose Appearance order for direct 
comparison with the reference method. Table 2 
reports the classification accuracy. For Random 
centres, we report the average alongside the standard 
deviation over 6 different runs. The main problem 
with the random centres method is that it might have 
to be applied several times before satisfactory 
parameters can be found. Conversely, two of our 
methods obtain an accuracy that is mildly higher than 
the average of the random runs, and all have zero 
deviation since they are deterministic. The Average of 
training instances and the Average of HMM 
parameters achieve the highest accuracy. However, 
the latter reports very low accuracy for high values of 
N * M, probably because the linear approximation 
becomes more tenuous. By repeating the experiment 
with the other dispatching methods, we achieved 
equivalent results. 

Table 2: Classification accuracy (%) with the 
different cluster creation methods. 

Random centres (reference method) 
 M=1 M=2 M=3 M=4 M=5 

N=1 94.6 92.3±1.6 92.5±1.7 93.7±2.9 93.0±1.9 

N=2 93.2±1.1 93.4±2.0 92.5±2.3 93.0±2.2 90.9±1.8 

N=3 95.2±1.1 93.9±1.1 92.1±2.2 92.3±0.8 92.5±1.9 

N=4 92.3±2.1 90.1±1.7 90.5±2.0 90.7±1.6 89.2±0.7 

N=5 91.8±1.9 90.9±1.3 90.0±1.8 89.4±1.6 89.6±1.6 
 

Average of training instances 
 M=1 M=2 M=3 M=4 M=5 

N=1 94.6 91.4 89.2 93.5 92.5 

N=2 93.5 93.5 94.6 91.4 90.3 

N=3 95.7 91.4 92.5 89.2 92.5 

N=4 90.3 93.5 89.2 92.5 89.2 

N=5 92.5 87.1 88.2 88.2 83.9 

Average of GMM parameters 
 M=1 M=2 M=3 M=4 M=5 

N=1 94.6 92.5 92.5 91.4 93.5 

N=2 94.6 91.4 93.5 94.6 90.3 

N=3 94.6 93.5 86 93.5 81.7 

N=4 89.2 91.4 92.5 78.5 52.7 

N=5 88.2 90.3 82.8 51.6 46.2 

Average of HMM parameters 
 M=1 M=2 M=3 M=4 M=5 

N=1 94.6 90.3 93.5 95.7 94.6 

N=2 93.5 93.5 91.4 92.5 91.4 

N=3 92.5 94.6 89.2 94.6 87.1 

N=4 92.5 95.7 93.5 82.8 52.7 

N=5 90.3 92.5 86 52.7 48.4 

 
 

6.3.   Experiments on cluster dispatching 
methods 

 
The third experiment was designed to explore the 

best cluster dispatching method among those 
described in section 4.2. In this experiment, we 
adopted the cluster creation method that reported the 
best performance in the previous experiment 
(Average of training instances). The achieved 
accuracies using different dispatching methods are 
shown in Table 3. Cases N = 1, M = 1 are not 
reported as they are not significant. The Nearest 
neighbours method proved very time-consuming and 
we were not able to complete the tests for N * M > 16 
in reasonable time. The Feature sorting method 



seemed to provide the best tradeoff between speed 
and accuracy. 

  

Table 3: Classification accuracy (%) with the 
different cluster dispatching methods. 

Appearance order (reference method) 
 M=2 M=3 M=4 M=5 

N=2 93.5 94.6 91.4 90.3 

N=3 91.4 92.5 89.2 92.5 

N=4 93.5 89.2 92.5 89.2 

N=5 87.1 88.2 88.2 83.9 

Feature sorting 
 M=2 M=3 M=4 M=5 

N=2 94.6 95.7 94.6 94.6 

N=3 91.4 91.4 90.3 91.4 

N=4 93.5 87.1 94.6 89.2 

N=5 94.6 90.3 86 84.9 

Nearest neighbours 
 M=2 M=3 M=4 M=5 

N=2 92.5 93.5 94.6 95.7 

N=3 94.6 90.3 88.2 92.5 

N=4 91.4 87.1 94.6 Not tested 

N=5 92.5 91.4 Not tested Not tested 
 
 

Table 4: Confusion matrix (N=2, M=3, Average of 
training instances, Feature sorting). 

 Class relative accuracy 
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W
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W
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W
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Bend 1 0 0 0 0 0 0 0 0 0 
Jack 0 1 0 0 0 0 0 0 0 0 

Pjump 0 0 1 0 0 0 0 0 0 0 
Jump 0 0 0 0.78 0 0 0.22 0 0 0 
Run 0 0 0 0 1 0 0 0 0 0 
Side 0 0 0 0.11 0 0.89 0 0 0 0 
Skip 0 0 0 0.10 0 0 0.90 0 0 0 
Walk 0 0 0 0 0 0 0 1 0 0 

Wave1 0 0 0 0 0 0 0 0 1 0 
Wave2 0 0 0 0 0 0 0 0 0 1 

 
Overall, the highest accuracy we achieved across 

the various initialization methods is 95.7%. Table 4 
depicts the full confusion matrix for this case (rows 
are the ground truth and columns the classification 
results), showing that the few errors occur mainly 
between the self-similar classes Jump and Skip. 

Other papers in the literature have reported higher 
accuracy on this dataset (e.g. 100% [20], 97.8% 
[15]); however, their approaches are not HMM-
based. Using randomly initialized HMMs and a 
comparable feature set, the best result is from Li and 
Xu with an accuracy of 92.5% [10]. 

 
7. Conclusions 

 
In this paper, we have proposed various 

deterministic methods for the initial assignment of 
parameters in HMM learning of human actions. The 
approaches we proposed ground the choice of the 
initial parameters in the training data, hoping to 
permit greater accuracy for the learned model. In 
Section 6.2, we showed that the deterministic 
initialization is capable of achieving an accuracy that 
is comparable to or above the average from random 
initializations. At the same time, the deterministic 
approach incurs no deviation over different runs. We 
argue that the proposed approach can be usefully 
extended to other discrete state-space models popular 
for action recognition such as DBNs and CRFs where 
the probability of observable random variables must 
be modelled conditional to discrete states. 
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