
© [2009] IEEE. Reprinted, with permission, from [Zia Moghaddam and Massimo Piccardi, Deterministic Initialization
of Hidden Markov Models for Human Action Recognition, 2009, 2009 Digital Image Computing:Techniques and
Applications DICTA 2009, 2009]. This material is posted here with permission of the IEEE. Such ermission of the
IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or
services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it

Deterministic Initialization of Hidden Markov Models
for Human Action Recognition

Zia Moghaddam and Massimo Piccardi

Faculty of Engineering and Information Technology,
University of Technology, Sydney (UTS), Australia

{ziam, massimo}@it.uts.edu.au

Abstract

Human action recognition is often approached in

terms of probabilistic models such as the hidden
Markov model or other graphical models. When
learning such models by way of Expectation-
Maximisation algorithms, arbitrary choices must be
made for their initial parameters. Often, solutions for
the selection of the initial parameters are based on
random functions. However, in this paper, we argue
that deterministic alternatives are preferable, and
propose various methods. Experiments on a video
dataset prove that the deterministic initialization is
capable of achieving an accuracy that is comparable
to or above the average from random initializations
and suffers from no deviation thanks to its
deterministic nature. The methods proposed naturally
extend to be used with other graphical models such
as dynamic Bayesian networks and conditional
random fields.

1. Introduction

Human action recognition is a very active research

area in computer vision with main applications to
video surveillance, video retrieval, human-computer
interaction and others. Understanding human
behavior is a high-level task relying on several,
lower-level tasks such as segmentation, tracking and
posture recovery. The typical goal of automatic
action recognition is the classification of a given
image sequence as one of several classes of pre-
defined actions.

Many different approaches for action recognition
have been proposed over the past two decades. The
most recent surveys in [1, 2] offer a good overview.
However, it is a common opinion that many open
issues still affect the efficacy of action recognition.
As a main challenge, the instances of the same action
by various people are significantly different;
moreover, every individual performs each action in a

different manner over various instances, both in space
and time. This can be formulated as a problem of
high, intrinsic within-class variability. Further, the
visual appearance of the individual performing the
action varies with the viewpoint and illumination
conditions, motivating ongoing research for invariant
feature sets. Adding to the challenge, the number of
samples available for training is typically limited
compared to the parameters, preventing a “brute
force” approach.

In terms of recognition approaches, two main lines
of investigations have been followed: 1) recognizing
the action directly in the time domain; and 2)
recognizing the action by probabilistic models. The
former group has dynamic time warping (DTW) as its
main representative; the latter has the hidden Markov
model (HMM). Despite the recent renaissance in
interest in time warping approaches, probabilistic
models such as HMM have maintained widespread
adoption for their recognized strength against the
intrinsic variations of action instances. Other
probabilistic graphical models such as dynamic
Bayesian networks (DBN) and conditional random
fields (CRF) have also been used with a significant
degree of a success. However, certain problems with
the training of probabilistic models are still partially
unresolved. The main principle guiding the learning
of a model from a set of action samples, X={x1,..xN},
is to learn its parameters, λ, with maximum
likelihood (or maximum a posteriori, wherever prior
distributions for the parameters are available). The
expression of the likelihood, p(X|λ), is typically too
complicated to suggest a direct maximization in the
parameters and therefore Expectation-Maximization
(EM) algorithms have been predominant solutions.
However, it is well known that EM algorithms can
only find local maxima for the likelihood, and that
such maxima strongly depend on the arbitrary
initialization made for EM. Moreover, the problem of
the quality of the maxima and the generalization to
unseen examples is often exacerbated by the scarcity

of training samples. For this reasons, this paper
investigates and presents a number of approaches that
can improve the effectiveness of model learning from
a limited set of samples.

The rest of the paper is organized as follows.
Section 2 offers a brief review of the related work.
Section 3 summarizes HMM to the extent required by
the paper. In Section 4, we present the various HMM
initialization strategies, while in Section 5 we present
the simple feature set used for the experiments.
Experimental results are reported and discussed in
section 6. Finally, conclusions are presented.

2. Related work

Using HMM for human action recognition goes a

long way back. The first paper that we are aware of,
from Yamato et al., dates 1992 [3]. The authors used
HMM to recognize six different tennis actions. In
their work, each frame is background-subtracted and
the extracted foreground object is partitioned into a
grid of blocks, centred on the centroid. The number
of foreground pixels in each block is the feature
vector that is then mapped onto a symbol by vector
quantization. Discrete-output HMMs with 36 states
are used for recognition. This early work already
epitomises two major problems of action recognition:
a) the adoption of a discriminative and workable
feature set and b) the choice of a suitable recognition
approach.

For the feature set, a variety of approaches have
been exploited, including optical flow [4], body parts
tracking [5, 6], silhouettes [7] space-time interest
points [8] and local interest points [9, 10].
Researchers are left with the decision whether to use
a rich feature vector, possibly invariant to the
viewpoint (e.g. [11]), or a simple, fast-to-extract
feature vector designed with opportunistic action
discrimination in mind. Along the latter lines,
Fujiyoshi and Lipton introduced a “star skeleton”
method that identifies 5 points with high convex
curvature along the silhouette contour; such points
represent the top of the head and the extremities of
the four limbs [12]. In the approach, the distance
between each contour point and the centroid is first
calculated to produce a distance function along the
curvilinear co-ordinate. The function is then
smoothed and five local maxima found by the
derivative zero-crossings. Although this feature
vector is view dependent, it is fast to extract and low
dimensional.

Chen et al. in [9] developed the work of [12] and
reported that the star skeleton method often achieves
incorrect association between maxima and the

expected body parts. For this reason, they proposed
an adaptive smoothing filter that always detects only
and exactly five maxima and relaxed the association
of such maxima with physical parts. Also Li and Xu
in [10] used the star skeleton feature vector, but
introduced posture priors to compensate the
observation probabilities of an HMM. In this work,
we make use of a simple feature vector showing
similarities with the star skeleton, but we enforce
anatomical priors restricting the search for maxima to
pre-determined angular sectors.

Various graphical models have been used for
recognising actions from observation sequences.
While the main model has been the HMM, other
models such as HMM variants (coupled, hierarchical,
layered, entropic etc.), DBNs, CRFs have been used
(e.g. [13, 14, 15]). However, they are all highly
parametric models and the tuning of their parameters
may prove unsatisfactory. In particular, EM learning
is sensitive to the choice of the initial parameter
assignment, and this problem was recognised and
addressed by various authors. For instance, Ferrer et
al. in [16] reviewed various HMM initialization
methods based on random techniques and introduced
their own method based on averaging multiple
random runs. Unfortunately, random initializations
are prone to performance variance. In a recent work,
Toledano et al. have explored three different ways of
initializing HMM training: 1) by a fixed template for
all classes; 2) by historical averages; and 3) by oracle
initialization (this last only to establish offline upper
bounds) [17]. While these methods remove undesired
randomness, they are not adaptive in the training
samples. Therefore, in this paper we propose various
deterministic initialization methods, yet adaptive on
the actual training set.

3. Action classification using HMM

Using HMM for action recognition converts the

recognition problem into classification of time series.
A much-cited tutorial on HMM and its three main
problems – evaluation, decoding and estimation – can
be found in [18]. Let us call C the set of K action
classes, C = {C1,…,Ck,…,CK}. Given an HMM for
each class, noted by its set of parameters, λk, k=1..K,
maximum-likelihood classification of a time series
can be achieved as:

 ()()k
k

k OpC λ|maxarg* = (1)

where p(O|λk) is a likelihood function that can be
effectively computed based on the forward or
backward algorithm [18]. If full Bayesian

classification is sought, priors and costs can be easily
added.

3.1. Hidden Markov model

HMM is a probabilistic graphical model in which

the modeled system has observed outputs, or
observations, but the states are hidden. The
observation sequence is noted as O={o1,...,oT}, where
T is the length of the observation sequence. An HMM
with N states is represented by the following
parameter set:
 { }πλ ,, BA= (2)

where A is the N x N state transition probability
matrix, B are the observation probabilities and π are
the N x 1 initial state probabilities. In our case, the
observations are continuous, multivariate random
variables and their distribution in each state is
modeled by a mixture of M Gaussian components
(Gaussian Mixture Model - GMM):

 () ()∑
=

=Σ=
M

l
jljljlj NjoGcob

1
...1,,| µ (3)

In (3), µjl and Σjl are the mean and covariance of
the l-th Gaussian and cjl is its weight in the mixture.
Hence, the total size of B is (N * M * sizeof {µjl, Σjl,
cjl}). Such a number is typically high and confirms
that an HMM is a highly parametric model.

3.2. HMM training

During training, the HMM parameters are

estimated to fit the training observation sequences
with maximum likelihood [18]. The most popular
HMM training algorithm is the Baum-Welch re-
estimation algorithm [18], which is of EM style. Like
all EM algorithms, it guarantees convergence to a
local optimum (or a saddle point) of the data
likelihood, and the position and quality of such a
maximum depend in turn on the initialization
parameters. Moreover, the set of HMM parameters,
λ, contains two hyperparameters: the number of
states, N, and the number of Gaussian components in
each bj(o), M. For these two parameters, we simply
adopt exhaustive search over a plausible range, N, M
∈ {1…5}. As software, we have used and extended
Kevin Murphy’s HMM toolbox for Matlab [19].

4. HMM parameters initialization

The Baum-Welch re-estimation algorithm requires

an initial assignment of the HMM parameters to

initiate training. While all the parameters influence
the outcome of training, in the following we focus
only on B because of its typically overwhelming size.
For instance, in an HMM with N = M = 5, F = 10-
dimensional observations (a conservative figure) and
full covariance matrices, the size of B is equivalent to
1,645 scalar parameters.

The problem with initialization stems from the
fact that only a set of training observation sequences
is given, without knowledge of the states generating
the observations. The training data permit us to easily
estimate p(o), the observation probability
marginalised over the states; yet, our estimation
targets are the conditional observation densities,
bj(o):=p(o|q=j). Before we start describing our
initialization approaches, we illustrate a conventional
method taking Murphy’s toolbox as the reference.
Parameter B requires to be initialized with N * M sets
of weighted Gaussian components, {µjl, Σjl, cjl}.
Murphy’s toolbox obtains such values by initially
training a single GMM with N * M components and
then “dispatching” M components to each state in an
arbitrary order. The single GMM is, at its turn,
learned with a k-means algorithm whose N * M initial
centroids are chosen randomly from the data
themselves (strictly speaking, k-means does not
assume Gaussian distributions for the clusters, but we
will treat it as such hereafter). While this procedure
can produce effective initialization, it might have to
be applied several times before satisfactory
parameters can be found. Conversely, all the methods
that we propose in the following provide
deterministic initialization grounded in the data. They
develop over two separate steps (Fig. 1):
1. Cluster creation: The first step provides N * M
Gaussian clusters as its output. The input consists of
N * M chosen centroids and learning is provided by a
k-means algorithm.
2. Cluster dispatching: The N * M clusters are
dispatched over the N states (M clusters to each
state).

Figure 1. The main steps of HMM learning.

Initializatio

HMM parameter estimation

Cluster dispatching

Cluster creation

4.1. Cluster creation methods

As mentioned above, we train the GMM by a k-

means algorithm. This algorithm requires a set of
initial centres for each cluster (initCentres). In order
to devise a practicable deterministic strategy, we
proceed as follows: we consider each training
sequence {Oe}e=1..E, with length Te, and we divide it
into (N*M + 1) consecutive segments {Sep}p=1..(N*M+1),
each of Te/N*M length; then, we collect their
boundary points as {Mep}p=1..N*M.

k-means

a. Random centres (reference method)

cluster
dispatching

initial centres
from seq. 1

k-means

b. Average of training instances

cluster
disp.

initial centres
from seq. E

. . . average

c. Average of GMM parameters

average . . .

d. Average of HMM parameters

cluster
disp.

. . .

k-means

clstr
disp.

ctrs
seq. 1

EM for
HMM

average . . .

initial centres
from seq. 1

initial centres
from seq. E

. . .

k-means

k-means

k-means

clstr
disp. ctrs

seq. E

EM for
HMM

to HMM learning

to HMM learning

to HMM learning

to HMM learning

initial centres
randomly

chosen from data

Figure 2. The cluster creation methods.

The aim of this procedure is to sample the training
sequence along the time in order to extract sensible

starting points for the formation of the observations’
clusters and, in turn, the bj(o) densities. While the
dynamic of the human action is certainly not linear in
general, this procedure provides useful starting
values; the discovery of the non-linearities is the task
of the following HMM training stage. As the second
requirement for the GMM training, we need to
specify the set of samples (observData). We
articulate our choices of initCentres and observData
as follows:

1. Random centres (reference method): initCentres
are chosen randomly and the observations from all
the training data sequences are coalesced into a single
observData “supervector” (Fig 2.a).

2. Average of training instances: initCentres, Mep,
are calculated as described at the beginning of this
section for each training data sequence and then
averaged over all the instances; observData is the
supervector (Fig. 2.b).

3. Average of GMM parameters: Each training
data instance is separately used for initCentres
calculation and as observData. The parameters in
output are then averaged before cluster dispatching
(Fig. 2.c). We care to note that this is an empirical
procedure as GMM parameters, and in particular the
covariance parameters, are not linear. However, we
can assume that the various trained models are not
too different from one another, and that their linear
combination is an acceptable approximation.

4. Average of HMM parameters: Each training
data instance is separately used for initCentres
calculation and as observData. Parameters are
dispatched and used to train individual HMMs. The
trained HMM parameters are averaged (again, under
a small-signal linear assumption) and such averages
are used as the input for the final HMM learning (Fig.
2.d).

4.2. Cluster dispatching methods

The clusters created during the previous stage

need then to be “dispatched” as modes of the
observation distributions of the HMM states. This
action may be regarded as non critical since it may
appear that changes to the modes’ assignments will
be compensated by corresponding changes to A, the
state transition probabilities. However, this cannot
account for the different constructive interference of
modes. We propose two cluster dispatching methods
contrasting them to the reference method:

1. Appearance order (reference method):
Dispatching clusters based on their appearance order

in the set is the simplest way to proceed, but
completely arbitrary.

2. Nearest neighbours: The goal of this method is
to put clusters with the mutually closest centres in the
same state. First, we compute all the Euclidean
distances between pairs of clusters’ centres. Then, we
create all the possible partitions of clusters onto states
and for each partition we compute its corresponding
overall Euclidean distance. Finally, the partition with
minimum overall Euclidean distance is selected as
the best dispatching. The total number of possible
partitions, TP, for an N-state HMM with M modes per
state is given by:

()

!N
M
M

...
M
N*M

*
M

N*M

TP
















 −









=

1

, (4)

 where
)!kn!*(k

!n
k
n

−
=








, (5)

As can be seen, TP is, unfortunately, very high and
the combinatorial exploration proves extremely time-
consuming even for reasonably low values of N and
M.

3. Feature sorting: The goal of this method is to
approximate the nearest-neighbour dispatching with a
much lower computational load. The clusters’ centres
are F-dimensional vectors: therefore, they can be
seen as an F x (N * M) matrix. Here, each row is first
sorted in value order and the ranking of each cell in
the sorted row retained. Then, the average of the
ranks along each column is used to determine the
global rank of each cluster. Clusters are eventually
dispatched to states in global ranking order. This
method has a favourable ()nnO log complexity in
(M * N).

5. Sector extreme points as feature set

The various methods proposed for cluster creation

and dispatching provides a deterministic approach to
model learning. A complementary aspect to the
choice of the model is the feature vector to adopt.
Given the tight real-time constraints of video
surveillance, we chose to extract a minimal set of
shape descriptors with the following procedure: we
first extract the human silhouette from the
background and divide it into five circular sectors
centred around the silhouette’s centroid. Then, for
each sector we determine the silhouette’s contour
point farthest from the centroid. We call the resulting
five points ‘sector extreme points’ and we assume
that they would be in frequent correspondence with

anatomical points. While this is not meant as an exact
tracking procedure, the trajectory of these five points
proves action-discriminative. Fig. 3 shows an
example of sector extreme point trajectories. Further,
to also encode the absolute position of the object, we
add the centroid’s coordinates to the feature vector.

5.1. Feature processing by standardisation

Many of the values in the feature vector are

affected by the anthropometry of the subjects i.e.
their height and limbs’ length. In some cases, the
feature values for different subjects would be in
totally different ranges and cause over-estimates of
the observations’ covariances when learning from
multiple subjects. In turn, this would affect the
classification accuracy. One way to address this
problem is to normalise the feature values by
common preprocessing techniques, such as
standardisation or whitening. For this work, we
decided to standardise the observations over the
sequence they belong to as:

()

() T...t,F...j
O

OO
O

j

jt,js
t,j 11 ==

−
=

σ
µ

 (6)

6. Experiments

We have tested our action recognition approach

with the popular Weizmann human action video
dataset [7]. The dataset includes 10 actions (Run,
Walk, Skip, Bend, Side, Jack, Jumping Jack, Jump,
Pjump, Wave1 and Wave2) performed by 9 different
subjects and the videos are stored in low resolution
AVI format (180*144 pixels). Alongside the original
videos, the dataset also includes the silhouettes
(median background subtraction) of the video
sequences. While this dataset is of relatively small
size (93 samples) and somehow simplistic, we
decided to use it in this work as it allows direct
comparison with most of the literature. As validation,
we used “leave-one-out” cross validation i.e. in each
run we leave one subject out during training and we
use it for testing. The final accuracy result is the
average of the nine runs over the various subjects.

6.1. Experiments on feature processing

We ran the first set of experiments to find the

influence of feature processing. Table 1 compares the
results between the original features and the
standardised features using Average of GMM

parameters for cluster creation and Appearance order
for cluster dispatching.

Table 1: Classification accuracy (%) with the
original and the standardised features.

Original features
 M=1 M=2 M=3 M=4 M=5

N=1 82.8 75.3 73.1 72 72

N=2 74.2 74.2 74.2 73.1 72

N=3 73.1 73.1 73.1 71 69.9

N=4 73.1 72 68.8 68.8 59.1

N=5 73.1 67.7 66.7 59.1 63.4

Standardised features
 M=1 M=2 M=3 M=4 M=5

N=1 94.6 92.5 92.5 91.4 93.5

N=2 94.6 91.4 93.5 94.6 90.3

N=3 94.6 93.5 86 93.5 81.7

N=4 89.2 91.4 92.5 78.5 52.7

N=5 88.2 90.3 82.8 51.6 46.2

The results clearly show the effectiveness of

applying standardization to the feature set. Using the
other methods for cluster creation and cluster
dispatching confirmed this conclusion. Hence, for the
following experiments we used the standardised
feature set.

6.2. Experiments on cluster creation methods

In the second set of experiments, we compared our

various cluster creation methods with the reference
method. Here, the cluster dispatching needs to be
fixed to one of the proposed methods discussed in
section 4.2; we chose Appearance order for direct
comparison with the reference method. Table 2
reports the classification accuracy. For Random
centres, we report the average alongside the standard
deviation over 6 different runs. The main problem
with the random centres method is that it might have
to be applied several times before satisfactory
parameters can be found. Conversely, two of our
methods obtain an accuracy that is mildly higher than
the average of the random runs, and all have zero
deviation since they are deterministic. The Average of
training instances and the Average of HMM
parameters achieve the highest accuracy. However,
the latter reports very low accuracy for high values of
N * M, probably because the linear approximation
becomes more tenuous. By repeating the experiment
with the other dispatching methods, we achieved
equivalent results.

Table 2: Classification accuracy (%) with the
different cluster creation methods.

Random centres (reference method)
 M=1 M=2 M=3 M=4 M=5

N=1 94.6 92.3±1.6 92.5±1.7 93.7±2.9 93.0±1.9

N=2 93.2±1.1 93.4±2.0 92.5±2.3 93.0±2.2 90.9±1.8

N=3 95.2±1.1 93.9±1.1 92.1±2.2 92.3±0.8 92.5±1.9

N=4 92.3±2.1 90.1±1.7 90.5±2.0 90.7±1.6 89.2±0.7

N=5 91.8±1.9 90.9±1.3 90.0±1.8 89.4±1.6 89.6±1.6

Average of training instances
 M=1 M=2 M=3 M=4 M=5

N=1 94.6 91.4 89.2 93.5 92.5

N=2 93.5 93.5 94.6 91.4 90.3

N=3 95.7 91.4 92.5 89.2 92.5

N=4 90.3 93.5 89.2 92.5 89.2

N=5 92.5 87.1 88.2 88.2 83.9

Average of GMM parameters
 M=1 M=2 M=3 M=4 M=5

N=1 94.6 92.5 92.5 91.4 93.5

N=2 94.6 91.4 93.5 94.6 90.3

N=3 94.6 93.5 86 93.5 81.7

N=4 89.2 91.4 92.5 78.5 52.7

N=5 88.2 90.3 82.8 51.6 46.2

Average of HMM parameters
 M=1 M=2 M=3 M=4 M=5

N=1 94.6 90.3 93.5 95.7 94.6

N=2 93.5 93.5 91.4 92.5 91.4

N=3 92.5 94.6 89.2 94.6 87.1

N=4 92.5 95.7 93.5 82.8 52.7

N=5 90.3 92.5 86 52.7 48.4

6.3. Experiments on cluster dispatching
methods

The third experiment was designed to explore the

best cluster dispatching method among those
described in section 4.2. In this experiment, we
adopted the cluster creation method that reported the
best performance in the previous experiment
(Average of training instances). The achieved
accuracies using different dispatching methods are
shown in Table 3. Cases N = 1, M = 1 are not
reported as they are not significant. The Nearest
neighbours method proved very time-consuming and
we were not able to complete the tests for N * M > 16
in reasonable time. The Feature sorting method

seemed to provide the best tradeoff between speed
and accuracy.

Table 3: Classification accuracy (%) with the
different cluster dispatching methods.

Appearance order (reference method)
 M=2 M=3 M=4 M=5

N=2 93.5 94.6 91.4 90.3

N=3 91.4 92.5 89.2 92.5

N=4 93.5 89.2 92.5 89.2

N=5 87.1 88.2 88.2 83.9

Feature sorting
 M=2 M=3 M=4 M=5

N=2 94.6 95.7 94.6 94.6

N=3 91.4 91.4 90.3 91.4

N=4 93.5 87.1 94.6 89.2

N=5 94.6 90.3 86 84.9

Nearest neighbours
 M=2 M=3 M=4 M=5

N=2 92.5 93.5 94.6 95.7

N=3 94.6 90.3 88.2 92.5

N=4 91.4 87.1 94.6 Not tested

N=5 92.5 91.4 Not tested Not tested

Table 4: Confusion matrix (N=2, M=3, Average of
training instances, Feature sorting).

 Class relative accuracy

Bend

Jack

Pjum
p

Jum
p

R
un

S
ide

S
kip

W
alk

W
ave1

W
ave2

Bend 1 0 0 0 0 0 0 0 0 0
Jack 0 1 0 0 0 0 0 0 0 0

Pjump 0 0 1 0 0 0 0 0 0 0
Jump 0 0 0 0.78 0 0 0.22 0 0 0
Run 0 0 0 0 1 0 0 0 0 0
Side 0 0 0 0.11 0 0.89 0 0 0 0
Skip 0 0 0 0.10 0 0 0.90 0 0 0
Walk 0 0 0 0 0 0 0 1 0 0

Wave1 0 0 0 0 0 0 0 0 1 0
Wave2 0 0 0 0 0 0 0 0 0 1

Overall, the highest accuracy we achieved across

the various initialization methods is 95.7%. Table 4
depicts the full confusion matrix for this case (rows
are the ground truth and columns the classification
results), showing that the few errors occur mainly
between the self-similar classes Jump and Skip.

Other papers in the literature have reported higher
accuracy on this dataset (e.g. 100% [20], 97.8%
[15]); however, their approaches are not HMM-
based. Using randomly initialized HMMs and a
comparable feature set, the best result is from Li and
Xu with an accuracy of 92.5% [10].

7. Conclusions

In this paper, we have proposed various

deterministic methods for the initial assignment of
parameters in HMM learning of human actions. The
approaches we proposed ground the choice of the
initial parameters in the training data, hoping to
permit greater accuracy for the learned model. In
Section 6.2, we showed that the deterministic
initialization is capable of achieving an accuracy that
is comparable to or above the average from random
initializations. At the same time, the deterministic
approach incurs no deviation over different runs. We
argue that the proposed approach can be usefully
extended to other discrete state-space models popular
for action recognition such as DBNs and CRFs where
the probability of observable random variables must
be modelled conditional to discrete states.

8. Acknowledgement

This research was partially supported by SenSen

Networks Pty Ltd.

9. References

[1] T.B. Moeslund, A. Hilton and V. Kru¨ger, “A Survey
of Advances in Vision-Based Human Motion Capture
and Analysis,” Computer Vision and Image
Understanding, vol. 104, no. 2-3, 2006, pp. 90-126.

[2] P. Turaga, R. Chellappa, V.S. Subrahmanian and O.
Udrea, “Machine Recognition of Human Activities: A
Survey,” IEEE Trans. Circ. Syst. for Video
Technology, vol. 18, no. 11, 2008, pp. 1473-1488.

[3] J. Yamato, J. Ohya and K. Ishii, “Recognizing Human
Action in Time-Sequential Images using Hidden
Markov Model,” Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 1992, pp.
379-385.

[4] A.A. Efros, A.C. Berg, G. Mori and J. Malik,
“Recognizing action at a distance,” Proc. of the 9th
IEEE Intl. Conf. on Computer Vision (ICCV), 2003,
pp. 726-733.

[5] Z.L. Husz, A.M. Wallace and P.R. Green, “Human
Activity Recognition with Action Primitives,” Proc. of

the IEEE Intl. Conf. on Advanced Video and Signal
Based Surveillance (AVSS), 2007, pp. 330-335.

[6] Y. Song, L. Goncalves and P. Perona, “Unsupervised
learning of human motion,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 25, no. 7,
2003, pp. 814-827.

[7] M. Blank, L. Gorelick, E. Shechtman, M. Irani and R.
Basri, “Actions as Space-Time Shapes,” Proc. of the
10th IEEE Intl. Conf. on Computer Vision (ICCV),
2005, pp. 1395-1402.

[8] P. Dollar, V. Rabaud, G. Cottrell and S. Belongie,
“Behavior recognition via sparse spatio-temporal
features,” Proc. of the 2nd Joint IEEE Intl. Workshop
on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (PETS), 2005, pp. 65-72.

[9] H.-S. Chen, H.-T. Chen, Y.-W. Chen and S.-Y. Lee,
“Human action recognition using star skeleton,” Proc.
of the 4th ACM Intl. Workshop on Video Surveillance
and Sensor Networks (VSSN), ACM, 2006.

[10] N. Li and D. Xu, “Action recognition using weighted
three-state Hidden Markov Model,” Proc. of the 9th
Intl. Conf. on Signal Processing (ICSP), 2008, pp.
1428-1431.

[11] Y. Shen and H. Foroosh, “View-invariant action
recognition using fundamental ratios,” Proc. of the
IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2008, pp. 1-6.

[12] H. Fujiyoshi and A.J. Lipton, “Real-time human
motion analysis by image skeletonization,” Proc. of
the 4th IEEE Workshop on Applications of Computer
Vision (WACV), 1998, pp. 15-21.

[13] J. K. Aggarwal and Q. Cai, “Human Motion Analysis:
A Review,” Computer Vision and Image
Understanding, vol. 73, no. 3, 1999, pp. 428-440.

[14] L. Wang, W. Hu, and T. Tan, “Recent developments
in human motion analysis,” Pattern Recognition, vol.
36, no. 3, 2003, pp. 585-601.

[15] L. Wang and D. Suter, “Recognizing Human
Activities from Silhouettes: Motion Subspace and
Factorial Discriminative Graphical Model,” Proc. of
the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007, pp. 1-8.

[16] M.A. Ferrer, I.G. Alonso and C.M. Travieso,
“Influence of initialisation and stop criteria on HMM
based recognisers,” Electronics Letters, vol. 36, no.
13, 2000, pp. 1165-1166.

[17] D. T. Toledano, J. G. Villardebo, L. H. Gomez,
“Initialization, training, and context-dependency in
HMM-based formant tracking,” IEEE Trans. on
Audio, Speech, and Language Processing, vol. 14, no.
2, 2006. pp. 511-523.

[18] L.R. Rabiner, “A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition,”
Proceedings of the IEEE, vol. 77, no. 2, 1989, pp. 257-
286.

[19] K. Murphy, “Hidden Markov Model (HMM) Toolbox
for Matlab,” 1998 (last updated in 2005);
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm
.html.

[20] A. Fathi and G. Mori, “Action recognition by learning
mid-level motion features,” Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR),
2008, pp. 1-8.

Figure 3. The values of Head (Row) feature for 10 actions performed by one subject in the Weizmann

dataset.

