
Comparison of Method Chunks and Method Fragments for Situational
Method Engineering

Brian Henderson-Sellers Cesar Gonzalez-Perez Jolita Ralyté
University of Technology,

Sydney, Australia
IEGPS, CSIC

Spain
University of Geneva, CUI,

Switzerland
brian@it.uts.edu.au cesargon@verdewek.com Jolita.Ralyte@cui.unige.ch

Abstract

Two main candidates for the atomic element to be

used in Situational Method Engineering (SME) have
been proposed: the “method fragment” and the
“method chunk”. These are examined here in terms of
their conceptual integrity and in terms of how they
may be used in method construction. Also, parallels
are drawn between the two approaches. Secondly, the
idea of differentiating an interface from a body has
been proposed for method chunks (but not for method
fragments). This idea is examined and mappings are
constructed between the interface and body concepts
of method chunks and the concepts used to describe
method fragments. The new ISO/IEC 24744 standard
metamodel is used as a conceptual framework to
perform these mappings.

1. Introduction

Both in theory and practice, it is argued [35] that

high quality software development methods (a.k.a.
methodologies: [21]) can best be created by means of
construction – identifying small elements of a
methodology, variously called fragments or chunks,
and putting them together for a specific situation. Done
in an ad hoc manner, this can lead to a large number of
variations on the one methodology within a single
organization together with its concomitant challenge of
methodology management [25]. A more structured,
formal and potentially repeatable approach to
methodology construction is Situational Method
Engineering (SME) [23], which is a subset of the IT
sub-discipline of Method Engineering (ME) that itself
includes not only SME but also comparison of
methods and knowledge infrastructures [5]. SME
provides a solid, theoretically sound basis for creating
useful methodologies as well as giving the
development team “ownership” of their
methodological approach [14]. The chunks/fragments,
of course, need to exist prior to construction – typically

these are gleaned from best practice, theory and/or
abstracted from other (static) methodologies. Once
identified and documented, they are stored in a
methodbase, which serves as a repository for these
method chunks/fragments [6, 13, 30, 33, 34, 42].

While there are many research and practical issues
regarding the engineering of software development
methodologies, as documented in the software
engineering literature on SME, one important basic
concern is the need to agree on a definition of the
atomic element from which methodologies can be
constructed (see also panel discussion at ME07 [1]).
There have been several proposals in the literature,
variously known as a method chunk, a method
fragment or a method component (or sometimes
process component). In each case, the overall
definition relies on an appropriate metamodel. In this
paper, we examine the various proposals for an
appropriate atomic element. Furthermore, since many
authors, in describing their metamodel, make the
assumption that such a method component is best
described in terms of a body and an interface [7, 27],
we further our analysis of fragments versus chunks to
elucidate the value of using such a partitioning for the
description of the atomic elements for situational
method engineering. The analysis is based on a
combination of qualitative descriptions of the
components themselves (Sections 2-4.1) plus an
analysis of the need for an interface/body model for
method components (Section 4.2). Throughout we use
the ISO/IEC International Standard 24744 [20]
Software Engineering Metamodel for Development
Methodologies as an underpinning “theory” that assists
us in identifying similarities and differences in these
two approaches to Situational Method Engineering
(SME).

2. Method Fragments

As noted in [35, 36], the term method fragment was

coined by Harmsen et al. [13] (and also reiterated in

[3]) by analogy with the notion of a software
component – see also [38, 42]. Although ter Hofstede
and Verhoef [43] define a method fragment as “a
coherent part of a metamodel, which may cover any of
the modelling dimensions at any level of granularity”,
thus envisaging a “fragment” as a portion of the
metamodel itself, it is more widely supposed that a
fragment is an element generated from the metamodel
– usually by instantiation. In the latter, more generally
accepted case, many authors discriminate between two
kinds of method fragments: process fragments and
product fragments [3, 6, 12, 13, 22, 32, 38]. The
fragments generated, for instance, in the OPEN
Process Framework [10] are each instantiated from a
single class in the metamodel and are weighted
towards specifying process elements (as noted by [34])
as are those of [26] in the JECKO framework; whereas
fragments that could be extracted by sub-setting from
OMT, OOSE or UML are more likely to be product-
focussed fragments [34] as are the proposals of [18].
Thus the generated atomic SME element is generally
regarded as either a process-focussed fragment (e.g. a
kind of task or technique) or a product-focussed
fragment (a kind of diagram, document or other work
product). Using the metamodel of the OPF or of
ISO/IEC 24744 (Fig. 1), for example, these method
fragments are defined separately (process-only
fragments or product-only fragments1 – see Table 1)
and then linked together. This is in contrast to the
notion of a method “chunk” (Section 3), defined as a
pre-determined linkage of only one process-oriented
component with one product-oriented one i.e. a one-to-
one relationship rather than many-to-many as in the
OPF or the new ISO/IEC 24744 [20] standard
metamodel.

The fact that method fragments are not
encapsulated together into chunks does not mean that
there are no relationships between them. All the
fragment-based approaches utilise some kind of
association between process- and product-oriented
fragments to capture the appropriate dependencies.
This is best illustrated by ISO/IEC 24744, which
models this relationship as a complete class, named
ActionKind, representing a single usage event that a
given process fragment exerts upon a given product
fragment. This class contains an attribute, Type, that
specifies what kind of action the process part is
exerting on the product part. For example, imagine a
methodology that contains a requirements validation
task. This task takes a draft requirements document as
input and modifies it accordingly through the

1 Or indeed producer-only fragments – not discussed further

here.

validation process, creating, as well, a requirements
defect list. Modelling this task plus the two involved
products (one of which is both an input and an output)
can be easily modelled by using two actions: one
action would map the requirements validation task to
the requirements document, specifying a type
“modify”, and a second action would map the same
requirements validation task to the requirements defect
list, specifying the type as “create”.

Table 1. Two example fragments, the details of each
following the standard template as specified by the ISO/IEC
24744 metamodel.

a) Example of process-focussed fragment (an
instance of the meta-element TaskKind)

Attributes

Name: Analyze requirements
Purpose: Study, understand and formalise

requirements previously elicited.
Description: A full textual description would be

here. (Omitted for lack of space).
Minimum capability level: 1

Relationships

Causes (Action kinds):
 Modifies Requirements Specification Document,

mandatory.
Results in (Outcomes):
 Requirements have been analysed and understood.

Includes (Task kinds):
 (none)

Is involved in (Task-technique mapping kinds):
 A textual description of the linkage to various

appropriate techniques would be inserted here
(Omitted for lack of space).

Is involved in (Work performance kinds):
 Business Analyst, mandatory.
 Customer, recommended.

b) Example of product-focussed fragment (an
instance of the meta-element WorkProductKind

Attributes

Name: Requirements Specification Document
Description: A full textual description would be

here. (Omitted for lack of space).

Relationships

Is acted upon by (Action kinds):
 Created by Elicit requirements, mandatory.
 Modified by Analyze requirements, mandatory.
 Modified by Document requirements, mandatory.

 Read by Develop class models, mandatory.

The relationships between process- and product-
oriented fragments are thus clearly specified. (It must
be noted that the actions are lightweight entities in the
methodology that act as mappings between
heavyweight process- and product-oriented fragments.
Actions are not containers, as are chunks.)

3. Method Chunks

In contrast to the process-only or product-only

fragment discussed in Section 2, other authors prefer
the concept of a method chunk [30, 33-36, 38, 39] in
order to emphasize the more constructive2, collection
notion. Here, a chunk is the combination of a process
part (also called a guideline) plus a product part
although, interestingly, the third major element, a
metaclass to represent “Producers” (largely people), as
identified in the OPF, SPEM and ISO/IEC 24744
metamodels (Fig. 1), is missing from the chunk-based
approach (Fig. 2). In [36], a method chunk is thus a
tightly coupled (process+product) representation3. In
this approach, a method chunk is “an autonomous and
coherent part of a method … supporting the realization
of some specific ISD [information systems
development] activity”. The relationship “refers to”
between a process part and a product part is an
abstraction of all kinds of transformations
(construction, modification, etc.) that the process part
realises upon the product part. In Fig. 3, the process-
focussed part of the chunk is illustrated on the left
hand side as a “map” [40] while the right hand side is a
class model depicting a particular product part, here
expressed as a metamodel of the product to be
constructed by applying this method chunk. The chunk
captures the guidelines allowing production of the
work product in the process portion of the chunk
together with definitions of the concepts used in the
product part [34, 36]. Although in any particular
situational method there is one process part (say
ProcA) connected to one product part (say ProdB), it is
perfectly possible that in another situation (at a
different time or in a different project) that ProdB may
be linked to a different process part, say ProcC4.

2 This use of positive, constructive language is echoed by Don

Firesmith who recommends the term method component rather than
method fragment (see http://www.opfro.org/).

3 Note that, confusingly, Kraiem et al. [22], while using this
same approach, state that a method fragment is called a chunk.

4 This led to the use of a one-to-many cardinality between
Process part and Product part (as in Fig. 4) to indicate temporal

Work Units Work Products

Producers

produceperform

create
evaluate
iterate

Fig. 1. The triangle of Producers, Work Units and Work
Products that underpins the SPEM, OPF and 24744 standards
for software engineering process modelling. Method
fragments conform to one specific subclass of these
metaclasses.

The process+product chunk approach states that a
chunk has not only a body, consisting of the process
plus product part as discussed above, but also an
interface (Fig. 2). This interface describes the
methodological situation where the chunk can be
applied plus the intention (objective) it allows to be
achieved, effectively defining the pre- and post-
conditions for the chunk. This approach would
therefore appear to embody, at a high abstraction level,
a strong traditional process/workflow mindset,
seemingly developing from its origins in Guidelines
and Maps [40] in which a process-focussed fragment
could be envisaged at a high level as being a “black
box” acting as a transformation engine to change the
input into an output (as in ISO/IEC 12207 [19]) for
example). Once a chunk has been selected according to
the methodological needs by looking at its interface,
the evaluation process, based on similarity measures
described by [35] retrieves the method chunk body –
process plus product – and incorporates it to the
methodology being constructed.

In addition to the interface and the body, each
method chunk has a Descriptor [27, 36, 37] (Figs. 2
and 3). The descriptor extends the contextual view
captured in the chunk interface to define the context in
which the chunk can be reused. Besides the
information relevant to the chunk identification, such
as ChunkName, ChunkID, Type and Objective, the
descriptor defines the Origin of the method chunk, the
Reuse Situation and the Reuse Intention. The reuse
situation captures a set of criteria taken from the reuse
frame proposed by [27] and characterizes the project
situation where the method chunk is useful. Mirbel and
Ralyté [27] suggest that the reuse intention, which
describes the objective of the chunk and has the same
structure as the intention of the chunk, can be formally
stated as verb + target + parameters [31]. For example,

changes in bonding – although that is a non-standard use of UML
cardinalities.

the informal method chunk intention “Construct a use case model following the OOSE approach” can be

Situation

Intention

Interface

Reuse Situation Reuse Intention

Origin
Experience

Report

<has 1 1

1Body

Process part Product part

Descriptor

ID
Name
Objective
Type

Method
Chunk11

1

1 1

*
1

*

1 1

defines

*

*

refers to
11

Situation

Intention

Interface

Reuse Situation Reuse Intention

Origin
Experience

Report

<has 1 1

1Body

Process part Product part

Descriptor

ID
Name
Objective
Type

Method
Chunk11

1

1 1

*
1

*

1 1

defines

*

*

refers to
11

Fig. 2. Revised metamodel for method chunk (derived from [37]).

<(Problem statement), Construct verb (use case model) target (following OOSE method strategy) manner>

initialises >

supports >

Use Case
Model extends

1..*
1 1..*

* *

0..1
*

*

Actor
Name
Definition

1..*

Use Case

Name
Description

Scenario
Description

includes
*

uses
*

*
*

Basic Scenario

Exception ScenarioStop Completeness

Include

Start

Normal
case first

Extension

Reuse
strategy

Abstraction

Elicit
a use case

Conceptualise
a use case

Actor-driven
discovery

ChunkID: CH01, ChunkName: Use Case Model, Type: Aggregate; Origin: OOSE Method; … …
Reuse situation:

Application domain->Application type->All;
Application domain->Impact of legacy system->Functional domain reuse
Contingency factor->Innovation level->Business innovation
System engineering activity->Requirements elicitation; Requirements specification

Reuse intention: Specify verb (functional system requirements) target (following use case modelling strategy) manner

Interface

Body

Process part Product part

Descriptor

Situation Intention
<(Problem statement), Construct verb (use case model) target (following OOSE method strategy) manner>

initialises >

supports >

Use Case
Model extends

1..*
1 1..*

* *

0..1
*

*

Actor
Name
Definition

1..*

Use Case

Name
Description

Scenario
Description

includes
*

uses
*

*
*

Basic Scenario

Exception ScenarioStop Completeness

Include

Start

Normal
case first

Extension

Reuse
strategy

Abstraction

Elicit
a use case

Conceptualise
a use case

Actor-driven
discovery

ChunkID: CH01, ChunkName: Use Case Model, Type: Aggregate; Origin: OOSE Method; … …
Reuse situation:

Application domain->Application type->All;
Application domain->Impact of legacy system->Functional domain reuse
Contingency factor->Innovation level->Business innovation
System engineering activity->Requirements elicitation; Requirements specification

Reuse intention: Specify verb (functional system requirements) target (following use case modelling strategy) manner

Interface

Body

Process part Product part

Descriptor

Situation Intention

Fig. 3. An example of a method chunk, consisting of a single process part and a single product part. A chunk has a body plus an
interface as well as an affiliated descriptor. Details of the origin, reuse situation, reuse intention and experience report have been
only partially presented in order to retain clarity.

reformatted as Constructverb (a use case model)target
(following the OOSE approach)parameter=manner. The reuse
intention of this method chunk would be formalised as
Specifyverb (functional system requirements)target
(following use case modelling strategy)parameter=manner.

Descriptors also have connections to other
elements, such as the Origin of the chunk (i.e. from
which method was it derived/abstracted) and
Experience Reports capturing experience gained from
previous usage of the chunk. Mirbel and Ralyté [27]
also propose to specify for each chunk its components
and aggregates and the incompatible and alternative
chunks and to provide examples.

To summarise, the descriptor contains information
to help the method engineer to select the right method
chunk in the situation at hand i.e. it characterizes
typical situations in which the chunk may be useful –
contextual or situational knowledge that is not
knowledge relating to how software is developed but
only to helping a method engineer to find the chunk in
a methodbase. After a chunk has been selected, the
Descriptor information is redundant such that only the
body and interface parts of the method chunk are used
thereafter i.e. during method construction and
evaluation.

Finally, since chunks can be at any granularity (see
also [38]), it is argued [34] that a full methodology
itself can also be regarded as a chunk. This is similar to
the model adopted more recently in SPEM Version 1
[28] in which a Process is modelled as a special kind
of ProcessComponent. Since, by definition, a chunk is
one process-focussed fragment plus one product-
focussed fragment, this could work for fragments.
However, we do not think that a full software
engineering process (SEP) can be envisaged as being a
fragment itself. In other words, there is no meaningful
way to model a full SEP as a combination of one
process-focussed fragment plus one product-focussed
fragment, except at the most abstract level i.e. not in
the endeavour domain where a methodology is enacted
on a specific (situational) project.

3.1. Alternative Views on Chunk

A different definition of “method chunk” is given

in [44], who instead use the concept of a method
component defined as a “self-contained part of a
system engineering method expressing the process of
transforming one or several artefacts into a defined
target artefact and the rationale for such a
transformation”. This has some similarity with the
notion of a process in the ISO 12207 standard [19]. A
method component also consists of two parts but these
are, in contrast to the method chunk, its content and its
rationale. This emphasis on “rationale” is a key part of
this approach and has many similarities with the notion
of Guideline in ISO/IEC 24744 and Descriptor in the
method chunk approach (see also [1]).

In some contrast, Rupprecht et al. [41] talk about
“process building blocks” that know how they should
be connected to other process building blocks
(although their context is manufacturing processes not
software development processes).

4. Comparisons

4.1. The Pros and Cons of Fragments and
Chunks

Since the chunk-based approach combines process

and product parts into a single chunk whereas these are
kept separate in the OPF and ISO/IEC 24744, it is
reasonable to suggest the use of a supertype of Method
Component with subtypes of Method Chunk and
Method Fragment (Fig. 4). This suggestion was also
made in [27], although these authors go further and

include two other subtypes of Method Component:
Process Pattern and Product Pattern (not shown nor
discussed further here). In fact, the process part of the
chunk can be easily associated to the notion of one
process fragment producing one product fragment that
is defined as product part of the chunk.

1

1

1

Method
Component

Method
Fragment

Method
Chunk

Process
Fragment

Product
Fragment

1

refers to
1

1

1

Method
Component

Method
Fragment

Method
Chunk

Process
Fragment

Product
Fragment

1

refers to

Fig. 4. Metamodel for Method Components, Chunks and
Fragments.

We should also reiterate that, while Fig. 4 shows
both the process and product aspects of fragments and
chunks, there is no mention of a metaelement to
represent Producers – a term that includes the people
involved in software development, the roles they play
and the tools they use. This concept, embodied in
OPEN [9], SPEM [28] and ISO/IEC 24744 [20], is
critical for creating a quality situational method and we
recommend its inclusion (Fig. 1) in future versions of
chunk models. However, the type of the Producer is
not completely forgotten in the chunk-driven approach.
The reuse frame proposed in Mirbel and Ralyté [27]
includes the category of criterion “Human”, which
allows the specification of the type of the “producer”
(analyst, designer, developer, etc.) and the required
knowledge level (beginner, medium, expert).
Therefore, this criterion can be included of the chunk
descriptor as an element of the reuse situation.

There has been much debate about the efficacy of a
method chunk as compared to a method fragment for
SME. In essence, as noted above (Fig. 3), a method
chunk is a conceptual combination of two method
fragments: one process-focussed fragment and one
product-focussed fragment. The advantage of such a
combination is argued to be the speed of usage insofar
as there are often a smaller number of chunks required
for any specific situation and hence a small number
that need to be located from the methodbase.
Offsetting this to some degree is the fact that many of
these chunks may contain the same product part. In
other words, there is a potential disadvantage as a
result of the fact that such a process-product linkage is

neither one-to-one nor unique in real-life scenarios.
Indeed, if all such linkages were one-to-one, then the
flexibility of method construction offered by SME
would be totally redundant since everything would be
“hard-wired”. In reality, for instance, some techniques
and work products can be used with more than one
task such that several method chunks may contain the
same product part but a different process part [34];
some tasks have multiple output products (one to
many); some tasks modify existing products or have
multiple inputs – and there are other examples in
industry situations where a one-to-one linkage is not
viable.

When such many-to-one situations occur, with the
existing chunk model of Fig. 4, a separate one-to-one
chunk for each specific configuration needs to be
created such that for instance, there is one chunk for
one process fragment plus one product fragment and a
second chunk for the same product fragment but
different process fragment (i.e. different guideline to
obtain the same output product). However, the chunk
approach does not allow one to associate the same
process fragment with different product fragments
because the process part of the method chunk is closely
related to its product part. For instance, it is impossible
to define one chunk with one process fragment plus
one product fragment; a second chunk for the same
process fragment but with two different output product
fragments, a third one for three outputs and so on. In
each of these cases, the process fragment would also
be different. Such duplication, across several chunks,
could thus lead to both degradation of quality of the
usage of the methodbase overall and to a maintenance
problem analogous to the reuse issue that object
technology originally sought to remove although this
would be ameliorated to some degree at the
implementation level since database technology can be
used to ensure that only one copy of a fragment exists
physically in the repository or methodbase (i.e. storage
needs to be “by reference” and not “by value”).

*

1

1

Method
Component

Method
Fragment

Method
Chunk

Process
Fragment

Product
Fragment

*

refers to
*

1

1

Method
Component

Method
Fragment

Method
Chunk

Process
Fragment

Product
Fragment

*

refers to

Fig. 5. Metamodel for Method Components, Chunks and
Fragments with cardinalities revised to support a 1:m
relationship between process and product parts of the chunk.

We therefore recommend a revision of the

cardinalities in Fig. 4 as shown in Fig. 5.
A second difference in fragment- and chunk-based

approaches is the expression of the relationships
between the product and process fragments/parts. In
the fragment-based approaches the relationships
between process- and product-oriented fragments are
clearly specified by defining the type of action the
process fragment is exerting on the product fragment.
These relationships are mainly used to find the right
pair of fragments (product fragment and process
fragment).

In the chunk-based approach the relationship
between the process and product parts of a chunk does
not have the same role as it is not necessary to search
for product and process parts separately. However, it is
expressed by the chunk’s Intention. For example, the
intention of a chunk: “Create a Use Case model” states
that the process part provides guidelines “to create” the
product “a use case model”. The intention is one of the
parameters used to select the appropriate method
chunks in a given situation.

Despite these differences, fragment-based and
chunk-based approaches share a number of
commonalities. To start with, both acknowledge the
need to capture information about the situation where
usage of any particular method component may make
sense. In fact, this is a crucial aspect of situational
method engineering, and hence its name. Chunk
approaches implement this via the chunk interface plus
descriptor, which centralise situational information in a
single place. In ISO/IEC 24744, as an example of a
fragment-based approach, information has been
modularised using different criteria, and situational
information is distributed across different classes. First
of all, the Guideline class is designed to capture
information about where and how a method fragment
(or collection thereof) can be used. Secondly, the
MinCapabilityLevel attribute of the WorkUnitKind
class captures the minimum capability or maturity level
at which a particular process-oriented fragment is
meant to be used, thus contributing to the
establishment of a methodological situation.

Information about the intention of using a
particular component is also captured by both
approaches but, again, in different manners. The chunk
approach uses an explicit intention description within
the chunk interface. ISO/IEC 24744, on the other hand,
captures intention in a more heterogeneous (and,
possibly, richer) way. Two types of intention are

distinguished: the intention of selecting a particular
method fragment, and the intention of performing a
particular process-oriented fragment (a work unit) or
creating a particular product-oriented fragment (a work
product). The first kind of intention (why a fragment
has been selected) is expressed by the dependencies
that exist between process-oriented and product-
oriented fragments and are implemented by the
ActionKind class, as described in Section 2; the
products being created or modified by the enactment of
the process fragment are the intention of selecting it.
The intention of a product fragment, similarly, is given
by the process fragments that modify, destroy or read
the product fragment. With regard to the second kind
of intention (why a certain process-oriented fragment
must be enacted), the Purpose attribute of the
WorkUnitKind class captures this information.

Another similarity between fragment-based and
chunk-based approaches is related to capturing
information that may complement the specification of a
method component, such as bibliographic references.
The chunk approach manages this through chunk
descriptors, while ISO/IEC 24744 implements it
through classes such as Reference and Source.

These comparisons are summarized in Table 2.

Table 2 Summary comparison

 Fragments Chunks
Support for process Yes Yes
Support for work
products

Yes Yes

Support for
producers

Yes No

Attributes of
element

Dependent
upon type (see
Table 1)

Always the
sum of
process part
plus product
part (see Fig.
2).
Use of
Descriptor
important

Connection
between process
and product parts

Ad hoc based
on situation

Hard-wired

Situational
information

Guideline,
Reference and
Source

Interface and
Descriptor

Capability
assessment

MinCapability
Level

No

Multiple inputs and
outputs to a process
element

Yes No

4.2. The Pros and Cons of Interfaces for
Method Components

As discussed above, method fragments relate to a

single concept in the metamodel (process- or product-
or producer-focussed: Fig. 1) whereas method chunks
relate to a pair (process plus product), with the notion
of method component introduced as the generic
supertype to both chunks and fragments. In this
section, we analyse the usefulness of dividing a
method component into a body plus an interface as
used by many method engineering theorists (e.g. Fig.
2).

The rationale for using an interface versus body
description of a method component must not be
assumed to come from the same source as the
arguments that led to its use in OO programming. The
choice of terms (“interface” and “body”) may lead the
reader to believe that this discrimination is based on
the original ideas on information hiding in [29].
Object-oriented programming introduced the idea that
it was important (critical in fact) to separate the
implementation (i.e. the body) of a coded class from its
interface. There were probably three main reasons for
this: (a) to isolate the variability of the implementation
from the interface, so that the implementation could
change without affecting the interface; (b) to actually
hide non-disclosable data from users; and (c) to
contain any run-time errors and avoid their
propagation to other components [24]. However, in the
method chunk approach, no information needs to be
hidden; both body and interface are equally visible to
the user. These terms (“body” and “interface”) are used
with a different meaning, aiming to represent,
respectively, the chunk itself (that gets incorporated
into the methodology when selected) and the
situation/intention contextual information about the
chunk (Fig. 3). This is useful from a conceptual
modelling point of view, allowing a black box
interpretation of the chunk as a transformation engine
at one point of time during chunk selection (i.e. use of
the “interface”) and then later, after the chunk has been
selected, the main “body” of the chunk description
becomes relevant to the method engineer. The initial
phase is in accord with the process decomposition
philosophy underpinning the method chunk approach
that, although chunks are presented as (equally) a
product part plus a process part, in reality the process
part dominates, particularly in the creation and
selection of that chunk. Indeed, much of the method

chunk literature stresses that the approach is process-
driven.

4.3. Choosing Between the Two Approaches

The chunk approach offers simplicity of archival

and selection that therefore matches well simple
situational method engineering challenges. If the
requirements for the method construction only need
one-to-one linked process+product fragments and the
personnel and tools involved are minimalist (and
matching them into the chunks can be done by hand),
then the chunk approach could work well – although to
the best of our knowledge there are no industry case
studies using the chunk approach.

Fragments, on the other hand, require a slightly
deeper understanding of the architecture of the
repository and the way that fragments can be linked
e.g. using ActionKind of the ISO/IEC 24744
International Standard. However, the linkages
achieved are more flexible and support a wider range
of conceptual amalgamation, permitting to create, read
and write access depending upon the specific situation.
This approach also permits ad hoc many-to-many
relationships, whilst retaining individuality of
fragments stored in the methodbase (repository). A
fragment-based approach to SME has been
successfully used in a number of industry projects e.g.
[2, 8, 16, 17].

Thus, in both engineering methodologies and using
them on software engineering development projects,
the process revolves around identification of the
fragments/chunks and their linking together as
appropriate. At the same time, it must be ensured that
the resulting methodology has both quality as a static
methodology model, is internally consistent and, most
importantly, when applied to a real endeavour (e.g. a
software application development) adds value to the
software engineering organization. Current successful
applications of SME have in fact undertaken these
construction and quality assessment steps manually.
However, repository tools to provide both higher
quality construction and semi-automated assistance in
method construction as well as overall management of
the chunks/fragments contained in the repository are
sorely needed. One such example, still in prototype
form, is MethodComposer (see discussion in [11]).
This tool supports the population of the repository with
fragments and their retrieval to construct a method,
together with initial support for project enactment.
Third party commercial companies are also likely to

make announcements of commercial tools supporting
such a 24744-based approach5.

4.4. Further Work
We have argued the similarities and differences of

the method chunk and method fragment approaches to
SME on conceptual/theoretical grounds. Whilst clearly
it is critical for the metamodel to be of good quality
(see for example discussions on good and bad aspects
of metamodelling in [15]), further evaluation in a more
practical and pragmatic context is also useful. This is
the topic of further work.

As noted at the end of the previous subsection, we
are aware of at least one commercial tool being
developed and the availability of this and similar tools
in the near future will also allow us to evaluate the
utility of tool-based SME in contrast to the more
manual approach to method construction currently
used in industry e.g. [2, 17].

Indeed (as commented also by an anonymous
reviewer), it has long been recognized that probably
the most important currently unsolved issue in SME is
formulating “rules” for both method construction and
for quality evaluation of the constructed method e.g.
[4], Having an underpinning International Standard
[20] provides a firm basis for such future work.

5. Summary and Conclusions

In the context of Situational Method Engineering

(SME), we have evaluated two issues regarding the
definition and descriptions of the atomic elements that
are stored in a method fragment repository or
methodbase. Firstly, we have contrasted the models for
a method fragment, which depicts either a solely
process-focussed concept, a product-focussed concept,
or indeed (although not discussed in detail here) a
producer-focussed concept, with that for a method
chunk, which is a combination of a single process-
focussed fragment with a single product-focussed
fragment. From a conceptual modelling point of view,
insisting on a one-to-one relationship between process
fragment and product fragment often creates an
artificial model that does not relate simply to real-life
requirements; consequently we have recommended a
modification to allow for multiple product parts (Fig.
5). From a software engineering point of view, there is
a possibility that this chunk approach loses the
flexibility that is at the core of SME and may introduce
potential maintenance problems.

5 The details are commercially confidential at the time of

writing, made available to the authors under a non-disclosure
agreement.

In terms of capturing situational information, we
found that the chunk and fragment approaches do this
equally well but with different mechanisms. Situational
information is captured in the chunk approach in the
chunk interface whereas in the fragment approach, as
embodied for instance in ISO/IEC 24744, uses
dependency relationships and an ActionKind class in
its metamodel. Bibliographic information is also
captured differently in the two approaches: chunk
descriptors or implemented (in the 24744 approach) by
Reference and Source classes in the metamodel.

Our analysis of the use of body and interface as
terms in describing chunks identifies a different
meaning from what a programmer might infer:
information hiding. Rather, the use of these terms in
the chunk approach identifies, at the conceptual level,
knowledge of the chunk and knowledge of the
situation/intention of the chunk.

Throughout this analysis, we have used the new
ISO Software Engineering Metamodel for
Development Methodologies [20] as a means of
providing a theoretical underpinning for our
identification of similarities between the chunk and
fragment approaches and for the mappings between
them.

6. Acknowledgments

A brief overview of this topic was presented as a

poster at the CAiSE Forum 2007 in Trondheim. This is
Contribution Number 07/19 of the Centre for Object
Technology Applications and Research, Sydney,
Australia. This work was also partially supported by
the Swiss National Science Foundation. N° 200021-
103826.

7. References

[1] Ågerfalk, P.J., Brinkkemper, S., Gonzalez-Perez, C.,

Henderson-Sellers, B., Karlsson, F., Kelly, S. and
Ralyté, J., Modularization constructs in method
engineering: towards common ground? In Situational
Method Engineering: Fundamentals and Experiences
(eds. J. Ralyté, S. Brinkkemper and B. Henderson-
Sellers), Springer, New York, NY, USA, 2007, pp. 359-
368.

[2] Bajec, M., Vavpotič, D. and Krisper, M., Practice-
driven approach for creating project-specific software
development methods. Inf. Software Technol. 49, 2007,
pp. 345-365.

[3] Brinkkemper, S., Method engineering: engineering of
information systems development methods and tools.
Inf. Software Technol. 38(4), 1996, pp. 275-280.

[4] Brinkkemper, S., discussions with the first author at
University of Utrecht, July 2005.

[5] Brinkkemper, S., Helms, R. and van de Weerd, I.,
Method engineering, http://www.cs.uu.nl/education/
vak.php?vak=INFOME&jaar=2006, 2006, Accessed
26.3.07.

[6] Brinkkemper, S., Saeki, M. and Harmsen, F., Assembly
techniques for method engineering. Advanced
Information Systems Engineering. 10th International
Conference, CAiSE'98, Pisa, Italy, June 8-12, 1998,
Proceedings, LNCS1413 (eds. B. Pernici and C.
Thanos), Springer Verlag, 1998, pp. 381-400

[7] Cossentino, M., Gaglio, S., Henderson-Sellers, B. and
Seidita, V., A metamodelling-based approach for
method fragment comparison. CAiSE’06. 18th
Conference on Advanced Information Systems
Engineering – Trusted Information Systems.
Luxembourg 5-9 June, 2006. Proceedings of the
Workshops and Doctoral Consortium (eds. T. Latour
and M. Petit), Namur University Press, Belgium, 2006,
pp. 419-432,

[8] Coulin, C., Zowghi, D. and Sahraoui, A-E-K., A
situational method engineering approach to
requirements elicitation workshops in the software
development process. A situational approach to
requirements elicitation workshops. Software Process:
Improvement and Practice 11(5), 2006, pp. 451-464

[9] Firesmith, D.G. and Henderson-Sellers, B.,
Improvements to the OPEN process metamodel.
JOOP/ROAD 12(7), 1999, pp. 30-35.

[10] Firesmith, D.G. and Henderson-Sellers, B., The OPEN
Process Framework. An Introduction. London,
Addison-Wesley, 2002.

[11] Gonzalez-Perez, C., Tools for an extended object
modelling environment. 10th IEEE International
Conference on Engineering of Complex Computer
Systems (ICECCS), 16–20 June 2005, IEEE Computer
Society Press, 2005, pp. 20–23,

[12] Harmsen, A.F., Situational Method Engineering. Moret
Ernst & Young, 1997

[13] Harmsen, A.F., Brinkkemper, S. and Oei, H.,
Situational method engineering for information systems
projects. Methods and Associated Tools for the
Information Systems Life Cycle. Procs. IFIP WG8.1
Working Conference CRIS/94 (eds. T.W. Olle and A.A.
Verrijn-Stuart), North Holland, Amsterdam, 1994, pp.
169-194

[14] Henderson-Sellers, B., Method engineering for OO
system development. Comm. ACM 46(10), 2003, pp.
773-789.

[15] Henderson-Sellers, B., 2007, On the challenges of
correctly using metamodels in method engineering,
keynote paper in New Trends in Software
Methodologies, Tools and Techniques. Proceedings of
the sixth SoMeT_07 (eds. H. Fujita and D. Pisanelli),
IOS Press, 2007, pp. 3-35.

[16] Henderson-Sellers, B. and Qumer, A., Using method
engineering to make a traditional environment agile.
Cutter IT Journal 20(5), 2007, pp. 30-37.

[17] Henderson-Sellers, B. and Serour, M.K., Creating a
dual agility method - the value of method engineering.
J. Database Management 16(4), 2005, pp. 1-24.

[18] Hruby, P., Designing customizable methodologies.
JOOP Dec 2000, pp. 22-31.

[19] ISO/IEC,: Software Life Cycle Processes. ISO/IEC
12207. International Standards Organization /
International Electrotechnical Commission, 1995

[20] ISO/IEC, Software Engineering. Metamodel for
Development Methodologies. ISO/IEC 24744
International Standards Organization / International
Electrotechnical Commission, 2007

[21] Jayaratna, N., Understanding and Evaluating
Methodologies: NIMSAD, a Systematic Framework.
McGraw-Hill, 1994

[22] Kraiem, N., Bourguiba, I. and Selmi, S., Situational
method for information system project, presented at
SSGRR 2000, L'Aquila, Jul 31 - Aug 06 2000
(http://www.ssgrr.it/en/ssgrr2000/papers/283.pdf)

[23] Kumar, K. and Welke, R.J., Methodology engineering:
a proposal for situation-specific methodology
construction. In Challenges and Strategies for Research
in Systems Development. 257-269. Cotterman, W.W.
and Senn, J.A. (eds.). John Wiley & Sons: Chichester,
UK, 1992

[24] Meyer, B., Object-Oriented Software Construction,
second edition. Prentice-Hall, 1997

[25] Mirbel, I., Method chunk federation. CAiSE’06. 18th
Conference on Advanced Information Systems
Engineering – Trusted Information Systems.
Luxembourg 5-9 June, 2006. Proceedings of the
Workshops and Doctoral Consortium (eds. T. Latour
and M. Petit), Namur University Press, Belgium, 2006,
pp. 407-418

[26] Mirbel, I. and de Rivieres, V., Adapting analysis and
design to software context: the JECKO approach.
Procs. 8th Int. Conf. on Object-Oriented Information
Systems (OOIS’02), Montpellier, France, September 2-
5, 2002 (eds. Z. Bellahsène, D. Patel, C. Rolland)
LNCS 2425, Springer-Verlag, 2002, pp. 223-228,

[27] Mirbel, I. and Ralyté, J., Situational method
engineering: combining assembly-based and roadmap-
driven approaches. Requirements Engineering 11,2006,
pp. 58-78.

[28] OMG, Software Process Engineering Metamodel
Specification, formal/2002-11-14. Object Management
Group, 2002

[29] Parnas, D.L., A technique for software module
specification with examples. Communications of the
ACM 15(5), 1972, pp. 330-336.

[30] Plihon, V., Ralyté, J., Benjamen, A., Maiden, N.A.M.,
Sutcliffe, A., Dubois, E. and Heymans, P., A reuse-
oriented approach for the construction of scenario based
methods. 5th Int. Conf. on Software Process (ICSP’98),
Chicago, Illinois, USA, 1998

[31] Prat, N., Goal formalisation and classification for
requirements engineering. Procs. 3rd Int. Workshop on
Requirements Engineering: Foundations of Software
Quality REFSQ’97, Barcelona, 1999, pp. 145-156.

[32] Punter, H.T. and Lemmen, K., The MEMA model:
towards a new approach for method engineering. Inf.
Software Technol. 38(4), 1996, pp. 295-305.

[33] Ralyté, J., Reusing scenario based approaches in
requirements engineering methods: CREWS Method
Base. Procs. 10th Int. Workshop on Database and
Expert Systems Applications (DEXA’99), 1st Int.
REP’99 Workshop, Florence, Italy, 1999

[34] Ralyte, J., Towards situational methods for information
systems development: engineering reusable method
chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and
Education (eds. O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowski, J. Zupancic and S.
Wrycza), 271-282, Vilnius Gediminas Technical
University, Vilnius, Lithuania, 2004

[35] Ralyté, J. and Rolland, C., An assembly process model
for method engineering. Advanced Information Systems
Engineering (eds. K.R. Dittrich, A. Geppert and M.C.
Norrie), LNCS2068, Springer, Berlin, 2001, pp. 267-
283

[36] Ralyté, J. and Rolland, C., An approach for method
engineering. Procs. 20th Int. Conf on Conceptual
Modelling (ER2001), LNCS 2224, Springer-Verlag,
Berlin, 2001, pp. 471-484

[37] Ralyté, J., Backlund, P., Kühn, H. and Jeusfeld, M.A.,
Method chunks for interoperability. Procs. ER2006
(eds. D.W. Embley, A. Olivé and S. Ram), LNCS 4215,
Springer-Verlag, 2006, pp. 339-353

[38] Rolland, C. and Prakash, N., A proposal for context-
specific method engineering. Method Engineering.
Principles of Method Construction and Tool Support.
Procs. IFIP TC8, WG8.1/8.2 Working Conference on
Method Engineering, 26-28 August 1996, Atlanta, USA
(eds. S. Brinkkemper, K. Lyytinen and R.J. Welke),
Chapman & Hall, London, 1996, pp. 191-208

[39] Rolland, C., Plihon, V. and Ralyté, J., Specifying the
reuse context of scenario method chunks. Advanced
Information Systems Engineering 10th International
Conference, CAiSE'98, Pisa, Italy, June 8-12, 1998,
Proceedings (eds. B. Pernici and C. Thanos),
LNCS1413, 1 Springer-Verlag, 1998, pp. 91-218

[40] Rolland, C., Prakash, N. and Benjamen, A., A multi-
model view of process modelling. Requirements Eng. J.
4(4), 1999, pp. 169-187.

[41] Rupprecht, C., Funffinger, M., Knublauch, H. and Rose,
T., Capture and dissemination of experience about the
construction of engineering processes. Procs. 12th
Conference on Advanced Information Systems
Engineering (CAISE), LNCS 1789, Springer-Verlag,
Berlin, 2000, 294-308

[42] Saeki, M., Iguchi, K., Wen-yin, K. and Shinohara, M.,
A meta-model for representing software specification &
design methods. Procs. IFIP WG8.1 Conf on
Information Systems Development Process, Come,
1993, pp. 149-166.

[43] ter Hofstede, A.H.M. and Verhoef, T.F., On the
feasibility of situational method engineering.
Information Systems 22(6/7), 1997, pp. 401-422.

[44] Wistrand, K. and Karlsson, F., Method components –
rationale revealed, Advanced Information Systems
Engineering 16th International Conference, CAiSE
2004, Riga, Latvia, June 7-11, 2004, Proceedings (eds.
A. Persson and J. Stirna), LNCS 3084, Springer-Verlag,
2004, pp. 189-201.

© [2008] IEEE. Reprinted, with permission, from [Brian Henderson-Sellers, Cesar Gonzalez-Perez, Jolita Ralyté,
Comparison of Method Chunks and Method Fragments for Situational Method Engineering, 2008, 19th Australian
Software Engineering Conference (ASWEC), 2008]. This material is posted here with permission of the IEEE. Such
ermission of the IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's
products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you
agree to all provisions of the copyright laws protecting it

	Pages from 2007005379OK-2
	Pages from 2007005379OK

