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Abstract Believability of computerised agents is a growing area of research. This
paper is focused on one aspect of believability - believable movements of avatars
in normative 3D Virtual Worlds called Virtual Institutions. It presents a method for
implicit training of autonomous agents in order to ”believably” represent humans
in Virtual Institutions. The proposed method does not require any explicit training
efforts from human participants. The contribution is limited to the lazy learning
methodology based on imitation and algorithms that enable believable movements
by a trained autonomous agent within a Virtual Institution.

1 Introduction

With the increase of the range of activities and time humans spend interacting with
autonomous agents in various computer-operated environments comes the demand
for believability in the behaviour of such agents. These needs span from the boom-
ing game industry, where developers invest their efforts in smart and absorbingly
believable game characters, to inspiring shopping assistants in the various areas of
contemporary electronic commerce.

Existing research in the field of believable agents has been focused on imparting
rich interactive personalities [1]. Carnegie-Mellon set of requirements for believable
agents include personality, social role awareness, self-motivation, change, social re-
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lationships, and ”illusion of life”. The research in building mo-dels of different fea-
tures that contribute to believability utilises the developments in cognitive modeling
and attempts to formalise those models in computational form to implement them
in virtual environments [2].

Integrating these believability characteristics into virtual environments (i) is asso-
ciated with computational and architectural complexity; (ii) is platform and problem
dependent, and (iii) is essentially far from achieving a high level of believability [3].
In order to address these drawbacks, rather than identifying, modeling and imple-
menting different characteristics of believability some researchers investigate the
automated approach of learning by imitation [4]. Imitation learning is most effective
in environments where the actions of a human principal are fully observable and are
easy to interpret by the agent [5]. Virtual Worlds where both humans and agents are
fully immersed are quite efficient in terms of human observation facilities [5]. Even
better means of observation are offered by Virtual Institutions [6] - a new class of
normative Virtual Worlds, that combine the strengths of Virtual Worlds and norma-
tive multi-agent systems, in particular, electronic institutions [7]. In this ”symbiosis”
Virtual Worlds provide the visual interaction space and Electronic Institutions en-
able the rules of interaction. The environment assumes similar embodiment for all
participants, so every action that a human performs can be observed and reproduced
by an agent, without a need to overcome the embodiment dissimilarities. Moreover,
the use of Electronic Institutions provides context and background knowledge for
learning, helping to explain the tactical behavior and goals of the humans.

Further in the paper we outline the learning method called “implicit training”.
The explanation of this method and its role within Virtual Institutions is structured
as follows. Section 2 outlines the basics of Virtual Institutions technology. Section 3
presents the principles of the implicit training method, with the implementation de-
tails given in Section 4. Section 5 describes the experimental results on learning to
move in believable manner. Section 6 concludes the paper.

2 Virtual Institutions

Virtual Institutions are 3D Virtual Worlds with normative regulation of participants’
interactions [6]. The development of such Virtual Worlds is separated into two
phases: specification of the institutional rules and design of the visualization. The
specification defines which actions require institutional verification while the rest of
the actions are assumed to be safe and can be instantly performed. Rule specification
utilises the “Electronic Institutions” methodology [7], which provides facilities for
formalizing the interactions of participants through interaction protocols and run-
time infrastructure that ensures the validity of the specified rules and their correct
execution. The rules of a Virtual Institution are determined by three types of con-
ventions (for detailed explanation see [7]):

1. Conventions on language form the Dialogical Framework dimension. It de-
termines language ontology and illocutionary particles that agents should use, roles
they can play and the relationships or incompatibilities among the roles.
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2. Conventions on activities form the Performative Structure dimension. It de-
termines in which types of dialogues agents can engage during the activities they
perform in a scene, which protocols to use in the dialogues, which sublanguage of
the overall institutional language can be used in each scene, and which conventions
regulate the in and out flux of agents in scenes. Scenes are interconnected through
“transitions” to form a network that represents sequences of activities, concurrency
of activities or dependencies among them.

3. Conventions on behavior form the Norms dimension. Electronic Institutions
restrict agent actions within scenes to illocutions and scene movements. Norms de-
termine the commitments that agents acquire while interacting within an institution.
These commitments restrict future activities of the agent. They may limit the possi-
ble scenes to which agents can go, and the illocutions that can henceforth be uttered.

Virtual Institutions are visualized as 3D Virtual Worlds, where a single Virtual
Institution is represented as a building located inside the space labeled as ”garden.”
The visualization is aligned with the formalised institution rules. The participants
are visualized as avatars. Only participants with specified roles can enter the institu-
tional buildings, where they can act according to the rules specification of respective
institution. Each institutional building is divided into a set of rooms (every room rep-
resents a scene), which are separated by corridors (transitions) and doors. The doors
are open or closed for a participant depending on the acceptance of participant’s role
by the corresponding scene and the execution state of the institution. Inside each of
the rooms only actions that comply with the protocol of the corresponding scene
can be executed (for more details see [6]).

Fig. 1 Outline of a prototypical Virtual Institution containing 3 scenes.

Fig. 1 outlines a prototypical Virtual Institution containing 3 scenes - Registra-
tionRoom, MeetingRoom and TradeRoom, visualized as rooms connected via cor-
ridors. The actions controlled by the institution (institutional level actions) include:
enterScene, exitScene, enterTransition, exitTransition and login. The rest of the ac-
tions (visual level actions) require no institutional control, these are: moving, jump-
ing, colliding with objects, turning etc. The directed line represents the trajectory of
the participant’s movement. The solid figure is the participant, the rest correspond
to internal agents (employees of the institution), in this case, a Receptionist and
an Auctioneer. The Receptionist verifies the login and password of the participant
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in the Registration Room, and unlocks the doors to other rooms if the identity of
the participant is proven. The Auctioneer sells different goods in the TradeRoom.
It announces the product to be auctioned, waits for incoming bids and sells it to
the winner. The Meeting Room is used for social interaction between buyers. In the
scenario shown in Fig. 1 the goal of the human is to buy fish in the TradeRoom.

3 Principles of Implicit Training in Virtual Institutions

Existing 3D Virtual Worlds are mostly human centered with very low agent in-
volvement. Virtual institutions, in contrast, is an agent-centered technology, which
treats humans as heterogenous, self-interested agents with unknown internal archi-
tecture. Every human participant (principal) is always supplied with a corresponding
software agent, that communicates with the institutional infrastructure on human’s
behalf. The couple agent/principal is represented by an avatar. Each avatar is manip-
ulated by either a human or an autonomous agent through an interface that translates
all activities into terms of the institution machine understandable language. The au-
tonomous agent is always active, and when the human is driving the avatar the agent
observes the avatar actions and learns how to make the decisions on human’s behalf.
At any time a human may decide to let the agent control the avatar via ordering it to
achieve some task. If the agent is trained to do so it will find the right sequence of
actions and complete the task in a similar way a human would.

The training of autonomous agents in Virtual Institutions happens on both visual
and institutional levels. The actions of the visual are important for capturing human-
like movement. The actions of the institutional level, on the one hand, help the
autonomous agent to understand when to start and stop recording the actions of the
visual level and which context to assign to the recorded sequences. On the other
hand, analyzing the sequence of institutional level actions helps, in a long run, to
understand how to reach different rooms and separate the sequences of actions there
into meaningful logical states of the agent.

Every dimension of the institutional specification contributes to the quality of
learning in the following way.

Dialogical Framework: the roles of the agents enable the separation of the ac-
tions of the human into different logical patterns. The message types specified in
the ontology help to create a connection between the objects present in the Virtual
Worlds, their behaviors and the actions executed by the avatars.

Performative Structure: Enables grouping of human behavior patterns into ac-
tions relevant for each room.

Scene Protocols: Enable the creation of logical landmarks within human action
patterns in every room.

4 Implementation of the Implicit Training Method

The implicit training has been implemented as a lazy learning method, based on
graph representation. The Virtual Institution corresponds to the scenario outlined in
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Fig. 1. It is visualised as a garden and an institutional building inside the garden.
The institutional building consists of 3 rooms connected by corridors. Starting as
an avatar in the garden, each participant can enter inside the building and continue
moving through the rooms there. In our case, the participants in the institution play
two different roles: receptionist and guest. The implicit training method is demon-
strated on learning movement styles.

4.1 Constructing the learning graph

When a human operator enters the institution, the corresponding autonomous agent
begins recording operator’s actions, storing them inside a learning graph similar to
the one outlined in Fig. 2. The nodes of this graph correspond to the institutional
messages, executed in response to the actions of the human. Each of the nodes is
associated with two variables: the message name together with parameters and the
probability P(Node) of executing the message. The probability is continuously up-
dated, and in the current implementation it is calculated as follows:

P(Node) =
na

no
(1)

Here no is the number of times a user had a chance to execute this particular
message and na is the number of times when s/he actually did execute it.
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Fig. 2 A fragment of the learning graph.

The arcs connecting the nodes are associated with the prerecorded sequences of
the visual level actions (s1, . . . ,sn) and the attribute vectors that influenced them
(a1, . . . ,an). Each pair 〈an,sn〉 is stored in a hashtable, where ai is the key of the
table and si is the value. Each ai consists of the list of parameters:
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ai = 〈p1, . . . pk〉 (2)

A simplifying assumption behind the training is that the behaviour of the princi-
ple is only influenced by what is currently visible through the field of view of the
avatar. We limit the visible items to the objects located in the environments and other
avatars. So, the parameters used for learning are recorded in the following form:

pi = 〈Vo,Vav〉 (3)

where Vo is the list of currently visible objects; Vav is the list of currently visible
avatars. The list of the visible objects is represented by the following set:

Vo = {〈O1,D1〉, . . . ,〈O j,D j〉, . . . ,〈Om,Dm〉} (4)

where O j are the objects that the agent is able to see from it’s current position in the
3D Virtual World; D j are the distances from the current location of the agent to the
centers of mass of these objects.

The list of visible avatars is specified as follows:

Vav = {〈N1,R1,DAv1〉, . . . ,〈Np,Rk,DAvp〉} (5)

Here, Nk correspond to the names of the avatars that are visible to the user, Rk are
the roles played by those avatars, and DAvk are the distances to those avatars. Each
of the sequences (si) consists of the finite set of visual level actions:

si = 〈SA1,SA2, . . . ,SAq〉 (6)

Each of those actions defines a discrete state of the trajectory of avatar’s move-
ment. They are represented as the following vector:

SAl = 〈pos,r,h,b〉 (7)

where pos is the position of the agent, r is the rotation matrix, h is the head pitch
matrix, b is the body yaw matrix. Those matrices provide the most typical way to
represent a movement of a character in a 3D Virtual World.

Each time an institutional message is executed, the autonomous agent records the
parameters it is currently able to observe, creates a new visual level sequence and
every 50 ms adds a new visual level message into it. The recording is stopped once
a new institutional message is executed.

4.2 Applying the learning graph

Once the learning graph is completed an agent can accept commands from the prin-
cipal. Each command includes a special keyword “Do:” and a valid institutional
level message, e.g.“Do:EnterScene(Meeting)”. The nodes of the learning graph are
seen as internal states of the agent, the arcs determine the mechanism of switching
between states and P(Node) determines the probability of changing the agent’s cur-
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rent state to the state determined by the next node. Once the agent reaches a state
S(Nodei) it considers all the nodes connected to Nodei that lead to the goal node
and conducts a probability driven selection of the next node (Nodek). If Nodek is
found: the agent changes its current state to S(Nodek) by executing the best match-
ing sequence of the visual level actions recorded on the arc that connects Nodei and
Nodek. If there are no visual level actions recorded on the arc - the agent sends the
message associated to Nodek and updates it’s internal state accordingly.

For example, let the agent need to reach the state in the learning graph expressed
as “S(EnterInstitution(SimpleInstitution))”. To achieve this it has to select and
execute one of the visual level action sequences stored on the arc between the current
node and the desired node of the learning graph. The parameters of this sequence
must match the current situation as close as possible. To do so the agent creates
the list of parameters it can currently observe and passes this list to a classifier
(currently, a nearest neighbor classifier [8]). The later returns the best matching
sequence and the agent executes each of its actions. The same procedure continues
until the desired node is reached.

5 Experiments on Learning Believable Movement

During 10 sessions we have trained an autonomous agent to believably act in the
institution from Fig. 1. We started recording the actions of the human playing the
“guest” role in the garden, facing the avatar towards different objects and having the
receptionist agent located in various positions. In each training session the trajectory
was easily distinguishable given the observed parameters.

Fig. 3 Training the agent in the garden.

Fig. 3 gives an impression of how the training was conducted. It shows fragments
of the 4 different trajectories (displayed as dotted lines - S1...S4) generated by the
“guest” avatar. The arrows marked with S1...S4 correspond to the direction of view
of the avatar at the moment when the recording was initiated. The location of the
receptionist agent, it’s role and position together with the objects located in the en-
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vironment and distances to them were the parameters used for learning. In Fig. 3 the
objects include “Pinetree”, “tussiCubical”, “advDoor” and the receptionist, showed
in the figure as “janedoe”.

Table 1 Parameters used in the training session.
parameterID parameterName possibleValues

p1 janedoeRole {recep,null,guest}
p2 DISTadvDoor numeric
p3 DISTPineTree4 numeric
p4 DISTBareTree numeric
p5 SEEfontain {y,n}
p6 DISTtussiCubical numeric
p7 DISTPineTree3 numeric
p8 DISTPineTree2 numeric
p9 DISTPineTree1 numeric
p10 SEEtussiCubical {y,n}
p11 SEEBareTree {y,n}
p12 SEEadvDoor {y,n}
p13 SEEshrub3 {y,n}
p14 SEEshrub2 {y,n}
p15 DISTfontain numeric
p16 SEEshrub1 {y,n}
p17 DISTshrub3 numeric
p18 SEEPineTree4 {y,n}
p19 DISTshrub2 numeric
p20 SEEPineTree3 {y,n}
p21 DISTshrub1 numeric
p22 SEEPineTree2 {y,n}
p23 SEEPineTree1 {y,n}
p24 SEEjanedoe {y,n}
p25 DISTjanedoe numeric

The agent has been trained to enter the Meeting Room. The resultant learning
graph was similar to the one in Fig. 2. Table 1 presents the list of all parameters
stored in the graph on the arc between “root” and “EnterInstitution(SimpleInstitution)”
nodes. Parameters, having names beginning with: (i) “SEE” correspond to the ob-
jects or avatars that were appearing in the field of view of the user at the moment of
recording; (ii) “DIST” correspond to the distance measure between the user and the
center of mass of a visible object. The distance to objects not visible is equal to zero.
Parameter “janedoeRole” defines the role of the receptionist agent “janedoe”. When
the receptionist was not visible in the field of view of the trained guest agent, the val-
ues of janedoeRole is “null”. When the “jandoe” was located outside the institution
it’s role was “guest” and inside the registration room it was “receptionist”.

Table 2 A fragment of the data used in the training session.
Nr p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 S
1 null 0 0 0 n 0 0 0 31 n n n n n 0 n 0 n 0 n 0 n y n 0 S1
2 recep 0 0 0 n 55 0 0 39 y n n n n 0 n 0 n 0 n 0 n y y 67 S2
3 null 0 0 0 y 0 61 0 0 n n n n n 96 y 0 n 0 y 70 n n n 0 S3
4 null 74 0 0 y 0 61 0 0 n n y n n 95 y 0 n 0 y 67 n n n 0 S4
5 recep 0 0 0 n 56 0 0 0 y n n n n 0 n 0 n 0 n 0 n n y 68 S5
6 null 0 0 0 n 0 0 43 77 n n n n y 0 n 0 n 48 n 0 y y n 0 S6
7 guest 0 0 0 y 0 0 0 0 n n n n n 96 y 0 n 0 n 69 n n y 24 S7
8 null 0 0 24 n 0 0 0 0 n y n y n 0 n 42 n 0 n 0 n n n 0 S8
9 null 0 0 0 n 0 0 0 0 n n n n n 0 n 0 n 0 n 0 n n n 0 S9

10 guest 0 41 0 y 0 96 0 0 n n n n n 69 n 0 y 0 y 0 n n y 38 S10

Table 2 presents the training data stored on the arc between “root” and “En-
terInstitution(SimpleInstitution)” during 10 recording sessions along the parame-
ters, listed in Table 1. The “S” column shows the acronyms of the sequences of
actions of the visual level of execution. The first four sequences correspond to the
trajectories S1...S4 outlined in Fig. 3.
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Each of the tests was conducted as follows. Two operators entered the Virtual
World by two different avatars: “janedoe” (driven by one of the researchers in our
lab), playing the “receptionist” or “guest” role and “agent0” (controlled by an in-
dependent observer), always playing the “guest” role. Both avatars were positioned
in various locations and the avatar “agent0” was facing a selected direction (with
janedoe either visible or not). On the next step agent0 was instructed to leave
the garden, enter the institution, walk into the registration room, exit it and then
walk through the next transition to the Meeting Room. The agent then looked for
the right sequence of the institutional level actions, which in the given case were:
EnterInstitution(SimpleInstitution), EnterScene(root), ExitScene(root), EnterTran-
sition(rootToRegistration), ExitTransition(rootToRegistration), EnterScene(Regis-
tration), Login(test, test), ExitScene(Registration), EnterTransition(toMeeting), Exit-
Transition(toMeeting), EnterScene(Meeting). To execute those actions the agent
needed to launch the appropriate sequence of the visual level actions, stored on
the arcs of the learning graph. The classifier was given the list of currently observed
parameters as the input and as the output it returned the sequence that was supposed
to fit best. After completion of recording, we conducted a series of 20 tests to check
whether the trained agent would act in a believable manner. Table 3 presents the
experiments’ results.

Table 3 Classifier performance: input data and recommendations.
Nr p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 S
11 guest 0 0 0 n 0 0 0 0 n n n n y 0 y 0 n 40 n 91 n n y 36 S7
12 null 0 0 0 n 59 0 0 36 y n n n n 0 n 0 n 0 n 0 n y n 0 S1
13 guest 0 36 0 y 0 91 0 0 n n n n n 75 y 0 y 0 y 63 n n y 17 S10
14 null 0 0 0 y 0 0 0 0 n n n n n 36 y 0 n 0 n 82 n n n 0 S3
15 null 0 0 77 y 0 0 0 0 n y n y n 30 n 94 n 0 n 0 n n n 0 S8
16 guest 0 0 0 n 0 0 0 0 n n n n n 0 n 0 n 0 n 0 n n y 25 S9
17 guest 0 0 86 n 0 0 0 0 n y n y n 0 n 77 n 0 n 0 n n y 34 S8
18 null 65 0 0 y 0 51 0 0 n n y n n 87 n 0 n 0 y 0 n n n 0 S4
19 recep 0 0 0 n 41 0 0 0 y n n n n 0 n 0 n 0 n 0 n n y 51 S5
20 recep 0 0 0 n 72 0 41 40 y n n n n 0 n 0 n 0 n 0 y y y 78 S2
21 guest 0 0 0 n 0 0 63 95 n n n n y 0 n 0 n 42 n 0 y y y 18 S6
22 null 0 0 0 y 0 18 0 0 n n n n n 50 y 0 n 0 y 99 n n n 0 S3
23 null 0 0 0 n 0 0 0 0 n n n n n 0 n 0 n 0 n 0 n n n 0 S9
24 guest 0 95 0 y 0 0 0 0 n n n n n 71 y 0 y 0 n 41 n n y 14 S7
25 guest 0 0 0 y 0 26 0 0 n n n n y 59 y 0 n 82 y 84 n n y 71 S7
26 null 0 0 0 y 0 26 0 0 n n n n y 59 y 0 n 82 y 84 n n n 0 S3
27 null 0 0 43 n 0 0 0 0 n y n y n 0 n 60 n 0 n 0 n n n 0 S8
28 null 0 45 0 y 0 96 0 0 n n n n n 58 n 0 y 0 y 0 n n n 0 S10
29 null 0 0 0 n 0 0 0 0 n n n y n 0 n 63 n 0 n 0 n n n 0 S9
30 guest 0 0 0 n 0 0 0 0 n n n y n 0 n 63 n 0 n 0 n n y 14 S9

Fig. 4 shows the eye direction of the guest and the positions of both avatars. Solid
dots marked with the number of experiment in the figure correspond to the positions
of the guest. The arrows represent guest’s eye direction. The female figure marked
with the experiment number shows the positions of the receptionist (when it was
visible to the guest). The experiment numbers in Fig. 4 correspond to the ones spec-
ified in the “Nr” columns in Table 2 and Table 3. The numbers 1-10 are the initial
recordings and 11-30 represent the conducted experiments. The “S” column in Ta-
ble 3 outlines the acronyms of the action sequences (as used in Table 2) executed by
the agent as a result of classifier’s recommendation.

In every test the believability of the movement was assessed by an independent
observer. In all cases it was evaluated as believable.
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Fig. 4 Design of the experiments in the institution space.

6 Conclusion

We have presented the concept of implicit training used for teaching human behav-
ioral characteristics to autonomous agents in Virtual Institutions. The developed pro-
totype and conducted experiments confirmed the workability of the selected learning
method and the validity of the implicit training concept.
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d’Investigació en Intelligència Artificial (IIIA), Spain (2003)

8. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification and regres-
sion. In Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., eds.: Advances in Neural Information
Processing Systems. Volume 8., The MIT Press (1996) 409–415


