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Abstract—Determining the optimal size and orientation of
small-scale residential based PV arrays will become increasingly
complex in the future smart grid environment with the introduc-
tion of smart meters and dynamic tariffs. However consumers
can leverage the availability of smart meter data to conduct a
more detailed exploration of PV investment options for their
particular circumstances. In this paper, an optimization method
for PV orientation and sizing is proposed whereby maximizing
the PV investment value is set as the defining objective. Solar
insolation and PV array models are described to form the basis of
the PV array optimization strategy. A constrained particle swarm
optimization algorithm is selected due to its strong performance
in non-linear applications. The optimization algorithm is applied
to real-world metered data to quantify the possible investment
value of a PV installation under different energy retailers and
tariff structures. The arrangement with the highest value is
determined to enable prospective small-scale PV investors to
select the most cost-effective system.

Index Terms—Cost benefit analysis, Particle swarm optimiza-
tion, Photovoltaic systems, Smart grids.

I. INTRODUCTION

Solar power generation, especially Photovoltaics (PV), has
undergone enormous growth over the last decade. The integra-
tion of smart grid technologies, particularly smart metering,
has the potential to significantly influence the penetration of
small-scale rooftop PV systems in the distribution network.

Smart grid trials around the world suggest that the complex-
ity of the business case for small-scale rooftop PV systems will
increase in a smart grid environment. The Australian Govern-
ment initiated ‘Smart Grid, Smart City’ (SGSC) trial was one
of the largest and widest ranging smart grid technology assess-
ments to have been conducted in the world to date [1]. The
SGSC study, and research conducted by other organizations
such as the Grattan Institute [2], found that under existing
incentive schemes and flat electricity tariffs, customers are
incentivized to install larger PV systems; with the remaining
customers effectively providing a cross-subsidy for electricity
costs of PV owners. In a smart grid environment, with smart
meters and dynamic electricity tariffs, it was found that PV
would continue to grow in Australia; however, the average
system size would reduce for new systems. Consequently
there will be a need for comprehensive and reasoned decision
making tools to ensure PV is integrated to its maximum
potential.

From a cumulative energy perspective, installation opti-
mization has been extensively researched in literature [3],
[4]. However existing optimization problems, such as the
analysis undertaken by Koo et al. [5] and Rhodes et al.
[6], were found to be aimed largely towards determining the
energetically optimal orientation rather than establishing an
economic assessment based on temporal energy usage profiles.
An economic assessment based on energy consumption was
undertaken by Mulder et al. whereby the optimal size was
investigated to leverage available feed-in tariffs and incentive
schemes [7]. However the high temporal resolution of smart
meter data was not leveraged in the assessment; rather cumu-
lative annual energy consumption data was utilized.

In this paper, an exploration of PV installation optimization
is conducted whereby the maximization of PV investment
value is set as the defining objective and achieved through con-
sideration of temporal energy usage (using smart meter data) in
addition to other influential factors such as location, insolation
data and electricity tariff structures. When consumers have
a choice between flat tariff and dynamic time-of-use (TOU)
rates from a multitude of energy retailers, the best plan is not
self-evident, requiring an optimization strategy to select the
most cost effective arrangement. This research aims to enable
prospective small-scale PV investors to determine the highest
value system and energy plan for their individual energy usage
profile and circumstances.

In this paper, appropriate solar insolation and PV array
models are presented to establish the underlying model for
the optimization problem. Particle swarm optimization (PSO)
is selected due to its speed and relative ease of application
to non-linear problems. The basic PSO algorithm is modified
with a penalty function to enable the handling of constraints
related to feasible system size and position. Real-world solar
insolation, electricity smart meter data and currently available
Australian electricity plans from multiple retailers are used to
quantify the investment value of an optimally sized and posi-
tioned PV array. Although the development and demonstration
of the optimization problem is presented from an Australian
energy market perspective, the methodology adopted in this
paper is easily adaptable for other locations and countries.



II. ENERGY GENERATION MODELS

Critical to PV system optimization is the definition of
models for solar insolation and PV generated energy. The
models considered in this paper are subsequently presented
in this section.

A. Solar Insolation Model

While solar insolation with a high temporal resolution (e.g.
15 min, 30 min, 1 hour) is available for many locations, either
through ground or satellite based measurements, such data
is only available on a paid basis through software such as
Meteonorm or SolarGIS. Freely available insolation databases,
such as the Australian Bureau of Meteorology Climate Data
Online (CDO) database [8], typically only maintain daily
global insolation. Consequently, when investigating PV array
optimization based on hourly consumption data, a model for
hourly insolation from daily data is required.

Irradiance incident on the horizontal plane can be divided
into two components: beam (also known as direct) and diffuse.
Consequently, the daily global insolation must first be sepa-
rated into these components. Erbs et al. developed a correlation
model for the fraction of daily diffuse insolation Hd, and daily
global insolation H for which the reader is referred to [9] and
[10]. Determining an estimate of daily beam insolation, Hb,
is then a simple process since

H = Hb +Hd (1)

Collares-Pereira and Rabl [11], established an estimate of
the ratio of the global hourly insolation, I , and the daily global
insolation as described by (2). In addition, Liu and Jordan
described a similar estimate for the hourly diffuse insolation
Id in [12] as shown in (3):
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where a and b are coefficients described by an empirical
relationship, ω is the solar hour angle and ωs is the sunset
hour angle. Applying the daily estimated beam and diffuse
insolation to (2) and (3), enables the hourly global and diffuse
insolation to be determined. The beam hourly insolation can
then be estimated by an equivalent hourly insolation version
of (1).

After establishing a model for the horizontal hourly in-
solation, a model of the insolation on the tilted plane must
be developed. The total tilted plane hourly insolation (IT ),
consists of beam (Ib), diffuse (Id) and reflected insolation.
Noorian et al. present an evaluation of twelve models for
estimating hourly diffuse insolation on a tilted plane [13]. The
evaluation found that in general the Reindl et al. [14] model,
also known as the Hay-Davies-Klucher-Reindl (HDKR) model
in [10], is one of the more accurate models and is relatively

simple to use. Consequently, the HDKR model, described by
(4), was selected for this research.
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where Ai = Ib/Io, f =
√
Ib/I , Io is the hourly extrater-

restrial insolation that would be incident on a horizontal
plane projected from the Earth’s surface and ρg is the ground
reflectance, assumed to be 0.2 in this research representing
short grassland. The ratio of tilted to horizontal beam radiation
ratio Rb is defined as

Rb =
cos θ

cos θz
(5)

where
cos θ =sin δ sinφ cosβ + sin δ cosφ sinβ cos γ

+ cos δ cosφ cosβ cosω

− cos δ sinφ sinβ cos γ cosω

+ cos δ sinβ sin γ sinω

(6)

cos θz = cosφ cos δ cosω + sinφ sin δ (7)

The angles θ, θz , δ, φ, β and γ refer to the beam irradiance
angle of incidence, zenith angle of the sun, solar declination,
latitude, panel tilt and panel azimuth respectively. Note that (6)
has been developed for locations in the southern hemisphere
whereby γ = 0 implies north facing surfaces.

Equation (4) constitutes the defining insolation equation for
the optimization problem.

B. Photovoltaic Array Model

The energy balance equation for a PV module, cooled by
losses to the surroundings, is described by (8) [10]:

(τα)GT = ηcGT + UL(Tc − Ta) (8)

where (τα) is the transmittance-absorbance product, ηc is the
module efficiency quantifying the effectiveness of converting
irradiance to electrical energy, Tc is the cell temperature, Ta
is the ambient temperature, GT is the incident irradiance and
UL is the heat loss coefficient.

Manufacturer datasheets detail a PV module’s performance
under both standard test conditions (STC) and nominal oper-
ating cell temperature (NOCT) conditions. The NOCT con-
ditions include incident irradiance of 800 W/m2 and an
ambient temperature of 20◦C with the PV cells under no
load. Following the steps described in [10], from (8) and
through knowledge of the STC and NOCT performance, the
temperature Tc of a PV panel can be defined as:

Tc = Ta + (TNOCT − 20) · GT
800
· (1− ηmpp,STC) (9)



where TNOCT and ηmpp,STC are the temperature of the
panel and panel efficiency under NOCT and STC conditions
respectively.

Assuming GT is constant, the output energy of a PV array
over an hour period is described by:

Epv = AcZIT ηmppηe (10)

where Z in the number of panels, Ac is the panel area and
ηe is the efficiency of the associated balance of plant. The
efficiency ηmpp of the PV array at particular operating and
environmental conditions is defined as:

ηmpp = ηmpp,STC + µmpp(Tc − Ta) (11)

where µmpp (%/W) is the power coefficient detailed on the
manufacturer’s datasheet.

Equations (10) and (11) constitute the defining PV array
model to be used in the objective function of the optimization
problem described in the next section.

III. OPTIMIZATION PROBLEM

The objective of the optimization problem, defined in the
following subsection, is to maximize the value of the PV
investment option by selecting the optimal size and position of
a proposed PV array given a known lowest cost ‘do nothing’
electricity tariff. Through a comparison of optimized systems
for different electricity tariff structures and energy retailers,
the optimal investment option can be determined. Due to the
relatively long investment period, the time value of money
must be taken into consideration through a net present value
(NPV) analysis.

A. Problem Definition

Given:
1) Maximum allowable PV panels (Zmax = 30)
2) PV cost per watt peak (Upv = $2.30/Wp)
3) Latitude and longitude of the location
4) Hourly load and insolation profile
5) A real discount rate of 6%
6) An inflation rate of 2%
7) PV system balance of plant efficiency (90%)
8) System lifespan (15 years)

Find: Tilt angle β, azimuth angle γ and number of panels Z

Objective:

max
β,γ,Z

NPV =

Q∑
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(
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)
(1 + ri,eff )

q
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q

− Spv(Z) (12)

Subject to:

g1(β) = |β − 90| − 90 ≤ 0 for β ∈ R (13a)
g2(γ) = |γ| − 180 ≤ 0 for γ ∈ R (13b)
g3(Z) = |Z − Zmax| − Zmax ≤ 0 for Z ∈ Z+ (13c)

In (12), Cbase,q is the cost of energy without PV and Cpv,q
is the cost of electricity with PV within the billing period q (the
difference of which constitutes the monetary savings achieved
through the installation of PV). Spv and Q are the PV system
cost and the number of billing periods (assume quarterly
billing with 60 quarters over 15 years). Given the quarterly
billing cycle, the annual inflation and discount rates of 2% and
6% respectively must be are adjusted to the quarterly effective
rates ri,eff and rd,eff .

The terms Cbase,q , Cpv,q and Spv are defined by equations
(14), (15) and (17) respectively.
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Ebal,h(β, γ, Z) = Eload,h − Epv,h(β, γ, Z) (16)

Spv = UpvPpv,rat(Z)−MlocPpv,rat(Z)CSTC (17)

In (14) and (15), Tgrid0,h and Tgrid,h are the grid imported
electricity tariff of the base plan and tested plan respectively
for the hth hour of day d, with D days in the billing period.
Tsc0,d and Tsc,d are the daily electricity supply charges for the
base plan and tested plan respectively. Ebal,h is the net energy
flow balance defined in (16). Eload,h, Epv,h and Tfeed,h are
the energy consumed by the load, the energy generated by the
PV system and the feed-in tariff respectively.

In an Australian context, the total PV system cost Spv of
rated power Ppv,rat is reduced through an effective rebate
provided through the small-scale technology scheme. Under
this scheme, small-scale technology certificates (STCs) are
generated based on the system size and a location multiplier
Mloc (assumed to be 20.73 in this paper). It is assumed the
STCs are worth CSTC = $35 to the system owner.

B. Optimization Algorithm

Due to its speed, global search performance and relative
simplicity of application [15], PSO has seen many applications
in PV optimization problems [3]. Particle swarm optimization
(PSO) is a metaheuristic programming method simulating the
social interaction within bird flocks and fish schools to achieve
a global objective in the absence of centralized control. Each
individual swarm agent is identified as a particle that flies
through the solution space, defined by position and velocity
vectors. The dimensionality, J , of the vectors is equal to the
number of optimization parameters (for the problem defined
in this paper, J = 3). Consequently for the ith particle in the
nth iteration, the position xi,n and velocity vi,n vectors are
defined as:
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In PSO, the position xji,n and velocity vji,n of each particle
are updated component-wise in iteration n+1 through knowl-
edge of the particle’s personal best position and the global best
position within the swarm as expressed in (20) and (21):

vji,n+1 = χ
[
vji,n + c1r

j
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j
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(
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)]
(20)

xji,n+1 = xji,n + vji,n+1 (21)

where, for dimension j of particle i, P ji,n is the personal
best position, Gjn is the global best position of the swarm,
c1 and c2 are acceleration coefficients and rji,n and Rji,n
are two sequences of random numbers distributed uniformly
over (0, 1). Equation (20) represents a modification of the
basic PSO algorithm by inclusion of the term χ. Known as
PSO with constriction factor (PSO-Co), the modification gives
significantly improved convergence performance over the basic
form [15]. In this research, c1, c2 and χ are set be 2.05, 2.05
and 0.729 respectively according to the recommendations in
[15]. The algorithm is terminated when the maximum number
of iterations N is reached or the global best position is
sufficiently close to the actual solution.

In order to handle optimization constraints, the most com-
mon method is the introduction of a penalty function to the
underlying objective function [15]. A penalty function of the
form explored by Parsopoulos and Vrahatis [16] is considered
in this research in order to handle the PV array size and
position constraints. The objective function is now considered
to take the following form:

F (x) = f(x) +H(x, n) (22)

where x is the optimization variables vector such that x =
(β, γ, Z), f(x) is the original objective function defined by
(12) and H(x) is a penalty function of the form:

H(x, n) = h(n)
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)
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In (23), yj(x) = max
(
0, gj(x)

)
is a relative violated

function of the constraints gj(x) in (13a)–(13c) (such that the
penalty function is zero when all optimization variables satisfy
the constraints); θ

(
yj(x)

)
is a multi-stage assignment function

(which scales the penalty depending on the value of yj(x));
α
(
yj(x)

)
is the power of the penalty function; and h(n) is a

dynamically modified weight factor. The penalty parameters
in (23) are problem dependent however the values defined by
Parsopoulos and Vrahatis in [16] were found to be suitable.

As the optimization parameter Z is limited to integer values
while β and γ may take any real value within the domain of
the constraints, the problem is classified as a mixed-integer
non-linear programming problem. In order to handle the
discrete parameter Z, the hypercube nearest-vertex approach
adopted in [17] is utilized. For installation simplicity, the tilt
and azimuth angles were also considered as discrete in this
analysis.

The PSO optimization algorithm was developed and simu-
lated in Matlab version R2015b.

IV. INPUT DATA

Between 2012–2014 the SGSC project collected smart me-
ter energy data for approximately 13,700 residences in the
Sydney, Newcastle and Hunter Valley regions of New South
Wales, Australia [1]. Electricity consumption data measured
over a one-year period from three arbitrarily selected cus-
tomers within the SGSC database were used to demonstrate
the optimization strategy developed in this paper.

Five years of daily insolation and ambient temperature from
the nearest weather stations within the CDO database were
used in the analysis. Daily maximum temperature data was
used due to the lack of hourly data, yielding conservative
estimates for PV performance.

The electricity tariff structures tested in the optimization
problem were based on real 2016 rates for three large Aus-
tralian retailers. For each retailer, a flat tariff and a TOU tariff
were considered for which example rates are shown in Fig. 1.

The PV arrays were modelled based on 250 W Trina TSM-
PD05.05 polycrystalline PV modules.

V. RESULTS AND DISCUSSION

Table I summarizes the results of the optimization problem
of Section III-A under both flat and TOU tariffs from the
three different Australian energy retailers considered. For each
customer, installing PV was found to be a positive investment
with at least one of the available electricity retail plans
providing a positive NPV. The retail plans yielding the highest
NPV for each customer are highlighted in gray.



Referring to Table I, Customer 2 and Customer 3 were found
to achieve the greatest benefit from a flat tariff retail plan
from Retailer A. However Customer 1 was found to benefit
most from a TOU tariff from Retailer B. The diversity in
NPV achievable amongst the customers and the corresponding
optimal PV system sizes is also evident. For Customer 1, as the
beneficiary of the largest potential benefit, the maximum NPV
was achieved with a system size of 4.26 kW. In comparison,
Customer 2 and Customer 3 benefit from relatively smaller
sizes of 1.75 kW and 2.26 kW respectively.

Evident in the final column of Table I, significant savings
can be achieved by considering available retail electricity plan
options in the analysis. In the hypothetical situation whereby
Customer 1 previously held a flat plan from Retailer C prior
to the decision to invest in PV, optimizing the PV system
for this particular plan would yield a NPV of $3,789 from a
4.01 kW system. However when alternative retail plans are
considered in the analysis, a far higher NPV of $5,606 is
achievable, representing an additional saving of $1,817 against
the previous plan. It should be noted that under TOU tariffs
from Retailer A and Retailer C, no PV system could be found
that resulted in a net benefit for Customer 2. Consequently the
entries in Table I were left empty.

Although positive NPV was set as the objective of the
optimization problem, a positive NPV should not be consid-
ered alone in the investment analysis. Consequently common
economic metrics of modified internal rate of return (MIRR)
and payback period were also calculated and summarized in
Table I. In order for an investment in PV to be considered
preferable to other investment alternatives, the MIRR should
be higher than the discount rate. As can be clearly seen in
Table I, the MIRRs associated with the systems yielding the

largest NPV for each customer are greater than the assumed
6% discount rate, with up to 7.56% observed for the optimal
system of Customer 1. Consequently for each customer, an
optimally selected PV system and associated least-cost elec-
tricity plan was found to be a greater investment opportunity
than the other market alternatives.

Payback periods well within the assumed system lifespan of
15 years were found for each customer. The optimal systems
for Customer 1 and Customer 3 were found to have a payback
period of 7.8 years while Customer 2 would experience a
slightly longer period of 9.4 years.

The effect of sub-optimal system sizing and orientation is
shown in Fig. 3 and Fig. 2 respectively. For Customer 3,
the sensitivity of NPV to different system sizes is clearly
evident in Fig. 3. As the size is increased from one PV panel
to the optimal size of 2.26 kW, the potential NPV rapidly
increases. However if a larger system is selected, the NPV
begins to decrease. Given the increased investment cost of a
larger system, the rate of return and payback periods for the
larger system would also be detrimentally effected.

The contour plot of Fig. 2, shows an optimal position signifi-
cantly skewed west of north (positive azimuth) for Customer 1.
However it can be seen that NPV is relatively insensitive to
minor deviations form the the sub-optimal orientation. If a
north facing azimuth (0◦) and a tilt anywhere between 10◦–40◦

are selected, the resulting NPV would be relatively close to
the NPV of the optimal system. Therefore it may be concluded
that the two primary considerations for economic optimization
are the system size and accompanying energy plan.

The diversity in the optimal system sizes and orientations
amongst both the customers and available retail plans, high-
lights the necessity to adopt an optimization strategy, such as

TABLE I
CHARACTERISTICS AND ECONOMIC PERFORMANCE OF OPTIMIZED PV SYSTEMS UNDER DIFFERENT RETAIL ELECTRICITY PLANS

Customer Retailer Tariff Size (kW) Tilt Azimuth NPV MIRR Payback (Years) Plan Saving

1

A TOU 5.76 28◦ 32◦ $4,861 6.29% 9.3 $1,073

A Flat 4.51 26◦ 8◦ $4,965 7.00% 8.3 $1,176

B TOU 4.26 29◦ 35◦ $5,606 7.56% 7.8 $1,817

B Flat 4.01 25◦ 9◦ $3,983 6.71% 8.8 $194

C TOU 4.51 29◦ 37◦ $4,850 6.94% 8.3 $1,062
C Flat 4.01 24◦ 10◦ $3,789 6.58% 9.0 $0

2

A TOU - - - - - - -

A Flat 1.75 28◦ 4◦ $1,431 6.20% 9.4 $1,431

B TOU 1.75 30◦ 29◦ $404 4.24% 13.2 $404

B Flat 1.50 28◦ 3◦ $1,389 6.51% 9.1 $1,389

C TOU - - - - - - -

C Flat 1.50 28◦ 3◦ $1,204 6.15% 9.7 $1,204

3

A TOU 2.76 27◦ 33◦ $2,430 6.40% 9.3 $30

A Flat 2.26 25◦ 3◦ $2,853 7.43% 7.8 $453

B TOU 2.56 28◦ 35◦ $2,778 7.34% 8.1 $379

B Flat 2.00 25◦ 3◦ $2,712 7.65% 7.6 $312

C TOU 2.26 28◦ 37◦ $2,399 6.91% 8.6 $0

C Flat 2.00 25◦ 3◦ $2,544 7.44% 7.8 $145
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the one presented in this paper, during the investment decision
process.

VI. CONCLUSION

The lack of transparency regarding the highest value PV
system size, orientation and retail electricity plans for a given
location, insolation and power consumption profile is a key
driver for the development of a PV optimization strategy.

In this paper, hourly insolation and PV array models are
presented and incorporated in an objective function aiming to
maximize the net present value of a PV investment by opti-
mally sizing and positioning the array and through selection
of the least-cost electricity plan amongst a range of alternative
options. A modified particle swarm optimization algorithm is
utilized to solve the optimization problem.

For each of the customers assessed, an optimal PV system
producing a positive NPV (up to $5,606) and yielding a rate of
return greater than the cost of capital was found (up to 7.56%).

Furthermore, the importance of least-cost energy plan selection
was established with up to $1,817 in additional savings found.

The diversity of PV system sizes and potential net benefits
observed amongst the customers and energy plans assessed,
highlights the necessity for an optimization tool prior to
selection of a residential PV system. To establish a wider
assessment of economic performance metrics under the current
Australian market conditions, a wider sample of customer data
is necessary. Such an assessment is currently the subject of
further research by the authors.
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