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Abstract. Information-based agents use tools from information theory to evalu-
ate their utterances and to build their world model. When embedded in a social
network these agents measure the strength of information flow in this sense. This
leads to a model of information-based reputation in which agents share opin-
ions, and observe the way in which their opinions effect the opinions of others. A
method is proposed that supports the deliberative process of combining opinions
into a group’s reputation. The reliability of agents as opinion givers are measured
in terms of the extent to which their opinions differ from that of the group repu-
tation. These reliability measures are used to form an a priori reputation estimate
given the individual opinions of a set of independent agents.

1 Introduction

Reputation measures are becoming a cornerstone of many applications over the web
[1]. This is the case in recommender systems or in trading mediation sites. In these
applications there is a need to assess, for instance, how much should we trust the rec-
ommendation coming from an unknown source, or how reliable a trading partner is.
When the probability of having had previous interactions between two autonomous en-
tities (agents), human or software, is very low, the use of reputation measures, i.e. group
opinions, becomes a natural solution. In this paper we propose a reputation model that
is inspired by information theory and that is based on the information-based agency
explained elsewhere [2]. It also uses semantic distance over a shared ontology as a way
to profit from similar experiences in the assessment of reputation, and we start to ex-
plore some social network analysis techniques to weigh the opinions of other agents
according to their social relationships.

Reputation is the opinion (more technically, a social evaluation) of a group about
something. So a group’s reputation about a thing will be related in some way to the
opinions that the individual group members hold towards that thing. An opinion is an
assessment, judgement or evaluation of something, and are represented in this paper as
probability distributions on a suitable ontology called the evaluation space E.

An opinion is an evaluation of an aspect of a thing. A rainy day may be evaluated as
being “bad” from the aspect of being suitable for a picnic, and “good” from the aspect
of watering the plants in the garden. An aspect is the “point of view” that an agent has
when forming his opinion.

An opinion is evaluated in context. The context is the set of all things that the thing
is being, explicitly or implicitly, evaluated with or against. The set of valuations of



all things in the context calibrates the valuation space. For example, “this is the best
paper in the conference”. The context can be vague: “of all the presents you could have
given me, this is the best”. If agents are to discuss opinions then they must have some
understanding of each other’s context.

Summarising the above, an opinion is an agent’s evaluation of a particular aspect of
a thing in context. A representation of an opinion will contain: the thing, its aspect, its
context, and a distribution on E representing the evaluation of the thing.

In this paper we explore the case of opinions being formed through a social eval-
uation process illustrated in Figure 1. Each agent in a group of agents first forms an
individual opinion on some thing. Second these individual opinions are shared with rest
of the group. A group discussion follows as a result of which each agent states a revised
opinion. Following that there is another discussion during which the group attempts to
formulate a shared reputation for the thing. The model that we describe is based on three
observations only for each participating agent: their initial individual opinion, their re-
vised opinion, and the group’s reputation if one is agreed upon. This social evaluation
process was suggested by a process used to evaluate submissions to conferences.

2 The multiagent system

We assume that a multiagent system {α,β1, . . . ,βo,ξ,θ1, . . . ,θt}, contains an agent α

that interacts with negotiating agents, βi, information providing agents, θ j, and an in-
stitutional agent, ξ, that represents the institution where we assume the interactions
happen [3]. Institutions give a normative context to interactions that simplify matters
(e.g an agent can’t make an offer, have it accepted, and then renege on it). The institu-
tional agent ξ may form opinions on the actors and activities in the institution and may
publish reputation estimates on behalf of the institution. The agent ξ also fulfils a vital
role to compensate for any lack of sensory ability in the other agents by promptly and
accurately reporting observations as events occur; for an example, without such report-
ing an agent may have no way of knowing whether it is a fine day or not. When we
consider the system from the point of view of a particular agent we will use agent α,
and that is α’s only significance.

Our agents are information-based [4], everything in their world is uncertain. To
deal with this uncertainty, the world model, M t , consists of random variables each
representing a point of interest in the world. Distributions are then derived for these
variables on the basis of information received. Additionally, information-based agents
[4] are endowed with machinery for valuing the information that they have, and that
they receive. They were inspired by the observation that “everything an agent says gives
away information”. They model how much they know about other agents, and how
much they believe other agents know about them. By classifying private information
into functional classes, and by drawing on the structure of the ontology, they develop a
map of the ‘intimacy’ [5] of their relationships with other agents.



2.1 Communication Model

We assume that all agents share an ontology O, that for simplicity we will consider as a
set of well-formed expressions representing a given domain of discourse.3

An ontology is a tuple O = (C,R,≤,σ) where:

1. C is a finite set of concept symbols (including basic data types);
2. R is a finite set of relation symbols;
3. ≤ is a reflexive, transitive and anti-symmetric relation on C (a partial order)
4. σ : R→C+ is the function assigning to each relation symbol its arity

where ≤ is a traditional is-a hierarchy, and R contains relations between the concepts
in the hierarchy.

Based on this ontology we define a simple language C that accounts for the expres-
sions exchanged in gossiping dialogues, and is based on two fundamental primitives:
experience(α,β,ϕ,ϕ′) to represent, in ϕ, the world that β committed at bringing about
and in ϕ′ what α actually observed, and opinion(α,β,ϕ,o) to represent an opinion o that
α makes about the behaviour or position of β with respect to ϕ. The opinion is expressed
as a probability distribution pi over a set of qualitative terms e j. Experiences can also
be considered argumentative moves in support of a particular opinion. Language C is
then the set of utterances u defined as:

u ::= inform(agent,agent,content, time)
content ::= opinion(agent,agent, [term, ](eval)) | experience(agent,agent, term, term)

term ::= ϕ|φ| . . .(∗expression from ontology O∗)
eval ::= e = p | e = p,eval

e ::= good | bad | . . .(∗qualitative term∗)
p ::= a point in [0,1]

time ::= a point in time

agent ::= α | β | . . .(∗agent identifiers∗)

We will note by by A t the set of existing agents at instant t, by E the set of all possible
evaluation values e, and by Φ the set of all ontology-complaint terms. For example:

inform(John,me,opinion(John,Carles,wrapping(package),(ghastly = 0.7)), t)

inform(John,me,opinion(Carles,John,suggesting(wine(Margaret River)),(excellent = 0.9)), t)

inform(John,me,experience(John,Carles, package(date(Monday)), package(date(Friday)), t)

inform(John,me,experience(John,Carles,fly(elephant),¬fly(elephant)), t)

The concepts within an ontology are closer, semantically speaking, depending on
how far away are they in the structure defined by the≤ relation. Semantic distance plays

3 Local ontologies could also be considered together with appropriate ontology alignment tech-
niques [6].



a fundamental role in strategies for information-based agency. How stated opinions,
opinion(·), about objects in a particular semantic region, and their subsequent validation
affect our decision making process about the significance of future opinions on nearby
semantic regions is crucial to model the common sense that human beings apply. A
measure [7] bases the semantic similarity between two concepts on the path length
induced by ≤ (more distance in the ≤ graph means less semantic similarity), and the
depth of the subsumer concept (common ancestor) in the shortest path between the two
concepts (the deeper in the hierarchy, the closer the meaning of the concepts). Semantic
similarity could then be defined as:

Sim(c,c′) = e−κ1l · e
κ2h− e−κ2h

eκ2h + e−κ2h

where l is the length (i.e. number of hops) of the shortest path between the concepts, h is
the depth of the deepest concept subsuming both concepts, and κ1 and κ2 are parameters
scaling the contribution of shortest path length and depth respectively.

The following does not depend on this particular definition. Suppose an ontology is
populated with probability distributions at each branch representing the preference in
some sense of an agent; e.g. if wine ≥ {red wine, white wine} then the probability at
that branch could represent Carles’ preference for red or white wine. If the same ontol-
ogy is populate with John’s probabilities then a metric such as the Kullback-Leibler [8]
divergence can be used to measure the difference in the significance of the term ‘red
wine’ to Carles and to John.

2.2 The Social Structure of the Multiagent System

Agents, or groups, in an evolving network can be described by a number of measures
of their importance or prominence [9] [10]. These measures summarise the structural
relations among all nodes in the network and account for an agent’s choices (whom do I
link to) as well as the other agent’s choices (who links to me). Centrality measures try to
determine prominence by not taking into account the direction of the ties, and prestige
measures when direction matters. Given a matrix R(n,n) that represents in ri j ∈ [0,1]
the intensity of the relation R from i to j we define:

– Centrality measures. Determining in how many relationships a particular agent is
involved.
• Normalised Degree Centrality. The extent to which a node connects to the rest.

Cd(i) =
∑

n
j=1 ri j

n−1

• Normalised Closeness Centrality. How near a node is from the rest.

Cc(i) =
n−1

∑
n
j=1 d(i, j)

where d(i, j) is the minimum distance between i and j in the graph



• Normalised Betweenness Centrality. The extent to which an agent lies on the
shortest paths between pairs of agents in the graph.

Cb(i) =
2

(n−1)(n−2)
· ∑

j,k 6=i, j 6=k

s jk(i)
s jk

where s jk(i) is the number of shortest paths between j and k including i, and
s jk is the total number of shortest paths between j and k.

– Prestige Degree. Determining how many links an agent receives.

P(i) =
∑

n
j=1 r ji

n−1

The preceding measures are topological and do not capture what the connections
between the individual agents are used for. From the perspective of information-based
agency we are interested in two things: first, how much information is passing along the
connections, and second, the value of that information to the receiving agent.

The ‘Source Coding Theorem’ of Shannon states that N independent, identically-
distributed random variable each with entropy H(X) can be compressed into marginally
more than N×H(X) bits of information. In other words, if we know the amount of in-
formation that has been transmitted in bits, and that the coding is loss-less then we know
the amount of information that has been transmitted in terms of the lack of uncertainty
that it could bring. Further, if we have mutually exclusive events, Ei, each with prior
probabilities, pi, then the expected information content I of a message that transforms
the priors pi into posterior probabilities qi is: I = ∑i qi× log( qi

pi
). These ideas enable use

to analyse network structure from the perspective of information flow. [11] defines the
path-transfer centrality of vertex i as −∑ j pi j log pi j where pi j is the probability that a
communication path starting at node i will end at node j. If an agent receives a message
containing information I then the Shannon value of I is: H(M t |I )−H(M t), where M t

is the agent’s world model. When used together with the ontology and a map of M t

that categorises the agent’s information, this measure can be used to take stock of the
information in M t .

3 Forming Opinions

This section describes how an information-based agent forms opinions. Section 4 will
describe how the opinions of the agents in a group may be distilled into a reputation.

An opinion is a valuation by an agent of an aspect of a thing taken in context. For-
mally, Oi(z,a,C) represents the result of the valuation by agent βi of aspect a of thing
z in context C. For example, the valuation by agent “Carles” of the “scientific quality”
aspect of the thing “John’s paper” in the context of “the AAMAS conference submis-
sions”. Opinions are communicated using the language described in Section 2.1. The
context C is often subjectively chosen by the agent, and is not part of the opinion(·)
primitive, although context may be the subject of associated argumentation. For exam-
ple, re-using an example of communication from Section 2.1:

inform(John,me,opinion(John,Carles,wrapping(package),(ghastly = 0.7)), t)



we can extract an opinion as:

O(package,wrapping, the way I do wrapping) = (ghastly = 0.7)

As noted above, to preserve consistency and generality we assume that all opinions
are expressed as probability distributions over some suitable E. If an agent expresses
an opinion as P(X = ei) we treat this as the distribution with minimum relative en-
tropy with respect to the prior subject to the constraint P(X = ei) — in case there is
no known prior we use the maximum entropy, uniform distribution. For example, if
E = (fine,cloudy,wet,storm) then the opinion “I am 70% certain that tomorrow will be
fine” will be represented as (0.7,0.1,0.1,0.1) for a uniform prior.

The distributions in an agent’s world model M t represent the agent’s opinions about
the value of the corresponding random variable over some valuation space. Opinions
may be derived from opinions. For example, to form an opinion on “tomorrow’s suit-
ability for a picnic” and agent may introduce random variables for: tomorrow’s mid-day
temperature, tomorrow’s mid-day cloud cover, and tomorrow’s mid-day wind strength,
construct distributions for them using on-the-fly weather forecast information, and then
derive an opinion about the picnic somehow from these three distributions.

In Section 3.1 we describe how the distributions in the world model are updated as
real-time information becomes available; in that section we also estimate the reliability
of each information source by subsequently validating the information received from it.

3.1 Updating Opinions with Real-Time Information

In the absence of in-coming messages the distributions in M t should gradually decay
towards some zero-information state. In many cases there is background knowledge
about the world — for example, a distribution of the daily maximum temperature in
Barcelona in May — such a distribution is called a decay-limit distribution. If the back-
ground knowledge is incomplete then one possibility is to assume that the decay limit
distribution has maximum entropy whilst being consistent with the available data. Given
a distribution, P(Xi), and a decay limit distribution D(Xi), P(Xi) decays by:

Pt+1(Xi) = ∆i(D(Xi),Pt(Xi)) (1)

where ∆i is the decay function for the Xi satisfying the property that limt→∞ Pt(Xi) =
D(Xi). For example, ∆i could be linear: Pt+1(Xi) = (1−νi)×D(Xi)+νi×Pt(Xi), where
νi < 1 is the decay rate for the i’th distribution. Either the decay function or the decay
limit distribution could also be a function of time: ∆t

i and Dt(Xi).
The following procedure updates M t . Suppose that α receives a message µ from

agent β at time t.4 Suppose that this message states that something is so with probabil-
ity v, and suppose that α attaches an epistemic belief Rt(α,β,µ) to µ — this probability
reflects α’s level of personal caution. Each of α’s active plans, s, contains constructors
for a set of distributions {Xi} ∈M t together with associated update functions, Js(·),

4 This message is not necessarily a message from the language in section 2.1. We refer with µ to
any inform message with propositional content that can be processed by the agent.



such that JXi
s (µ) is a set of linear constraints on the posterior distribution for Xi. Denote

the prior distribution Pt(Xi) by p, and let p(µ) be the distribution with minimum rela-
tive entropy5 with respect to p: p(µ) = argminr ∑ j r j log r j

p j
that satisfies the constraints

JXi
s (µ). Then let q(µ) be the distribution:

q(µ) = Rt(α,β,µ)× p(µ) +(1−Rt(α,β,µ))× p (2)

and then let:

Pt(Xi(µ)) =

{
q(µ) if q(µ) is more interesting than p
p otherwise

(3)

A general measure of whether q(µ) is more interesting than p is: K(q(µ)‖D(Xi)) >

K(p‖D(Xi)), where K(x‖y) = ∑ j x j ln x j
y j

is the Kullback-Leibler divergence between
two probability distributions x and y.

Finally merging Eqn. 3 and Eqn. 1 we obtain the method for updating a distribution
Xi on receipt of a message µ:

Pt+1(Xi) = ∆i(D(Xi),Pt(Xi(µ))) (4)

This procedure deals with integrity decay, and with two probabilities: first, the proba-
bility v in the message µ, and second the belief Rt(α,β,µ) that α attached to µ.

Reliability of the Information Source. An empirical estimate of Rt(α,β,µ) may be
obtained by measuring the ‘difference’ between commitment and verification. Suppose
that µ is received from agent β at time u and is verified by ξ as µ′ at some later time
t.6 Denote the prior Pu(Xi) by p. Let p(µ) be the posterior minimum relative entropy
distribution subject to the constraints JXi

s (µ), and let p(µ′) be that distribution subject
to JXi

s (µ′). We now estimate what Ru(α,β,µ) should have been in the light of knowing
now, at time t, that µ should have been µ′.

The idea of Eqn. 2, is that Rt(α,β,µ) should be such that, on average across M t ,
q(µ) will predict p(µ′) — no matter whether or not µ was used to update the distribution
for Xi, as determined by the condition in Eqn. 3 at time u. The observed reliability for
µ and distribution Xi, Rt

Xi
(α,β,µ)|µ′, on the basis of the verification of µ with µ′, is the

value of k that minimises the Kullback-Leibler divergence:

Rt
Xi

(α,β,µ)|µ′ = argmin
k

K(k · p(µ) +(1− k) · p ‖ p(µ′))

5 Given a probability distribution q, the minimum relative entropy distribution p = (p1, . . . , pI)
subject to a set of J linear constraints g = {g j(p) = a j · p− c j = 0}, j = 1, . . . ,J (that must
include the constraint ∑i pi−1 = 0) is: p = argminr ∑ j r j log r j

q j
. This may be calculated by in-

troducing Lagrange multipliers λ: L(p,λ) = ∑ j p j log p j
q j

+λ ·g. Minimising L, { ∂L
∂λ j

= g j(p) =

0}, j = 1, . . . ,J is the set of given constraints g, and a solution to ∂L
∂pi

= 0, i = 1, . . . , I leads even-
tually to p. Entropy-based inference is a form of Bayesian inference that is convenient when
the data is sparse [12] and encapsulates common-sense reasoning [13].

6 This could be later communicated as inform(γ,α,experience(γ,β,µ,µ′), t).



The predicted information in the enactment of µ with respect to Xi is:

It
Xi

(α,β,µ) = Ht(Xi)−Ht(Xi(µ)) (5)

that is the reduction in uncertainty in Xi where H(·) is Shannon entropy. Eqn. 5 takes
account of the value of Rt(α,β,µ).

If X(µ) is the set of distributions that µ affects, then the observed reliability of β on
the basis of the verification of µ with µ′ is:

Rt(α,β,µ)|µ′ = 1
|X(µ)|∑i

Rt
Xi

(α,β,µ)|µ′ (6)

If X(µ) are independent the predicted information in µ is:

It(α,β,µ) = ∑
Xi∈X(µ)

It
Xi

(α,β,µ) (7)

Suppose α sends message µ to β where µ is α’s private information, then assuming that
β’s reasoning apparatus mirrors α’s, α can estimate It(β,α,µ).

For each formula ϕ at time t when µ has been verified with µ′, the observed relia-
bility that α has for agent β in ϕ is:

Rt+1(α,β,ϕ) = (1−ν)×Rt(α,β,ϕ)+ν×Rt(α,β,µ)|µ′×Sim(ϕ,µ)

where Sim measures the semantic distance between two sections of the ontology as
introduced in Section 2.1, and ν is the learning rate. Over time, α notes the context
of the various µ received from β, and over the various contexts calculates the relative
frequency, Pt(µ). This leads to an overall expectation of the reliability that agent α has
for agent β:

Rt(α,β) = ∑
µ

Pt(µ)×Rt(α,β,µ)

3.2 Verifiable Opinions

An opinion is verifiable if within a “reasonable amount of time” it ceases to be an opin-
ion and becomes an observable fact; for example, the opinion “tomorrow’s maximum
temperature will be over 30◦” is verifiable, whereas the opinion “the Earth will exist in
100,000 years time” is not verifiable in any practical sense, and “Brahms’ symphonies
are ghastly” will never be verifiable.

The articulation by β of a verifiable opinion carries with it the intrinsic commitment
that it will in due time become an observable true fact. α will be interested in any
variation between β’s commitment, ϕ, and what is actually observed (as advised by the
institution agent ξ), as the fact, ϕ′. We denote the relationship between opinion and fact,
Pt(Observe(ϕ′)|Commit(ϕ)) simply as Pt(ϕ′|ϕ) ∈M t .

In the absence of in-coming messages the conditional probabilities, Pt(ϕ′|ϕ), should
tend to ignorance as represented by the decay limit distribution and Eqn. 1. We now
show how Eqn. 4 may be used to revise Pt(ϕ′|ϕ) as observations are made. Let the



set of possible factual outcomes be Φ = {ϕ1,ϕ2, . . . ,ϕm} with prior distribution p =
Pt(ϕ′|ϕ). Suppose that message µ is received from ξ that verifies or refutes a previously
stated verifiable opinion expressed by β, we estimate the posterior p(µ) = (p(µ)i)m

i=1 =
Pt+1(ϕ′|ϕ).

First, if µ = (ϕk,ϕ) is observed then α may use this observation to estimate p(ϕk)k as
some value d at time t +1. We estimate the distribution p(ϕk) by applying the principle of
minimum relative entropy as in Eqn. 4 with prior p, and the posterior p(ϕk) = (p(ϕk) j)m

j=1

satisfying the single constraint: J(ϕ′|ϕ)(ϕk) = {p(ϕk)k = d}.
Second, we consider the effect that the verification φ′ of another simple, verifiable

opinion φ of β has on p. This is achieved by appealing to the structure of the ontology
using the Sim(·) function. Given the observation µ = (φ′,φ), define the vector t by:

ti = Pt(ϕi|ϕ)+(1− | Sim(φ′,φ)−Sim(ϕi,ϕ) |) ·Sim(ϕ′,φ)

for i = 1, . . . ,m. t is not a probability distribution. The multiplying factor Sim(ϕ′,φ)
limits the variation of probability to those formulae whose ontological context is not too
far away from the observation. The posterior p(φ′,φ) is defined to be the normalisation
of t.

In this section we have shown how an information-based agent models the accuracy
of an agent’s opinions when they are verifiable. The model produced is predictive in the
sense that when an opinion is stated it gives a distribution of expectation over the space
of factual outcomes.

3.3 Unverifiable Opinions

If an opinion can not be verified then one way in which it may be evaluated is to com-
pare it with the corresponding individual opinions, or group reputation, of a group of
agents. The focus of this paper is on reputation; that is, a social evaluation conducted
by a group. We deal with unverifiable opinions using a social evaluation framework that
is abstracted from any particular case and is illustrated in Figure 1. The idea is that a
group G of n agents independently form a prior opinion, Oi on the same thing. Each
agent has a prior confidence value, ci, that estimates how close its prior opinion, Oi, is
expected to be to the reputation, or common opinion, of the group, RG — precisely ci
measures how effective the agent is at influencing the opinions of other agents, it does
not measure how good its opinion is in any absolute sense as the opinion is assumed
to be unverifiable. The agents then make their prior opinions public to the other agents
and an argumentative discussion, ∆, takes place during which the agents may choose to
revise their opinions, Oi|∆. When the revised opinions are published a second argumen-
tative discussion, Γ, takes place during which the agents attempt to distil their opinions
into a group reputation, RG. The confidence estimates, ci are then revised by noting the
differences between Oi, Oi|∆ and RG, to give posterior values, ci|∆. The processes in
Figure 1 are summarised as:

∆ : f ({(Oi,ci}) = {Oi|∆}

Γ : g({(Oi|∆,ci}) = (RG,dG)



Fig. 1. The social evaluation framework in which a group G of n agents β1,. . . ,βn table their
private opinions O1, . . . ,On, have an open, argumentative discussion ∆ (see Section 3.3), and
then revise their opinions O1|∆, . . . ,On|∆. This is followed by another argumentative discussion
Γ (see Section 4) during which the agents consider whether revised opinions can be distilled into
a common reputation RG. The symbols ci and cG are confidence values as explained below.

β1
O1c1 O1 | Δ c1 | Δ

β2
O1c2 O2 | Δ c2 | Δ

βn Oncn On | Δ cn | Δ

Argumentative
Discussion

Δ
OG cGΓ

{∆,Γ} : h({(Oi,ci,Oi|∆},RG) = {ci|∆}

The function f (·) is the product of the discussion ∆ — we simply observe the outcome.
Function g(·) is described in Section 4, and h(·) in Section 5.

4 Combining Opinions and Forming Reputation

A reputation is a social evaluation by a group. When the group is a set of autonomous
agents the only sense in which an opinion can exist is as a common opinion throughout
the group. The objective of the argumentative process Γ in Figure 1 is to determine a
common view if one exists. The following procedure first determines whether a com-
mon view exists, and second it offers three views of what that common view could be.
The three different views vary with differing degrees of statistical dependence between
the agents.

The process of distilling opinions into a reputation can not simply be computed.
For example, consider two agents who are reviewing the same conference paper and
are in total agreement about the result “a ‘strong accept’ with confidence 0.8” where
the reliability of each agent is 90%. What should their combined opinion, or in this
case ‘paper reputation’, be? As their individual reliability is 90% perhaps the common
view is “a ‘strong accept’ with confidence 0.72”. Alternatively because they both agree,
and may have quite different reasons supporting their views, perhaps the common view
should be “a ‘strong accept’ with some confidence greater than 0.8”.

The work described in the remainder of this section and in Section 5 is expressed
in terms of two agents; it extends naturally to n agents. The procedure is based on three
methods that are detailed below.



Dependent Method. To form a combined opinion of two opinions, X1 and X2, construct
the joint distribution W = (X1,X2,Z) and impose the constraints:(

∑
i

P(W = wi) | Xk = x j

)
= P(Xk = x j), k = 1,2

(
∑

i
P(W = wi) | Xk = Z

)
= ck, k = 1,2

let W be the distribution of maximum entropy that satisfies these constraints. Then the
combined opinion Dep(X1,X2) is P(Z = z). If the data is inconsistent then the value is
undefined — this is a test of whether the data is consistent. If the data is inconsistent
then this indicates that there is no shared opinion. Being based on a maximum entropy
calculation the posterior is a conservative combination of the given opinions — it is
“maximally noncommittal” to that which is not known. To calculate this dependent,
combined opinion when the prior is known, calculate the minimum relative entropy
distribution with respect to that prior using the same constraints as described.

ϒ Method. Let’s define P(α,d) as the probability that an opinion Oα expressed by α

(i.e, a probability distribution) is at distance d of the true distribution (or at distance d
of a group opinion). That is, the probability that a certain distribution Q is the right one
is defined as P(Q is right) = P(α,DIST (Oα,Q)) for an appropriate distance measure
DIST .7 These distributions can be obtained by datamining past group opinion formation
processes.

Given a group G, we look for the group opinion, RG such that the certainty on that
group opinion being the right one is maximised. That is,

RG = max
Q

ϒ({P(α,DIST(Oα,Q))}α∈G)

Where ϒ is the uninorm operator [15]. In case there are several such group opinions we
prefer the one with maximum entropy. And then,

dG = ϒ({P(α,DIST(Oα,RG))}α∈G)

For the values in Table 1, we discreetise the P(α,d) in the intervals between the
points in the following list: [0,0.035,0.3,0.5,0.8,1].

Independent Method. Given a prior distribution P(W = x j), a pair of opinions, P(Xi =
x j) i = 1,2, with their respective certainties ci, assuming that the agents’ opinions are
statistically independent, let wi, j = ci×P(Xi = x j), i = 1,2, and let v j =

∏i wi, j
∏i wi, j+∏i(1−wi, j)

then the combined opinion Ind(X1,X2) is: v j +(1−∑k vk)×P(W = x j), with strength
∑k vk. This method assumes that the priors are independent (unlikely in practice) and
has the property that the probabilities in two similar distributions are amplified.

The overall procedure plays the role of a mediator. If the ‘Dependent Method’ does
not return a value then the data is inconsistent, and the agents should either have further

7 Kullback-Leibler divergence, or the earth movers distance [14] could be used.



discussion or “agree to disagree”. Otherwise calculate the three values Dep(·), ϒ(·)
and Ind(·). Propose ϒ(·) to the agents, and if they accept it then that is their common
opinion. Otherwise propose that their common opinion lies somewhere between Dep(·)
and Ind(·) and leave it to them to determine it.

Table 1 contains some sample values for the three methods. In Case 3 the two
opinions are identical with maximal value of 0.8 and strengths of 0.8 and 0.9. The
Dep(X1,X2) method is conservative and gives 0.77 because of the strength values. The
ϒ(X1,X2) method balances the strength uncertainty with the fact that their are two
shared views to give 0.8. The Ind(X1,X2) method is bold and gives 0.85 because two
agents share the same view; the boldness of the Ind(X1,X2) method is balanced by its
comparatively low strength values.

Table 1. Three cases of sample values for the three methods for combining opinions. In each case
the opinions are X1 and X2 and the strength of the distributions is denoted by “Str”. The right hand
column contains the discreetised P(α,d) values described in the ‘ϒ Method’. All calculations
were performed with a uniform prior.

Case 1 X1 0.1000 0.5000 0.2000 0.1000 0.1000 Str = 0.9 P = 〈0.9,0.05,0.03,0.01,0.01〉
X2 0.0500 0.8000 0.0500 0.0500 0.0500 Str = 0.7 P = 〈0.7,0.2,0.05,0.03,0.02〉

Dep 0.0919 0.5590 0.1653 0.0919 0.0919 cG ≈ 1
ϒ 0.0700 0.7000 0.1700 0.0700 0.0700 cG = 0.95

Ind 0.0978 0.6044 0.1022 0.0978 0.0978 cG = 0.53
Case 2 X1 0.1000 0.6000 0.1000 0.1000 0.1000 Str = 0.8 P = 〈0.8,0.1,0.04,0.01,0.01〉

X2 0.0500 0.8000 0.0500 0.0500 0.0500 Str = 0.9 P = 〈0.9,0.06,0.03,0.01,0.01〉
Dep 0.0683 0.7266 0.0683 0.0683 0.0683 cG ≈ 1

ϒ 0.08 0.63 0.08 0.08 0.08 cG = 0.97
Ind 0.0601 0.7596 0.0601 0.0601 0.0601 cG = 0.72

Case 3 X1 0.0500 0.8000 0.0500 0.0500 0.0500 Str = 0.8 P = 〈0.8,0.1,0.04,0.01,0.01〉
X2 0.0500 0.8000 0.0500 0.0500 0.0500 Str = 0.9 P = 〈0.9,0.06,0.03,0.01,0.01〉

Dep 0.0573 0.7707 0.0573 0.0573 0.0573 cG ≈ 1
ϒ 0.05 0.8 0.05 0.05 0.05 cG = 0.97

Ind 0.0363 0.8548 0.0363 0.0363 0.0363 cG = 0.83

5 Reputation of the Agents

In the previous section we described how a mediator could assist agents to agree on
a common opinion, or reputation, of some thing being evaluated. Additionally, the in-
stitution ξ builds a view of the reputation of the individual agents who perform the
evaluations by observing the process illustrated in Figure 1. In particular, ξ observes
the development of the ci values (described below), the distances between initial opin-
ion Oi and considered opinion Oi|∆, and the distances between both opinions and the
group reputation RG when it exists.

Given two opinions X1 and X2 the strength of X1 on X2 is defined as: P(X1 = X2).
If X1 and X2 are both defined over the same valuation space E = {ei}n

i=1 then: P(X1 =



X2) = ∑i P(W = wi) | X1 = X2, where W = (X1,X2) is the joint distribution. That is,
we sum along the diagonal of the joint distribution. We estimate the diagonal wi values
using the dependent estimate: P(X1 = ei)∧P(X1 = ei) = min j P(X j = ei), and hence:
Str(X1,X2) = P(X1 = X2) = ∑i min j P(X j = ei). A measure of the distance between X1
and X2 is then: Dist(X1,X2) = 1−Str(X1,X2). This definition of strength is consistent
with the ‘Dependent Method’ in Section 4 that is the basis of the reputation mediation
procedure. Other definitions include the Kullback-Leibler divergence, Dist(X1,X2) =
K(X1||X2), and the earth movers distance [14].

Each time a reputation RG is formed, the ci values are updated using: ci|∆ = µ×
Dist(Oi,RG)+(1−µ)×ci, where µ is the learning rate. These ci values are the product
of successive social evaluation processes, and so they are reputation estimates.

The measures described above do not take the structure of the evaluation space E
into account. Four additional measures are:

A generic distance measure. Dist(X ,Y ) = K(X ′||Y ′) where (X ′,Y ′) is a permutation of
(X ,Y ) the satisfies X ′ <Y ′, and the order is defined by: RG < Oi|∆ < Oi. I.e. the earliest
occurring distribution “goes in the second argument”. This complication with ordering
is necessary because K is not symmetric; it attempts to exploit the sense of relative
entropy. An alternative is to use the symmetric form as it was originally proposed:
1
2 (K(X ,Y )+K(Y,X))

A distance measure when the prior, Z, is known. This builds on the generic measure,
and captures the idea that the distance between a pair of unexpected distributions is
greater than the difference between a pair of similar, expected distributions. We measure
of how expected X is by: K(X ,Z), and normalise it by: maxIK(I,Z) to get: e(X) =

K(X ,Z)
maxIK(I,Z) . Then this measure is the arithmetic product of the previous generic measure

with: e(X)+e(Y )
2 .

A semantic distance measure. Suppose there is a difference measure Diff(·, ·) defined
between concepts in the ontology — it could be related to the Sim(·, ·) function in
Section 2.1. Then the distance between two opinions X and Y over valuation space
E (represented as distributions pi and qi respectively) is: Dist(X ,Y ) = ∑i j pi × q j ×
Diff(ei,e j) where ei are the categories in E.

A distance measure when E is ordered and the prior is known. If the valuation space
E has a natural order, and if there is a known prior then define Diff(ei,e j) to be the
proportion of the population that is expected to lie between ei and e j. Then define
Dist(X ,Y ) = ∑i j pi×q j×Diff(ei,e j). For example, in conference reviewing, if the ex-
pectation is that 40% of reviews are ‘weak accept’ and 20% are ‘accept’ then Diff(‘weak
accept’, ‘accept’)= 40

2 + 20
2 ; i.e. taking the mid points of the intervals.

The measures described for Dist(X ,Y ) are now used to enable ξ to attribute various
reputations to agents. These reputation measures all assume that the agents have been
involved in a number of successive social evaluation rounds as shown in Figure 1.

Inexorable. If agent βi is such that: Dist(Oi,Oi|∆)� Dist(Oi,O j|∆),∀ j 6= i consis-
tently holds then βi is inexorable.



Predetermination. If: Dist(Oi,RG)� Dist(O j,RG),∀ j 6= i consistently, then βi is a
good ‘predeterminer’. Such an agent will have a high ci value.

Persuasiveness. If βi is such that: Dist(Oi,O j|∆)�Dist(O j,O j|∆),∀ j 6= i consistently
then βi is persuasive.

Compliance. If βi is such that: Oi|∆≈ argminX ∑ j 6=i Dist(O j|∆,X), then βi is compli-
ant.

Dogmatic. If βi is such that: Oi = Oi|∆ consistently then βi is dogmatic. A dogmatic
agent is highly inexorable.

Adherence. If βi is such that Oi|∆ = O j where j = argmaxk,k 6=i ck consistently then βi
is adherent (in this round adherent to agent β j).

6 Discussion

This paper has proposed a number of methods to ground the social building of repu-
tation measures. The methods are based on information theory and permit to combine
opinions when there is a high level of independence in the formation of the individual
opinions. The method permits the computation of reputation values as aggregation of
individual opinions, and also detects when agreement is not feasible. This impossibil-
ity may be used to trigger further discussions among the members of the group or to
introduce changes in the composition of the group to permit agreements.

The use of social network analysis measures permits to define heuristics on how to
combine opinions when there is no complete independence in the opinions expressed
by the agents. There are a number of different relationships that may be used to guess
dependency. For instance, in the context of scientific publications, co-authorship or af-
filiation, meaning that authors have written papers together or belong to the same labo-
ratory may indicate a significant exchange of information between them and therefore a
certain level of dependency. The aggregation of values by function h can then use these
measures to diminish the joint influence of dependent opinions into the reputation. This
is to be explored in future extensions of the information based reputation model.

Also, social networks can be used to assess initial values of ci, the confidence on
agent’s opinions. For instance, we can say that an individual is expert in an area (key-
word) if it is author of highly cited papers on the topic, has reviewed prestigious papers
on the area, and has a central role in the college. This is easily expressed as

ci = f

 ∑
(i,p)∈Authorship,

(p,X)∈Area

PCitation(p), ∑
(i,p)∈Review,
(p,X)∈Area

PCitation(p),CCollege
b (i)


where (i, p) ∈ Authorship means that agent i is author of paper p, (p,X) ∈ Area means
that paper p is on topic X and (i, p) ∈ Review means that agent i has reviewed paper p.
Citation relates papers and College relates authors. See Section 2.2 for definitions of P
and Cb.

Our future work will include the in depth analysis of Social Network Measures in
the information model reputation and the experimental analysis of the model in the con-
text of scientific publishing as planned in the LiquidPub project (http://www.liquidpub.org).



Also, we will analyse the robustness of the proposed model in front of strategic reason-
ers that may try and manipulate the scores to their benefit.
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