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A bipartite subspace S is called strongly positive-partial-transpose (PPT) unextendible if for every positive
integer k, there is no PPT operator supporting on the orthogonal complement of S⊗k . We show that a subspace is
strongly PPT unextendible if it contains a PPT-definite operator (a positive semidefinite operator whose partial
transpose is positive definite). Based on these, we are able to propose a simple criterion for verifying whether
a set of bipartite orthogonal quantum states is indistinguishable by PPT operations in the many-copy scenario.
Utilizing this criterion, we further point out that any entangled pure state and its orthogonal complement cannot
be distinguished by PPT operations in the many-copy scenario. On the other hand, we investigate that the
minimum dimension of strongly PPT-unextendible subspaces in an m⊗n system is m + n − 1, which involves
a generalization of the result that non-positive-partial-transpose subspaces can be as large as any entangled
subspace [N. Johnston, Phys. Rev. A 87, 064302 (2013)].
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I. INTRODUCTION

One fascinating phenomenon of quantum mechanics is
the quantum nonlocality, that is, there exist some global
quantum operations on a composite system that cannot be
implemented by the owners of the subsystems using local
operations and classical communication (LOCC) only. A
general strategy to study quantum nonlocality is to consider
what kind of information processing tasks cannot be achieved
by LOCC. Roughly speaking, if a certain task is accomplished
with different optimal global and local efficiencies, then we
can construct a class of quantum operations that cannot be
realized by LOCC. There is no doubt that the discrimination
of orthogonal quantum states is an effective one and it
has received considerable attention in the past decades. See
Refs. [1–23] for a partial list.

It is well-known that orthogonal quantum states can be
perfectly distinguished if globe operations are permitted.
And the setup of local distinguishability of quantum states
is simple: two or more spatially separated observers share
a composite quantum system prepared in one of many
known mutually orthogonal quantum states. Their goal is
to identify the unknown states by LOCC. When we only
need to distinguish two orthogonal multipartite pure states,
the perfect local discrimination can always be achieved [2].
Nevertheless, if we have more than two states to distinguish,
they cannot be perfectly distinguished by LOCC if one or
more states are entangled [4]. This phenomenon is percipient
since entanglement has been shown to ensure difficulty in state
discrimination [10]. On the other hand, it has been shown that
there exist sets of orthogonal product states that cannot be
discriminated perfectly by LOCC [1,24,25].
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However, the local indistinguishability might be overcome
in the many-copy scenario, which is the case that multiple
copies of quantum states are provided. A simple example
would be four 2⊗2 Bell states, which can be perfectly distin-
guished within two copies [6], while they are indistinguishable
with a single copy [5,6,8]. In fact, it has been shown that N

orthogonal pure states can always be perfectly distinguished
by LOCC when N − 1 copies of the unknown state are
provided [16]. This suggests that the available copies of the
unknown state play a crucial role in local distinguishability.
However, it turns out that there exist two orthogonal quantum
states, one of which is necessarily mixed, that are locally
indistinguishable in the many-copy scenario [16]. Thus, the
local indistinguishability of orthogonal quantum states is more
robust in mixed states for it persists even in the domain of
multiple copies, whereas in the case of pure states it does not.

Proving local indistinguishability is hard even in the
bipartite case, since our knowledge about LOCC is limited.
To circumvent the difficulty, one approach is to show the
indistinguishability by operations that completely preserve the
positivity of the partial transpose [denoted as positive-partial-
transpose (PPT) operations], and local indistinguishability
automatically follows since the set of all LOCC operations
will also preserve the positivity of the partial transpose.
The advantage of this approach is that the set of PPT
operations enjoys a tractable mathematical structure. It has
been shown that the bipartite maximally entangled state and the
normalized projection onto its orthogonal complement cannot
be distinguished by PPT operations in the many-copy scenario
[26]. On the other hand, the notion of PPT plays a significant
role in quantum information theory. It has been used to provide
some convenient criteria for the separability of quantum states
[27–29], and to study the problem of entanglement distillation,
pure state transformation, and communication over quantum
channels (e.g., [30–36]).

In this paper, we contribute a simple criterion for verifying
indistinguishability of bipartite quantum states by PPT opera-
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tions in the many-copy scenario. This criterion is based on the
observation that if the support of some state is strongly PPT
unextendible, then any set of orthogonal states containing such
a state cannot be distinguished by PPT operations in the many-
copy scenario. Here we say a subspace S of some bipartite
Hilbert space is strongly PPT unextendible if for any positive
integer k, there is no PPT state whose support is a subspace
of the orthogonal complement of S⊗k . And this concept is a
natural generalization of the concept of strongly unextendible
subspace, introduced in Ref. [37]. To observe strong PPT
unextendibility, one evidence is the so-called PPT-definite op-
erator, which is a positive semidefinite operator whose partial
transpose is positive definite. In fact, the existence of PPT-
definite operators can be observed efficiently by semidefinite
programming (SDP) [38], which is a powerful tool in quantum
information theory with many applications (e.g., [39–46]). As
an application, we show that any entangled pure states and
the normalized projector onto their orthogonal complement
cannot be distinguished by PPT operations in the many-copy
scenario, which is a far-reaching extension of one of the main
results in Ref. [26]. Meanwhile, we show that the minimum
dimension of strongly PPT-unextendible subspaces in a m⊗n

system is m + n − 1, which extends the result on the minimum
dimension of the PPT-unextendible subspace in Ref. [47].

II. PRELIMINARIES

We review some notation and definitions. In the following,
we will use symbols such as A (or A′) and B (or B′) to denote
(finite-dimensional) Hilbert spaces associated with Alice and
Bob, respectively. The dimension of A and B are denoted by
dA and dB. We say two subspaces S1 and S2 of some Hilbert
space are orthogonal, denoted by S1 ⊥ S2, if for any |ψ1〉 ∈ S1

and |ψ2〉 ∈ S2, 〈ψ1|ψ2〉 = 0. The orthogonal complement of a
subspace S is denoted by S⊥ = {|ψ〉 : 〈ψ |φ〉 = 0, ∀ |φ〉 ∈ S}.
The space of all linear operators over A is denoted by L(A).
For convenience, we use λmax(X) and λmin(X) to denote the
maximum eigenvalue and the minimum eigenvalue of some
operator X ∈ L(A). A quantum state is characterized by its
density operator ρ ∈ L(A), which is a positive semidefinite
operator with trace unity. The support of ρ, denoted by
supp(ρ), is defined to be the space spanned by the eigenvectors
of ρ with positive eigenvalues. We say a positive semidefinite
operator X is supporting on some subspace S of A, if supp(X)
is a subspace of S.

A bipartite positive semidefinite operator EAB ∈L(A⊗B)
is said to be PPT if E

TB

AB is positive semidefinite, where the
action of partial transpose (with respect to B) is defined
as (|iA〉〈kA| ⊗ |jB〉〈lB |)TB = |iA〉〈kA| ⊗ |lB〉〈jB |. Moreover, a
PPT operator EAB ∈ L(A ⊗ B) is said to be PPT-definite if
E

TB

AB is positive definite.
In this paper, the PPT operations used for distinguishing

a set of n orthogonal quantum states {ρ1, . . . ,ρn} can be
defined as an n-tuple of operators, (Mk)k=1,...,n, where Mk ∈
L(A ⊗ B) is PPT for k = 1, . . . ,n and

∑n
k=1 Mk = 1A⊗B.

Then {ρ1, . . . ,ρn} is said to be:
(i) Perfectly distinguishable by PPT operations, if

there exist (Mk)k=1,...,n, where Mk ∈ L(A ⊗ B) is PPT for
k = 1, . . . ,n and

∑n
k=1 Mk = 1A⊗B, such that Tr(Miρj ) =

δij , for any 1 � i,j � n.

(ii) Unambiguously distinguishable by PPT operations, if
there exist (Mk)k=1,...,n, where Mk ∈ L(A ⊗ B) is PPT for
k = 1, . . . ,n and

∑n
k=1 Mk = 1A⊗B, such that Tr(Miρj ) =

piδij ,pi > 0 for any 1 � i,j � n.
(iii) Indistinguishable by PPT operations, if it is not

unambiguously distinguishable by PPT operation.
These definitions can be naturally generalized when mul-

tiple copies are provided. In addition, we would say a set of
orthogonal quantum states {ρ1, . . . ,ρn} is indistinguishable
by PPT operations in the many-copy scenario, if for any
positive integer k, {ρ⊗k

1 , . . . ,ρ⊗k
n } is indistinguishable by PPT

operations.
In the end, we say a bipartite subspace S of A ⊗ B is PPT

extendible, if there exists a PPT operator σ ∈L(A⊗B), such
that σ is supporting on the orthogonal complement of S. S is
said to be PPT unextendible if it is not PPT extendible, and to
be strongly PPT unextendible if for any positive integer k, S⊗k

is not PPT extendible.

III. MAIN RESULTS

A. Indistinguishability by PPT operations

The main result of this paper is a sufficient criterion for
verifying the PPT indistinguishability of orthogonal quantum
states:

Theorem 1. For a set of orthogonal bipartite quantum states
{ρ1, . . . ,ρn}, if there is a PPT-definite operator supporting on
the support of some ρk , then {ρ1, . . . ,ρn} is indistinguishable
by PPT operations in the many-copy scenario.

To prove this theorem, we first show the following lemma.
Lemma 2. For a set of orthogonal quantum states

{ρ1, . . . ,ρn}, if there exists k ∈ {1, . . . ,n} such that supp(ρk)
is strongly PPT unextendible, then S is indistinguishable by
PPT operations in the many-copy scenario.

Proof. Without loss of generality, we assume supp(ρ1)
is strongly PPT unextendible. If there exists some positive
integer m such that {ρ⊗m

1 , . . . ,ρ⊗m
n } can be unambiguously

distinguished by PPT operations, there exists a tuple of PPT
operators (Mk)k=1,...,n such that

Tr
(
MkP

⊗m
j

) = pkδkj , pk > 0, j = 1, . . . ,m,

where Pj is the projection onto supp(ρ⊗m
j ) for any

1 � j � n and pk > 0 for any 1 � k � n. Notice that Mk(k �
2) will support on the orthogonal complement of supp(ρ⊗m

1 ),
which is a contradiction.

Now, it is sufficient to show that the property of being
strongly PPT unextendible can be observed by a PPT-definite
operator:

Lemma 3. Given a bipartite subspace S of A ⊗ B, if there is
a PPT-definite operator σ supporting on S, then S is strongly
PPT unextendible.

Proof. Assume that there exists k such that S⊗k is PPT
extendible and ρ ∈ L(A⊗k ⊗ B⊗k) is the PPT operator sup-
porting on the orthogonal complement of S⊗k . We will show

Tr(σ⊗kρ) = Tr[(σ⊗k)TB ρTB ] > 0, (1)

which is a contradiction since supp(σ⊗k) is still a subspace
of supp(S⊗k). To see this, one only need to observe that σ⊗k

052346-2



INDISTINGUISHABILITY OF BIPARTITE STATES BY . . . PHYSICAL REVIEW A 95, 052346 (2017)

is also PPT-definite. In general, let P be the projection onto
supp(σ ) for some state σ , then supp(σ ) contains a PPT-definite
state if and only if T (σ ) > 0, where

T (σ ) = max t,

s.t. 0 � R � P, RTB � t1.
(2)

Actually, the function T (·) is supermultiplicative, i.e.,

T (σ1 ⊗ σ2) � T (σ1)T (σ2).

To prove this, we can assume that the optimal solutions to SDP
(2) of T (σ1) and T (σ2) are {R1,t1} and {R2,t2}, respectively.

It is clear that 0 � R1 ⊗ R2 � P1 ⊗ P2 and R
TB1
1 ⊗ R

TB2
2 �

t1t21. Then {R1 ⊗ R2,t1t2} is a feasible solution to SDP (2)
of T (σ1 ⊗ σ2), which means that T (σ1 ⊗ σ2) � t1t2 > 0. It
follows that supp(σ⊗n) contains a PPT-definite state when
T (σ ) > 0, since T (σ⊗n) � T (σ )n > 0. �

The proof of Theorem 1 is then straightforward. If there is
a PPT-definite operator supporting on the support of some ρk ,
by Lemma 3, supp(ρk) is strongly PPT unextendible; Then by
Lemma 2, {ρ1, . . . ,ρn} is PPT indistinguishable in the many-
copy scenario. �

B. Examples of sets of quantum states which are PPT
indistinguishable in the many-copy scenario

To see the power of our theorem, we apply it to extend
the result of Ref. [26], which showed that the bipartite
maximally entangled state and the normalized projection onto
its orthogonal complement are PPT indistinguishable in the
many-copy scenario. In fact, our proof illustrates that the
restriction to a maximally entangled state can be removed.

Theorem 4. Given any entangled state |φ〉 ∈ A ⊗ B with
dA = dB = d, let ρ = 1

d2−1 (1A⊗B − |φ〉〈φ|) be the normalized
projection onto its orthogonal complement. Then |φ〉〈φ| and ρ

are PPT indistinguishable in the many-copy scenario.
Proof. It is easy to see that λmin((1 − |φ〉〈φ|)TB ) > 0 is

equivalent to λmax(|φ〉〈φ|TB ) < 1. Suppose that the Schmidt
rank of |φ〉 is m (> 1), and the Schmidt decomposition of |φ〉 is
|φ〉 = ∑m

i=1 λi |ii〉 with λ2
1 � ⋯ � λ2

m and
∑m

i=1 λ2
i = 1. The

partial transposition (with respect to B) of |φ〉〈φ| is

|φ〉〈φ|TB =
m∑

i=1

λ2
i |ii〉〈ii| +

∑
i 	=j

λiλj |ji〉〈ij |

=
m∑

i=1

λ2
i |ii〉〈ii| +

∑
i>j

λiλj

2
[(|ij 〉 + |ji〉)

× (〈ij | + 〈ji|) + (|ij 〉 − |ji〉)(〈ij | − 〈ji|)]. (3)

This shows that λmax(|φ〉〈φ|TB ) = λ2
1 < 1. Therefore,

(1 − |φ〉〈φ|)TB is positive definite and the result follows
directly from Theorem 1. �

On the other hand, it is also interesting to construct sets of
PPT-indistinguishable orthogonal quantum states in the many-
copy scenario without invoking the technique of unextendible
product bases (UPBs) [1]. Utilizing Theorem 1, we exhibit one
simple example as follows:

Example 1. Let dA = dB = d. Choose a set of orthogonal
bases {|φ1〉, . . . ,|φd2〉} of A ⊗ B, such that |φi〉 is maximally

entangled for any i = 1, . . . ,d2. For any positive integer
d2 − d + 1 � m � d2 and any k = 2, . . . ,d2 − m + 1, we can
construct {ρi : i = 1, . . . ,k} which is PPT indistinguishable in
the many-copy scenario.

Proof. We first show that the projection P onto the subspace
span{|φ1〉, . . . ,|φm〉} is PPT-definite. Notice that P = 1d2 −∑d2

i=m+1 |φi〉〈φi |, then

λmin(P TB ) = 1 − λmax

⎛
⎝

d2∑
i=m+1

|φi〉〈φi |TB

⎞
⎠ (4)

� 1 −
d2∑

i=m+1

λmax(|φi〉〈φi |TB ) (5)

� 1 − d2 − m

d
� 1

d
> 0, (6)

where Eq. (6) uses the fact that λmax(|φi〉〈φi |TB ) = 1/d.
Then {ρ1, . . . ,ρk} can be chosen as

ρ1 = 1

m

m∑
i=1

|φi〉〈φi |,

ρ2 =|φm+1〉〈φm+1|,
⋯

ρk =|φm+k−1〉〈φm+k−1|,
where k � d2 − m + 1. �

Remark. For a general set of pure states {|ψ1〉, . . . ,|ψm〉},
we suppose λi is the largest Schmidt coefficient of |ψi〉. We can
use a similar technique to show that if

∑m
i=1 λi < 1, then any

set of states {ρ1, . . . ,ρk} with ρ1 = 1
m

∑n
i=1 |ψi〉〈ψi | is PPT

indistinguishable in the many-copy scenario.

C. Minimum dimension of strongly PPT-unextendible subspace

It is of great interest to connect PPT distinguishability with
other concepts in quantum information theory, and there is no
doubt that Lemma 2 provides one. The notion of strongly PPT
unextendible subspace is a natural generalization of strongly
unextendible subspace, while the latter has been shown widely
useful in quantum information theory. For instance, it has been
shown in Ref. [48] that the minimum dimension of such a
subspace is dA + dB − 1, and this result has been applied
to show the superactivation of the asymptotic zero-error
classical capacity of a quantum channel [37,49]. Since there
is also no product state in the orthogonal complement of
PPT-unextendible subspaces, the minimum dimension of the
strongly PPT-unextendible subspace is at least dA + dB − 1.
In Ref. [47], a PPT-unextendible subspace of dimension
dA + dB − 1 has been explicitly constructed [47]. To be
specific, this subspace is the orthogonal complement of

S = span{|j 〉|k + 1〉 − |j + 1〉|k〉 : 0 � j

� dA − 2, 0 � k � dB − 2}.
Using Lemma 3, we show that the subspace S⊥ is actually
strongly PPT unextendible, which illustrates that the minimum
dimension of strongly PPT-unextendible subspaces in A ⊗ B
is also dA + dB − 1.
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Theorem 5. Let dA = m, dB = n satisfying 2 � m � n, and S is defined as above. Then S⊥ is strongly PPT unextendible.
Proof. Denote S⊥ by Smn with respect to the dimension of A and B. Smn can be written in the following form:

Smn = span

⎧⎨
⎩|ψs〉 =

m−1−s∑
j=0

|j 〉|m − 1 − s − j 〉 : s = 0, . . . ,m − 1; |φt 〉 =
min{n−1,t}∑
j=t−m+1

|t − j 〉|j 〉 : t = m, . . . ,m + n − 2

⎫⎬
⎭.

We claim that there exist positive real numbers x0,x1, . . . ,xm−1,ym, . . . ,ym+n−2 such that

ρmn =
m−1∑
s=0

xm−1−s |ψs〉〈ψs | +
m+n−2∑

t=m

yt |φt 〉〈φt | (7)

is PPT definite. Notice that

|ψs〉〈ψs |TB =
n−1−s∑
j1,j2=0

|j1〉〈j2| ⊗ |m − 1 − s − j2〉〈m − 1 − s − j1|,

|φt 〉〈φt |TB =
min{n−1,t}∑

j1,j2=t−m+1

|t − j1〉〈t − j2| ⊗ |j2〉〈j1|.
(8)

We consider the matrix form of ρTB
mn under the computational basis. Divide {|jk〉 : j = 0, . . . ,m − 1,k = 0, . . . ,n − 1} into the

following families:

Pa = {|m − 1 − a + t〉|t〉 : 0 � t � a}a = 0, . . . ,m − 1;

Qb = {|r〉|r + b〉 : 0 � r � min{n − 1 − b,m − 1}}b = 1, . . . ,n − 1.
(9)

The submatrices with respect to bases Pa and Qb are denoted by Pa and Qb. More precisely, Pa and Qb have the following form:

Pa =

⎛
⎜⎝

xa xa−1 ⋯ x0

xa−1 ⋰ ⋰ ym

⋰ ⋰ ⋰ ⋮

x0 ym ⋯ ym+a−1

⎞
⎟⎠

(a+1)×(a+1)

0 � a � m − 1,

Qb =

⎛
⎜⎜⎜⎜⎜⎝

xm−1−b ⋯ x0 ym ⋯ ym+b−1

⋮ ⋰ ⋰ ⋰ ⋰ ⋮

x0 ⋰ ⋰ ⋰ ⋰ ⋮

ym ⋰ ⋰ ⋰ ⋰ ⋮

⋮ ⋰ ⋰ ⋰ ⋰ ⋮

ym+b−1 ⋯ ⋯ ⋯ ⋯ y2m+b−2

⎞
⎟⎟⎟⎟⎟⎠

(m)×(m)

1 � b � n − m,

Qb =

⎛
⎜⎜⎜⎜⎜⎝

xm−1−b ⋯ x0 ym ⋯ yn−1

⋮ ⋰ ⋰ ⋰ ⋰ ⋮

x0 ⋰ ⋰ ⋰ ⋰ ⋮

ym ⋰ ⋰ ⋰ ⋰ ⋮

⋮ ⋰ ⋰ ⋰ ⋰ ⋮

yn−1 ⋯ ⋯ ⋯ ⋯ y2n−b−2

⎞
⎟⎟⎟⎟⎟⎠

(n−b)×(n−b)

b > n − m. (10)

Then we have

ρTB

mn = ( ⊕m−1
a=0 Pa

) ⊕ ( ⊕n−1
b=1 Qb

)
.

To make sure that ρTB
mn is positive definite, it is equivalent

to make sure that Pa and Qb are positive definite for
a = 0, . . . ,m − 1 and b = 1 . . . ,n − 1.

The case m = n = 2 is easy to verify. Notice that
S22 = span{|00〉,|01〉 + |10〉,|11〉} and we can easily choose
an operator ρ = 2(|00〉〈00| + |11〉〈11|) + (|01〉 + |10〉)(〈01| +
〈10|) which is PPT definite.

We first consider m = n and prove it by mathematical
induction. Specifically, if ρTB

mm is positive definite, then we
can construct ρ

TB

m+1m+1 which is also positive definite. Notice

that when m = n, we can assume xa = ym−1+a , then we
have Pa = Qm−1−a for a = 0, . . . ,m − 2 and ρTB

mm = Pm−1 ⊕
[⊕m−2

k=0 (Pk ⊕ Qm−1−k)]. Since ρTB
mm is positive definite, there

exist positive x0, . . . ,xm−1 such that

Pk =

⎛
⎜⎜⎜⎝

xk xk−1 ⋯ x0

xk−1 ⋰ ⋰ x1

⋮ ⋰ ⋰ ⋮

x0 x1 ⋯ xk

⎞
⎟⎟⎟⎠

(k+1)×(k+1)
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is positive definite for k = 0, . . . ,m − 1. For ρ
TB

(m+1)(m+1), we
want to find x ′

0, . . . ,x
′
m such that

P ′
k =

⎛
⎜⎜⎜⎝

x ′
k x ′

k−1 ⋯ x ′
0

x ′
k−1 ⋰ ⋰ x ′

1
⋮ ⋰ ⋰ ⋮

x ′
0 x ′

1 ⋯ x ′
k

⎞
⎟⎟⎟⎠

(k+1)×(k+1)

> 0

for k = 0, . . . ,m. Let x ′
k = xk for k = 0, . . . ,m − 1, then

P ′
k > 0 can be guaranteed. We only need to find a positive

x ′
m such that

P ′
m =

⎛
⎜⎜⎜⎝

x ′
m xm−1 ⋯ x0

xm−1 ⋰ ⋰ x1

⋮ ⋰ ⋰ ⋮

x0 x1 ⋯ x ′
m

⎞
⎟⎟⎟⎠

(m+1)×(m+1)

is positive definite. Notice that we only need to show the
leading principal minors of P ′

m are all positive definite. Thus
we have m − 1 linear constraints and a quadratic constraint on
variable x ′

m. For all linear constraints, the coefficients of x ′
m

are positive, which can be easily derived since P ′
k are positive

definite for k = 1, . . . ,m − 1. Moreover, the coefficient of
(x ′

m)2 in the quadratic constraint is also positive since the
following matrix

⎛
⎜⎜⎜⎝

xm−2 ⋯ x1 x0

⋮ ⋰ x0 x1

x1 ⋰ ⋰ ⋮

x0 x1 ⋯ xm−2

⎞
⎟⎟⎟⎠

is also positive definite. It is then straightforward to see that
feasible solutions always exist. Thus we can choose one to
make sure ρ

TB

(m+1)(m+1) is positive definite.
Finally, we extend to the case m 	= n by a similar technique.

Assume we have already known x ′
0, . . . ,x

′
m−1 such that ρmm

is PPT-definite. For ρmn where n > m, we are going to find
x0, . . . ,xm−1 and ym, . . . ,ym+n−2 such that ρmn is PPT-definite
too. Let xi = x ′

i for i = 0, . . . ,m − 1 and ym+j = xj+1 for
j = 0, . . . ,m − 2. These guarantee that Pa in Eq. (10) is

positive definite for a = 0, . . . ,m − 1. Then we consider
Qb, where b = 1 . . . ,n − m. When b = 1, we only need to
determine y2m−1 such that y2m−1 > 0 and Q1 is positive
definite. This can be done by only guaranteeing the determinant
of Qb is always positive, which is a linear constraint for y2m−1.
This is true since the first m − 1 leading principle minors of Q1

are leading principle minors of Pm−2, which is automatically
positive. Then we can determine y2m−2, . . . ,ym+n−2 with the
same technique. Finally, we show that Qb is positive definite
for b = n − m + 1, . . . ,n − 1. In fact, this is the (m − 1)th
leading principle minor of some Qn−m−2, which is positive
definite. This concludes our proof. �

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we study the indistinguishability of bipartite
quantum states by PPT operations in the many-copy scenario.
By introducing the concept of a strongly PPT-unextendible
subspace, we show that such subspace plays a crucial role in de-
termining PPT indistinguishability in the many-copy scenario.
Connected by that, we show that the PPT-definite operators
can be served as evidence of the PPT indistinguishability. And
this evidence can be formalized as a semidefinite program,
which can be checked efficiently [50].

We then apply our result to demonstrate that any entangled
pure state and the normalized projector onto its orthogo-
nal complement is PPT indistinguishable in the many-copy
scenario. This provides a simpler and more general proof
than that in Ref. [26]. On the other hand, we apply our
results to show that the minimum dimension of strongly
PPT-unextendible subspaces in an m⊗n quantum system is
m + n − 1. This coincides with the minimum dimension of
unextendible subspace [48] and involves an extension of the
result that non-PPT subspaces can be as large as any entangled
subspace in Ref. [47].
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