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Abstract. We give polynomial time algorithms to compute the third
and fourth moments about the mean of tour costs over the solution space
of the general symmetric Travelling Salesman Problem (TSP). These
algorithms complement previous work on the population variance and
provide a tractable method to compute the skewness and kurtosis of the
probability distribution of tour costs. The methodology is generalisable
to higher moments. Experimental evidence is given that suggests the
skewness asymptotically approaches a limit point as the instance size is
increased in several problem types.

1 Introduction

1.1 The TSP

The travelling salesman problem (TSP) is a classic problem in combinatorial
optimization. Extensive references include [1–3]. Linear programming reductions
are surveyed in [4] while the properties of frequently used local search heuris-
tics are considered in [5]. It is natural to define the symmetric TSP in terms
of a complete undirected graph Γ = (V, E) with the vertices V representing
cities, and the edges E representing the connections between cities. We label
the set of n vertices as {1, 2, . . . , n}, and an n-cycle permutation of these is
a tour or solution, π. The set of all tours, the solution space, is denoted Θ.
The distance between cities (or cost of an edge), is a function cost : E → R
which we extend to the function Ω : Θ → R, defined as the cost of a tour
Ω(π) =

∑n
i=1 cost({π(i), π((i mod n) + 1)}).

The TSP is to find some n-cycle permutation π of V for which Ω(π) is
smallest. Such a permutation π∗ is called a global minimum tour. If there are n
cities then the number of tours is |Θ| = (n− 1)!/2.

1.2 Survey of Statistical Results

Previous theoretical work on the probability distribution of the TSP is surveyed
in [6, 7], these largely concern the case of the Euclidean TSP with city coordinates
as n random variables in bounded subsets of Rd. Beardwood et. al. [8] prove that
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Ω(π∗) approaches a constant as n →∞. Steele proves the variance of costs over
the solution space is bounded [6]. Rhee and Talagrand prove that the tails of the
cost distribution approach that of a Gaussian as the number of cities increases [9].
In the more general case Krauth and Mézard [10] extend the result of Beardwood
et. al. to problems with uniform random edge costs. More recently Wästlund [11]
extends it to the TSP on bipartite graphs with uniform random edge costs.

Basel et. al. [12] show by random sampling a remarkable linear correlation
between the square root of a problem size and an estimate of the number of
standard deviations between the mean tour cost and the known optimal tour cost
in a real world set of approximately Euclidean problems. Sutcliffe et. al. [13] give
a constructive proof that the population variance of tour costs over the solution
space of an instance of size n cities can be computed in O(n2), see Theorem 1
below. Applying this, they confirm the linear relationship found by Basel et.
al. and show a similar, although non-linear, relationship in the case of a set of
non-Euclidean real world problems.

1.3 Moments in Terms of the TSP

In terms of a TSP with solution space Θ, cost function Ω and mean tour cost
µ, the kth moment about the mean or central moment [14] can be written

mmk(Θ) =

∑
π∈Θ

((Ω(π)− µ)k)

|Θ| . (1)

It is reported in [15](and a simple proof follows from Lemma 1) that the
mean tour cost over the solution space of a problem of size n cities with edge set
E is µ = 2

n−1

∑
e∈E

cost(e). The second moment or population variance is given

by Theorem 1 below. Comparison of the second and third moments provides the
well known statistic, the skewness, α3(X) = mm3(X)

mm2(X)3/2 , which reflects the degree
of symmetry of a probability distribution [14].

Theorem 1. The population variance of tour costs over the solution space of a
TSP of size n cities and with edge set, E and vertex set V is

var =
2β1

(n− 1)
− 4β1 + 2β2

(n− 1)(n− 2)
(2)

with the values β1, β2 being defined as

β1 =
∑

e∈E

c0(e)2

β2 =
∑

e={x,y}∈E

[c0(e)(Sx + Sy − 2c0(e))]
(3)

where c0(e) = cost(e)−µ/n, Ix is the set of edges incident to a vertex x with
Sx =

∑
e∈Ix

c0(e) and similarly for Sy.
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2 The Third and Fourth Moment of Costs over the
Solution Space

We begin with a technical lemma providing the number of tours containing
various configurations of edges. Table 1 enumerates the eleven cases to be used.

Lemma 1. Given a TSP with graph Γ, let P be a set of m, non-cyclic, non-
singleton paths over Γ sharing no vertices. Let k be the number of vertices not
appearing in any path of P. Then there are 2m−1(k + m − 1)! tours containing
all the paths in P.

Proof. Label the paths of P, pj with j ∈ [1 . . . m]. We recall that a tour is a
cyclic permutation of vertices. Therefore, without loss of generality, fix p1 in posi-
tion and orientation and write a tour as (p1, i1, i2 . . . , iq, p2, iiq+1 . . . , pm . . . , ik).
There are (k + m − 1)! orderings of the free paths and vertices. Each path is
at least 2 vertices long and so each of the m − 1 free paths has 2 orientations,
implying the result. ut

Table 1. The eleven ways that, up to four unlabelled edges, can be arranged into paths
in tours of size n. The − character represent an edge, so −− means a path with 2 edges
and three vertices. The ! symbol, the set (possibly empty) of free vertices between
unconnected paths. The number of paths is given by m, while k is the number of free
vertices.

case pattern m k num. tours cities n

1 − ! 1 (n− 2) (n− 2)! n > 2
2 −− ! 1 (n− 3) (n− 3)! n > 2
3 − ! − ! 2 (n− 4) 2(n− 3)! n > 3
4 −−− ! 1 (n− 4) (n− 4)! n > 3
5 −− ! − ! 2 (n− 5) 2(n− 4)! n > 4
6 − ! − ! − ! 3 (n− 6) 4(n− 4)! n > 5
7 −−−− ! 1 (n− 5) (n− 5)! n > 4
8 −−− ! − ! 2 (n− 6) 2(n− 5)! n > 5
9 −− ! −− ! 2 (n− 6) 2(n− 5)! n > 6

10 −− ! − ! − ! 3 (n− 7) 4(n− 5)! n > 6
11 − ! − ! − ! − ! 4 (n− 8) 8(n− 5)! n > 7

2.1 Computing the Third Moment

In order to prove our central theorem we provide some notational machinery. Let
Θ be the solution space of a TSP with edge set E and cost function Ω. We index
each π in Θ with an integer m ∈ [1 . . . |Θ|], similarly we label the edges of E as
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ei with i ∈ [1 . . . |E|]. We define the function [1 . . . |Θ|] × [1 . . . |E|] : t → {0, 1}
as

tmi =

{
1 if edge ei is in tour m

0 otherwise.

Under this arrangement if m is the index of a tour π then the cost of π is

Ω(π) = tm1cost(e1) + tm2cost(e2) . . . tm|E|cost(e|E|) ,

and specializing (1) to k = 3, the third moment about the mean µ is

mm3(Θ) =

|Θ|∑
m=1

((tm1cost(e1) + tm2cost(e2) . . . tm|E|cost(e|E|)− µ)3)

|Θ| . (4)

Now |Θ| is, of course, factorial on n and so this formulation is impractical for all
but the smallest problems. In Theorem 2 we give a polynomial time solution to
the problem.

Returning to notational matters, let Ap be the set of edges adjacent to edge
ep. Let Np,q,... be the set of edges neither adjacent to nor equal to edges ep, eq, . . . ,
so Np,q,... = E − (Ap

⋃{ep}
⋃

Aq

⋃{eq} . . .).

Theorem 2. The third moment about the mean of tour costs over the solution
space of a TSP with n > 3 cities, mean tour cost µ, and with edge set E is

mm3 =
2γ1

(n− 1)
+

2(γ2 + 2γ3)
(n− 1)(n− 2)

+
2(γ4 + 2γ5 + 4γ6)

(n− 1)(n− 2)(n− 3)

with the values γ1, γ2, γ3γ4, γ5, γ6 given by

γ1 =
∑

e∈E

c0(e)3

γ2 = 3
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq)

γ3 = 3
∑

ep∈E

c0(ep)2
∑

eq∈Np

c0(eq)

γ4 = 3
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Aq−(Ap

⋃{ep})
c0(er)

γ5 = 3
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er)

γ6 =
∑

ep∈E

c0(ep)
∑

eq∈Np

c0(eq)
∑

er∈Np,q

c0(er)

where c0(e) = cost(e)− µ/n.

Proof. Consider (4). Each tour has only n edges, so for a given m there are
just n tmi which are equal to 1, the remainder being equal to 0. So let c0(ei) =
cost(ei)− µ/n. Then (4) is written
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mm3(Θ) =

|Θ|∑
m=1

((tm1c0(e1) + tm2c0(e2) . . . tm|E|c0(e|E|))3)

|Θ| ,

=

|Θ|∑
m=1

|E|∑
k=1

|E|∑
j=1

|E|∑
i=1

tmitmjtmkc0(ei)c0(ej)c0(ek)

|Θ| .

The product tmitmjtmk = 1, if and only if, tour m contains the edges ei, ej , ek

and there are six way in which this can occur,

case 1 All of ei, ej , ek are equal. By Lemma 1 and Case 1 of Table 1 there are
(n− 2)! tours containing the edge.

case 2 Two of ei, ej , ek are equal and the third is adjacent. By Lemma 1 and
Case 2 of Table 1 there are (n − 3)! tours containing the three edges so
configured.

case 3 Two of ei, ej , ek are equal and the third is non-adjacent to them. By
Lemma 1 and Case 3 of Table 1 there are 2(n − 3)! tours containing the 2
edges so configured.

case 4 The three edges ei, ej , ek form a path. By Lemma 1 and Case 4 of Table 1
there are (n− 4)! tours containing the edges so configured.

case 5 Two of ei, ej , ek are adjacent and the third is non adjacent to either. By
Lemma 1 and Case 5 of Table 1 there are 2(n−4)! tours containing the three
edges so configured.

case 6 All ei, ej , ek are all non adjacent to each other. By Lemma 1 and Case 6
of Table 1 there are 4(n− 4)! tours containing the three edges so configured.

For each of there six cases we write the sum of edge cost products as γ1 to γ6 in
(2). Upon collecting like terms we have:

mm3(Θ) =((n− 2)!γ1 + (n− 3)!γ2 + 2(n− 3)!γ3

+ (n− 4)!γ4 + 2(n− 4)!γ5 + 4(n− 4)!γ6)/|Θ|

=
2((n− 2)!γ1 + (n− 3)!(γ2 + 2γ3) + (n− 4)!(γ4 + 2γ5 + 4γ6))

(n− 1)!

=
2γ1

(n− 1)
+

2(γ2 + 2γ3)
(n− 1)(n− 2)

+
2(γ4 + 2γ5 + 4γ6)

(n− 1)(n− 2)(n− 3)
.

as required. ut

162 International Workshop on Combinatorial Algorithms 07



2.2 Reducing the Computational Complexity of Third Moment

The set Ap is O(n) in size, while the sets E,Np, Np,q are all O(n2) in size. This
implies that a naive application of Theorem 2 above would have complexity
O(n6), being that of the sum γ6. Here we show that this can be reduced to
O(n4). Let Ix be the set of edges incident the vertex x and let Sx =

∑
e∈Ix

c0(e),

be the sum of edge costs incident to x. Now |Ix| = n− 1, so the time complexity
of pre-computing all the n values Sx is O(n2) and the space complexity of saving
them is O(n).

Lemma 2. γ2 can be found in O(n2)

Proof. Recall that γ2 = 3
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq). Consider the right most sum

on Ap. We show this can be found in constant time. Writing each edge ep, as
ep = {p1, p2} and noting that Ap = (Ip1

⋃
Ip2)− {ep} gives,

γ2 = 3
∑

ep∈E

c0(ep)2(Sp1 + Sp2 − 2c0(ep))

= 6γ1 + 3
∑

ep∈E

c0(ep)2(Sp1 + Sp2) .

This along with |E| ∈ O(n2) implies the result. ut
Lemma 3. γ3 = −γ2 − 3γ1

Proof. Recall that γ3 = 3
∑

ep∈E

c0(ep)2
∑

eq∈Np

c0(eq). Consider the right most sum,

Np = E − (Ap

⋃{ep}). So
∑

e∈Np

c0(e) =
∑

e∈E

c0(e) −
∑

e∈Ap

c0(e) − c0(ep), but
∑

e∈E

c0(e) = 0 thus

γ3 = 3
∑

ep∈E

c0(ep)2
[
− ∑

eq∈Ap

c0(eq)− c0(ep)

]

= −3
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq)− 3
∑

ep∈E

c0(ep)2c0(ep)

= −γ2 − 3γ1 .

As required. ut
Lemma 4. γ4 can be found in O(n3)

Proof. Recall that γ4 = 3
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Aq−(Ap
⋃{ep})

c0(er). We show

that the right most sum can be found in constant time given an ep and eq. Let
ep = {s, p}, let eq = {s, q} be adjacent to it, sharing vertex s, and let epq = {p, q}
be adjacent to both. In addition let Iq be the sets of edges incident to vertex q and
let Sq be the pre-computed edge sum. Then Aq−(Ap

⋃{ep}) = Iq−({eq}
⋃{epq})

and
γ4 = 3

∑
ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)(Sq − c0(eq)− c0(epq)) .

This along with |E| ∈ O(n2) and |Ap| ∈ O(n) implies the result. ut
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Lemma 5. γ5 can be found in O(n3)

Proof. Recall that γ5 = 3
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er) We show that the

right most sum can be found in constant time.
Let ep = {s, p}, let eq = {s, q} be adjacent to it, sharing vertex s, and

let epq = {p, q} be adjacent to both. In addition let Is, Ip, Iq be the sets of
edges incident to the vertices s, p, q respectively and let Ss, Sp, Sq be the pre-
computed edge sums. Now Np,q = E − (Is

⋃
Ip

⋃
Iq), but

∑
e∈E

c0(e) = 0 and

the edges epq, eq, ep are each elements of two of Is, Ip, Iq so,
∑

er∈Np,q

c0(er) =

c0(ep) + c0(eq) + c0(epq)− Ss − Sp − Sq and

γ5 = 3
∑

ep∈E

[
c0(ep)

∑
eq∈Ap

c0(eq) [c0(ep) + c0(eq) + c0(epq)− Ss − Sp − Sq]

]

= 6γ2 + 3
∑

ep∈E

[
c0(ep)

∑
eq∈Ap

c0(eq) [c0(epq)− Ss − Sp − Sq]

]
.

This along with |E| ∈ O(n2) and |Ap| ∈ O(n) implies the result ut

Lemma 6. γ6 can be found in O(n4)

Proof. Recall that γ6 =
∑

ep∈E

c0(ep)
∑

eq∈Np

c0(eq)
∑

er∈Np,q

c0(er). We show that

the right most sum can be found in constant time and the that the middle
sum can be rewritten over Ap. Let ep = {p1, p2} and let eq = {q1, q2} be
non adjacent. In addition let Ip1, Ip2, Iq1, Iq2 be the sets of edges incident to
these vertices and let Sp1, Sp2, Sq1, Sq2 be the pre-computed edge sums. Now
Np,q = E−(Ip1

⋃
Ip2

⋃
Iq1

⋃
Iq2), but

∑
e∈E

c0(e) = 0 and the edges ep, eq, {p1, q1},
{p1, q2}, {p2, q1}, {p2, q2} are each elements of two of Ip1, Ip2, Iq1, Iq2. Therefore
write SNp,q =

∑
e∈Np,q

c0(e) = −Sp1−Sp2−Sq1−Sq2+c0(ep)+c0(eq)+c0({p1, q1})+
c0({p1, q2}) + c0({p2, q1}) + c0({p2, q2}) and

γ6 =
∑

ep∈E

[
c0(ep)

∑
eq∈Np

c0(eq)SNp,q

]
,

as required. ut

Theorem 3. The complexity of computing the third moment about the mean of
tour costs over the solution space of a TSP with n cities is O(n4).

Proof. This follows directly from Theorem 2, the comments at the beginning of
Sect. 2.2, and Lemmas 2 to 6. ut
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2.3 Computing the Fourth Moment about the Mean of Tour Costs

Theorem 4. The fourth moment about the mean of tour costs over the solution
space of a TSP with mean tour cost µ, size n > 5 cities and with edge set E is

mm4 =
2δ1

(n− 1)
+

2(δ2a + δ2b + 2δ3a + 2δ3b)
(n− 1)(n− 2)

+
2(δ4a + δ4b + 2δ5a + 2δ5b + 4δ6)

(n− 1)(n− 2)(n− 3)

+
2(δ7 + 2δ8 + 2δ9 + 4δ10 + 8δ11)
(n− 1)(n− 2)(n− 3)(n− 4)

,

with the values δ1, δ2a, δ2b, δ3a, δ3b, δ4a, δ4b, δ5a, δ5b, δ6, δ7, δ8, δ9, δ10δ11 given
by

δ1 =
∑

e∈E

c0(e)4

δ2a = 3
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq)2

δ2b = 4
∑

ep∈E

c0(ep)3
∑

eq∈Ap

c0(eq)

δ3a = 3
∑

ep∈E

c0(ep)2
∑

eq∈Np

c0(eq)2

δ3b = 4
∑

ep∈E

c0(ep)3
∑

eq∈Np

c0(eq)

δ4a = 12
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq)
∑

er∈Aq,
er 6∈Ap,
er 6=ep

c0(er)

δ4b = 6
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)2
∑

er∈Aq,
er 6∈Ap,
er 6=ep

c0(er)

δ5a = 12
∑

ep∈E

c0(ep)2
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er)

δ5b = 6
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er)2

δ6 = 6
∑

ep∈E

c0(ep)2
∑

eq∈Np

c0(eq)
∑

er∈Np,q

c0(er)
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δ7 = 12
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Aq,
er 6∈Ap,
er 6=ep

c0(er)
∑

es∈Ar,
es 6∈Aq,
es 6∈Ap

c0(es)

δ8 = 12
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Aq,
er 6∈Ap,
er 6=ep

c0(er)
∑

es∈Np,q,r

c0(es)

δ9 = 3
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er)
∑

es∈Ar,
es∈Np,q

co(es)

δ10 = 6
∑

ep∈E

c0(ep)
∑

eq∈Ap

c0(eq)
∑

er∈Np,q

c0(er)
∑

es∈Np,q,r

c0(es)

δ11 =
∑

ep∈E

c0(ep)
∑

eq∈Np

c0(eq)
∑

er∈Np,q

c0(er)
∑

es∈Np,q,r

c0(es)

where c0(e) = cost(e)− µ/n.

Proof. Specializing (1) to k = 4, and proceeding as we did for the third moment
we have

mm4(Θ) =

|Θ|∑
m=1

|E|∑
l=1

|E|∑
k=1

|E|∑
j=1

|E|∑
i=1

tmitmjtmktmlc0(ei)c0(ej)c0(ek)c0(el)

|Θ| .

The product tmitmjtmktml = 1 if and only if tour m contains the edges
ei, ej , ek, el and there are eleven ways in which this can occur.

case 1 All of ei, ej , ek, el are equal. By Lemma 1 there are (n − 2)! tours con-
taining the edge. The value δ1 is the sum of terms in this case.

case 2 From ei, ej , ek, el there are 2 distinct edges and they form a path. By
Lemma 1 there are (n − 3)! tours containing the edges. The values δ2a, δ2b

are the sums of terms in this case.
case 3 From ei, ej , ek, el there are 2 distinct edges and they are non adjacent.

By Lemma 1 there are 2(n−3)! tours containing the edges. The values δ3a, δ3b

are the sums of terms in this case.
case 4 From ei, ej , ek, el there are 3 distinct edges and they form a path. By

Lemma 1 there are (n − 4)! tours containing the edges. The values δ4a, δ4b

are the sums of terms in this case.
case 5 From ei, ej , ek, el there are 3 distinct edges two of which form a path,

the third is non adjacent. By Lemma 1 there are 2(n− 4)! tours containing
the edges. The values δ5a, δ5b are the sums of terms in this case.

case 6 From ei, ej , ek, el there are 3 distinct. All are non adjacent. By Lemma 1
there are 4(n − 4)! tours containing the edges. The value δ6 is the sum of
terms in this case.

case 7 Each of ei, ej , ek, el are distinct and form a path. By Lemma 1 there are
(n− 5)! tours containing the edges. The value δ7 is the sum of terms in this
case.
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case 8 Each of ei, ej , ek, el are distinct, 3 form a path, the other is non adjacent.
By Lemma 1 there are 2(n− 5)! tours containing the edges. The value δ8 is
the sum of terms in this case.

case 9 Each of ei, ej , ek, el are distinct and form 2 non adjacent paths of 2 edges.
By Lemma 1 there are 2(n− 5)! tours containing the edges. The value δ9 is
the sum of terms in this case.

case 10 Each of ei, ej , ek, el are distinct. Two are adjacent. The remaining are
non adjacent. By Lemma 1 there are 4(n − 5)! tours containing the edges.
The value δ10 is the sum of terms in this case.

case 11 Each of ei, ej , ek, el are distinct. All are non adjacent. By Lemma 1
there are 8(n − 5)! tours containing the edges. The value δ11 is the sum of
terms in this case.

For each of these cases we write the sum of edge cost products as δ1 to δ11

in (4). Upon collecting like terms we have

mm4(Θ) = (n−2)!δ1
|Θ|

+ (n−3)!δ2a+(n−3)!δ2b+2(n−3)!δ3a+2(n−3)!δ3b

|Θ|

+ (n−4)!δ4a+(n−4)!δ4b+2(n−4)!δ5a+2(n−4)!δ5b+4(n−4)!δ6
|Θ|

+ (n−5)!δ7+2(n−5)!δ8+2(n−5)!δ9+4(n−5)!δ10+8(n−5)!δ11
|Θ| .

Recall |Θ| = (n− 1)!/2 so upon cancelation we have the result. ut

3 Empirical Examination of the Relationship between
Skewness and Problem Size

We examine four problem sets, two real world and two randomly generated. The
four types are summarized in Table 2.

Table 2. Problem types

ProblemType Size in Cities Cases Problem Description

Random Euclidean 10-1000 21 2 Euclidean Metric of TSPLIB [16].
VLSI 131-984 10 2 Euclidean Metric of TSPLIB.
Random no embed. 10-1000 21 Random integer edge costs from U(0, 999)
RH Data 68-662 39 Non Euclidean. Genomics problems.

Of the real world sets the first set originated in the production of very large
scale integrated circuits (VLSI) and uses the 2 dimensional Euclidean metric
of [16]. The second set, of 39 instances, approximately obey the triangular in-
equality, but are non-Euclidean. They originate in the genomics community
and arise from physical mapping of canine DNA by the radiation-hybrid (RH)
method. The specific data set used was obtained from the RHDF9000 dog radi-
ation hybrid panel[17].
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Fig. 1. The skewness versus the problem size in four problem types.

3.1 Results

The skewness of each instance was found using Theorems 1 and 2 in conjunc-
tion with Lemmas 2 to 6. Figure 1 shows its relationship to problem size. The
relationship suggests, that in the case of the non RH data sets the skewness
asymptotically approaches 0 with size. The RH data set is somewhat suggestive
of convergence but to a lower limit point.

4 Conclusions and Future Work

In this paper we have given constructive proofs that the third central moment
of tour costs over the solution space of any instance of a TSP of size n cities
can be computed in O(n4) and the that fourth central moment can be computed
in O(n8). Experience with the third moment would suggest this computational
complexity may be reduced to O(n6).

The method can be generalised to higher moments (at increased cost) and
to variations of the problem such as the asymmetrical TSP.

Previous theoretical work on the probability distribution of the TSP was
largely confined to the Euclidean case and did not extend to providing the mo-
ments. Future work will investigate the role of the third and fourth moments
in refining current methods to estimate the optimal solution cost and to under-
standing the solution space of the problem.

Experimental evidence is given suggesting that the skewness asymptotically
approaches 0 as the problem size is increased, in randomly generated non-
embeddable and both random and real world 2 dimensional Euclidean instances.
This implies that in these problem types, the distribution of tour costs become
more symmetric as the problem size increases. This may make it possible to
find bounds on the value of the odd moments of the cost distribution in certain
classes of problem.
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