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Abstract

We compare a number of widely used trend-cycle decompositions of output in a for-
mal Bayesian model comparison exercise. This is motivated by the often markedly
different results from these decompositions—different decompositions have broad
implications for the relative importance of real versus nominal shocks in explaining
variations in output. Using US quarterly real GDP, we find that the overall best
model is an unobserved components model with two features: 1) a nonzero corre-
lation between trend and cycle innovations; 2) a break in trend output growth in
2007. The annualized trend output growth decreases from about 3.4% to 1.2%–
1.5% after the break. The results also indicate that real shocks are more important
than nominal shocks. The slowdown in trend output growth is robust when we
expand the set of models to include bivariate unobserved components models.
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1 Introduction

The decomposition of output into its trend and cyclical components is an important
theoretical and empirical problem in the study of macroeconomic fluctuations, business
cycles, and monetary and fiscal policy. Important early contributions to the literature
include the Beveridge and Nelson (1981) decomposition using an unrestricted ARIMA
model and the unobserved components models of Harvey (1985), Watson (1986) and
Clark (1987). However, these two widely used trend-cycle decompositions yield markedly
different results. The Beveridge-Nelson decomposition attributes most of the variance
in output to the variation in trend—the cyclical component is small in amplitude and
noisy. In contrast, the cyclical components from the unobserved components models are
typically large, highly persistent and account for most of the variation in output.

These apparently conflicting results are reconciled in an important paper by Morley,
Nelson, and Zivot (2003). They demonstrate that the difference is entirely due to one
restriction imposed in the unobserved components model: the innovations to the trend
and cycle are assumed to be uncorrelated. When this restriction is relaxed, they find that
the two trend-cycle decompositions are identical (see also Morley, 2011). As a result, both
estimation methods imply that real or permanent shocks are important and that cycles
are small and noisy, and bear little resemblance to the business cycle chronology dated
by the National Bureau of Economic Research (NBER).

However, Perron and Wada (2009) argue that these features of the cycles are artifacts
that arise from the neglect of a structural break in trend output growth. When a break in
growth is allowed for, the cycle estimates are substantially more persistent and accord well
with the NBER chronology. Importantly, their preferred model is one with a deterministic
trend, which implies all the variation in output can be attributed to innovations to the
cyclical component—i.e., real shocks are unimportant.

This brief overview of the literature underscores the sensitivity of cycle estimates to model
choice, with differences in one or two key parameters giving starkly different trend-cycle
decompositions. Other model specification choices—such as the dating of a break, which
is fixed in 1973Q1 in Perron and Wada (2009)—can also be framed as a model selection
problem. The model that is used has broad implications for the conclusions drawn about
the relative importance of real versus nominal shocks in explaining variations in output.
Hence, it is important to perform a model comparison exercise to select the best model
(or average different model estimates across models), but it is seldom done in practice.

We take up this task and use a Bayesian model comparison framework to assess the
adequacy of a variety of nested and nonnested models for decomposing US quarterly
real GDP. In particular, we compare the unobserved components models of Clark (1987),
Morley et al. (2003) and Perron and Wada (2009), and deterministic trend models (with
or without a break). By treating each fixed break date as a separate model, we are able
to date any change that might have occurred in output growth. There are two closely
related papers. The first is Morley and Piger (2012), who consider model comparison
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using information criteria and model averaging using an asymptotic approximation to
the Bayes factors. In contrast, we provide exact computations of the Bayes factors for
either model comparison or model averaging. Consequently, there are notable differences
between the results of the two approaches. The second is Luo and Startz (2014), who
compare three models using Bayesian methods: the model of Morley et al. (2003) with
or without a break and a model with an unknown break date. Their preferred model is
the model of Morley et al. (2003) with a break at 2006Q1. We consider a larger class of
models in our model comparison exercise. In addition, despite using similar techniques,
there are a few noticeable differences in our results, which are detailed below.

In order to compare the various trend-cycle decompositions, we develop new Bayesian
estimation techniques using Markov chain Monte Carlo (MCMC) methods (see, e.g.,
Koop and Korobilis, 2010, for a general introduction of Bayesian methods for empirical
macroeconomics). A key novel feature of our approach is that it builds upon the band
and sparse matrix algorithms for state space models developed in Chan and Jeliazkov
(2009), McCausland, Miller, and Pelletier (2011) and Chan (2013), which are shown to
be more efficient than the conventional Kalman filter-based algorithms. In addition, due
to the modular nature of MCMC algorithms, it is relatively straightforward to extend the
estimation methods to regime-switching models or models with non-Gaussian innovations.

Our main results can be summarized as follows. First, allowing for a nonzero correlation
between the permanent and transitory shocks substantially improves model fit. This is
in line with the finding in Morley et al. (2003), who report an estimate of −0.9 for the
correlation parameter, but in contrast to the posterior mean of 0.18 reported in Luo and
Startz (2014) under their preferred model. Second, the correlated unobserved components
model of Morley et al. (2003) dominates any deterministic trend models with or without
a break in trend growth.

Among correlated unobserved components models, a break in trend growth is likely to
have occurred in 2007. The annual trend output growth is estimated to have decreased
from about 3.4% to 1.2%–1.5% after the break. The latter figures are close to the forecast
of US potential output growth from 2007 to 2032 given in Gordon (2014).1 This is in
contrast to the even lower trend growth estimate of 0.89% after 2006 reported in Luo and
Startz (2014). Our result of markedly slower trend output growth after 2007 is robust
when we expand the set of models to include bivariate correlated unobserved components
models of GDP and inflation, and GDP and the unemployment rate.

The remainder of this article is organized as follows. Section 2 first discusses a variety
of trend-cycle decompositions of output that are widely used in the literature. It then
outlines the Bayesian estimation methods used to fit these models. In Section 3 we give
an overview of Bayesian model comparison using the marginal likelihood, as well as an
importance sampling approach to compute this quantity. Then, in Section 4 we compare
the performance of the various models in fitting US real GDP. Trend-cycle decompositions
and other parameter estimates for selected models are also reported. We then investigate

1See footnote 4 in Gordon (2014), which gives a forecast of potential output growth of 1.5% to 1.55%.
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the robustness of the decrease in the trend output growth after 2007 by estimating four
additional bivariate correlated unobserved components models. These bivariate models
give very similar trend output growth estimates, confirming our baseline results. Lastly,
Section 5 concludes and briefly discusses some future research directions.

2 Trend-Cycle Decomposition using UC Models

In this section we discuss a variety of trend-cycle decompositions of output based on
unobserved components models and the Bayesian estimation methods used to fit the
models (see, e.g., Koop, Poirier, and Tobias, 2007, for an introduction of Bayesian
computations in econometrics).

The estimation in the literature on trend-cycle decompositions using unobserved compo-
nents models typically uses the maximum likelihood method. However, one issue with
this approach is the so-called “pile-up” problem, whereby the maximum likelihood esti-
mates take values at the boundary of the parameter space. This can occur, for example,
if a variance parameter is estimated to be zero. The “pile-up” problem makes inference
more difficult, as the usual asymptotic properties of the maximum likelihood estimator
no longer hold.

Moreover, trend-cycle decompositions in the literature are typically obtained conditional
on the maximum likelihood estimates. As such, there is no accounting for parameter
uncertainty. However, given that trend-cycle decompositions can be sensitive to the values
of a few key parameters, it is crucial to take parameter uncertainty into account. The
models in Clark (1987) and Morley et al. (2003) highlight the importance of parameter
uncertainty—the models differ in the value of only one parameter, but the trend-cycle
decompositions from the two models are drastically different.

We adopt the Bayesian approach in which inference is based on the joint posterior dis-
tribution of the parameters. Using the posterior mean as the point estimate avoids the
“pile up” problem—as long as a nondogmatic prior is used, by construction the posterior
mean is away from the boundary of the parameter space. In addition, the trend-cycle
decomposition is constructed by averaging the parameter values with respect to the joint
posterior distribution of the parameters—hence, the decomposition does not depend on
a particular set of parameter values. Furthermore, the Bayesian approach facilitates
comparing nonnested models, which is discussed in more detail in Section 3.

2.1 Competing Models

The trend-cycle decomposition of aggregate output is motivated by the idea that it can
be usefully viewed as the sum of two separate components: a nonstationary component
that represents the long-term trend and a transitory deviation from the trend. More
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specifically, let yt denote (100 times) the log of real GDP. Then yt can be decomposed as

yt = τt + ct, (1)

where τt is the trend and ct is the stationary, cyclical component. The nonstationary
trend τt is modeled as a random walk with drift, whereas the cyclical component ct is
modeled as a zero mean stationary AR(p) process:

τt = µ1 + τt−1 + uτ
t , (2)

ct = φ1ct−1 + · · ·+ φpct−p + uc
t , (3)

where the initial τ0 is treated as a parameter to be estimated and for simplicity we assume
c1−p = · · · = c0 = 0. Note that the drift µ1 can be interpreted as the growth rate of trend
GDP. Following Morley et al. (2003), we set p = 2 and assume innovations uc

t and uτ
t are

jointly normal (
uc
t

uτ
t

)
∼ N

(
0,

(
σ2
c ρσcστ

ρσcστ σ2
τ

))
.

We denote the model in (1)–(3) as UCUR. This model allows a nonzero correlation
between the innovations uc

t and uτ
t . Hence, it includes the model of Clark (1987) as a

special case with ρ = 0; this restricted model is denoted as UC0.

Perron and Wada (2009) point out that the trend-cycle decomposition might be sensitive
to how the trend is modeled. In particular, they show that when a break is allowed
for, the estimates of the cyclical component become larger in magnitude and are more
persistent. Hence, we consider specifications with a break in the drift. Specifically,
consider replacing (2) by a more general specification

τt = µ11(t < t0) + µ21(t > t0) + τt−1 + uτ
t , (4)

where 1(A) is the indicator function that takes the value 1 if the condition A is true and 0
otherwise, and t0 is a known break point. In other words, the stochastic trend τt has a
growth rate of µ1 before the break t0 and a growth rate of µ2 after the break. In the
model comparison exercise, we date the break point by comparing models with different
t0. We denote the UCUR model with a break at time t0 as UCUR-t0.

Lastly, we consider a set of models with deterministic trends. This is motivated by the
findings in Perron and Wada (2009), where the preferred model is UC0 with a break point
in 1973Q1. However, the variance of the innovation to the trend, σ2

τ , is estimated to be
zero, which is outside of the parameter space—the variance σ2

τ should be positive. To
circumvent this difficulty, we consider instead the following deterministic trend

τt = µ11(t < t0) + µ21(t > t0) + τt−1. (5)

The cyclical component ct is modeled as in (3), with uc
t ∼ N (0, σ2

c ). This model is denoted
as DT-t0. We also consider a version without a break, which is denoted as DT.
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2.2 Bayesian Estimation

In this section we outline the Bayesian estimation methods used to fit the UCUR model
given in (1)–(3). More specifically, we develop a Markov sampler to obtain draws from the
posterior distribution under the UCUR model. The other unobserved components models
can be estimated similarly, and we leave the technical details to Appendix A. A key novel
feature of our approach is that it builds upon the band and sparse matrix algorithms
developed in Chan and Jeliazkov (2009) and Chan (2013). It is shown in McCausland
et al. (2011) that this approach is more efficient compared to the conventional Kalman
filter-based algorithms.

We assume proper but relatively noninformative priors for the model parameters φ =
(φ1, φ2)

′, σ2
c , σ

2
τ , ρ, µ1 and τ0. In particular, we consider a uniform prior on (−1, 1) for ρ,

and identical uniform priors on (0, 3) for σ2
c and σ2

τ . The details of the priors are given
in Appendix A. Since the marginal likelihood can be sensitive to prior specification,
we use exactly the same priors for common parameters across models. For notational
convenience, stack y = (y1, . . . , yT )

′, and similarly define τ , c, uc and uτ . Then, pos-
terior draws can be obtained by sequentially sampling from the following densities: 1.
p(τ |y,φ, σ2

c , σ
2
τ , ρ, µ1, τ0); 2. p(φ |y, τ , σ2

c , σ
2
τ , ρ, µ1, τ0); 3. p(σ2

c |y, τ ,φ, σ
2
τ , ρ, µ1, τ0); 4.

p(σ2
τ |y, τ ,φ, σ

2
c , ρ, µ1, τ0); 5. p(ρ |y, τ ,φ, σ

2
c , σ

2
τ , µ1, τ0); and 6. p(τ0, µ1 |y, τ ,φ, σ

2
c , σ

2
τ , ρ).

Here we discuss how Step 1 can be implemented; the details of other steps are given in
Appendix A.

First we write the system (1)–(3) in the following matrix form:

y = τ + c,

Hφc = uc,

Hτ = α̃+ uτ ,

where α̃ = (µ1 + τ0, µ1, . . . , µ1)
′ and

H =




1 0 0 0 · · · 0
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
...

. . . . . . . . . . . . 0
0 · · · 0 0 −1 1




, Hφ =




1 0 0 0 · · · 0
−φ1 1 0 0 · · · 0
−φ2 −φ1 1 0 · · · 0
0 −φ2 −φ1 1 · · · 0
...

. . . . . . . . . . . . 0
0 · · · 0 −φ2 −φ1 1




.

Note that both H and Hφ are band matrices with only a few nonzero elements arranged
along the main diagonal. Further, since both are square matrices with unit determinant,
they are invertible. Hence, given φ, σ2

c , σ
2
τ , ρ and τ0, we have

(
c

τ

)
∼ N

((
0

α

)
,

(
σ2
c (H

′

φHφ)
−1 ρσcστ (H

′Hφ)
−1

ρσcστ (H
′

φH)−1 σ2
τ (H

′H)−1

))
,

where α = H−1α̃. Using the properties of the Gaussian distributions (see, e.g., Kroese
and Chan, 2014, Chapter 3.6), the marginal distribution of τ (unconditional on c) is

(τ | σ2
τ , µ1, τ0) ∼ N (α, σ2

τ (H
′H)−1),
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and the conditional distribution of y given τ and other parameters is given by

(y | τ ,φ, σ2
c , σ

2
τ , ρ, µ1, τ0) ∼ N

(
H−1

φ a+H−1
φ Bτ , (1− ρ2)σ2

c (H
′

φHφ)
−1
)
,

where
a = −

ρσc

στ

Hα, B = Hφ +
ρσc

στ

H.

Therefore, the prior density of τ and the conditional likelihood are given by

p(τ | σ2
τ , µ1, τ0) = (2πσ2

τ )
−

T
2 e

−
1

2σ2
τ
(τ−α)′H′H(τ−α)

(6)

p(y | τ ,φ, σ2
c , σ

2
τ , ρ, µ1, τ0) = (2πσ2

c (1− ρ2))−
T
2 e

−
1

2(1−ρ2)σ2
c
(Hφy−a−Bτ )′(Hφy−a−Bτ )

. (7)

Then, by standard linear regression results (see, e.g., Kroese and Chan, 2014, pp. 237-
240), we have

(τ |y,φ, σ2
c , σ

2
τ , µ1, ρ, τ0) ∼ N (τ̂ ,K−1

τ ),

where

Kτ =
1

σ2
τ

H′H+
1

(1− ρ2)σ2
c

B′B, τ̂ = K−1
τ

(
1

σ2
τ

H′Hα+
1

(1− ρ2)σ2
c

B′(Hφy − a)

)
.

Since H, Hφ and B are all band matrices, so is the precision matrix Kτ . As such, the
precision sampler of Chan and Jeliazkov (2009) can be used to sample τ efficiently. We
leave the details of Steps 2-6 to Appendix A.

In addition, this approach allows us to derive an analytical expression of the integrated

or observed-data likelihood p(y |φ, σ2
c , σ

2
τ , ρ, µ1, τ0), which is a crucial quantity for model

comparison. We refer the readers to Appendix B for the exact expression and the deriva-
tions. Using this analytical expression, the integrated likelihood can then be evaluated
quickly using band matrix routines, which is more efficient than using the Kalman filter.

3 Model Comparison via the Marginal Likelihood

In this section, we give an overview of Bayesian model comparison using the marginal
likelihood. Then, we outline an importance sampling approach based on the improved
cross-entropy method to compute the marginal likelihood.

Suppose we wish to compare a set of possibly nonnested models {M1, . . . ,MK}. Each
model Mk is formally defined by two components: a likelihood function p(y |θk,Mk) that
depends on the model-specific parameter vector θk and a prior density p(θk |Mk). The
marginal likelihood under model Mk is defined as

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk. (8)
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This marginal likelihood can be interpreted as a density forecast of the data under model
Mk evaluated at the actual observed data y. Hence, if the observed data are likely under
the model, the associated marginal likelihood would be “large”. Since the marginal
likelihood is essentially a density forecast evaluation, it has a built-in penalty for model
complexity.

Given two models Mi and Mj, if the marginal likelihood under model Mi is larger than
that under Mj—i.e., the observed data are more likely under model Mi compared to
model Mj—then it is viewed as evidence in favor of model Mi. The weight of evidence
can be gauged by the posterior odds ratio between the two models, which can be written
as follows:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
×

p(y |Mi)

p(y |Mj)
,

where P(Mi)/P(Mj) is the prior odds ratio and the ratio of the marginal likelihoods
p(y |Mi)/p(y |Mj) is called the Bayes factor in favor of model Mi against Mj. If both
models are equally probable a priori, i.e., the prior odds ratio is one, the posterior odds
ratio between the two models is then equal to the Bayes factor. Then, if, for example,
BFij = 50, it implies model Mi is 50 times more likely than model Mj given the data.
For a more detailed discussion of the Bayes factor, we refer the readers to Koop (2003).
Next, we outline an importance sampling method for calculating the marginal likelihoods
under the various unobserved components models discussed in the previous section.

The computation of the marginal likelihood is in general nontrivial—the integral in (8) is
often high-dimensional and cannot be obtained analytically. Here we adopt an improved
version of the classic cross-entropy method to estimate the marginal likelihood. The clas-
sic cross-entropy method was originally developed for rare-event simulation by Rubinstein
(1997, 1999) using a multi-level procedure to construct the optimal importance sampling
density (see also Rubinstein and Kroese, 2004, for a book-length treatment). Chan and
Kroese (2012) later show that the optimal importance sampling density can be obtained
more accurately in one step using MCMC methods. This new variant is applied in Chan
and Eisenstat (2015) for marginal likelihood estimation, which is outlined as follows.

Suppose we wish to estimate p(y |Mk), the marginal likelihood under model Mk. For
notational convenience we drop the model index Mk, and write the marginal likelihood,
likelihood and prior as p(y), p(y |θ) and p(θ), respectively. The ideal zero-variance
importance sampling density for this estimation problem is the posterior density p(θ |y).
Unfortunately, this density is only known up to a constant and therefore cannot be used
directly in practice. Nevertheless, it provides a good benchmark to obtain a suitable
importance sampling density.

The idea is to locate a density that is “close” to the ideal importance sampling density.
Operationally, we find the density within a convenient family of distributions such that
its Kullback-Leibler divergence—or the cross-entropy distance—to the ideal density is
minimized. Once the optimal density, say, g(·), is obtained, it is used to construct the
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importance sampling estimator:

p̂(y) =
1

R

R∑

r=1

p(y |θ(r))p(θ(r))

g(θ(r))
, (9)

where θ(1), . . . ,θ(R) are draws from the importance sampling density g(θ). The main
advantage of this importance sampling approach is that it is easy to implement and the
numerical standard error of the estimator is readily available. We refer the readers to
Chan and Eisenstat (2015) for technical details.

For the unobserved components models discussed in Section 2.1, the likelihood—or more
accurately, the integrated likelihood or observed-data likelihood (the density of the data
marginal of the latent states)—can in principle be evaluated using the Kalman filter.
Here we adopt a more efficient approach, which is substantially faster than the Kalman
filter. Specifically, we first derive analytical expressions for the integrated likelihoods
under the various unobserved components models. These expressions are then evaluated
using band and sparse matrix routines. The technical details are given in Appendix B.

4 Empirical Results

In this section we compare the performance of the various unobserved components models
discussed in Section 2 in fitting US real GDP. The main goal of this exercise is to establish
the types of model features that are useful in trend-cycle decompositions. For example,
does allowing for correlation between permanent and transitory shocks substantially im-
prove model fit? Or is it more important to allow for a break in GDP growth? If yes,
when is the break date?

We use US quarterly real GDP from 1947Q1 to 2014Q4 for our analysis, which is sourced
from the Federal Reserve Bank of St. Louis economic database. The data are then trans-
formed by taking the logs and multiplying by 100. We first report the model comparison
results in Section 4.1. Trend-cycle decompositions and variance decompositions for se-
lected models are reported in Section 4.2. Then, in Section 4.3 we present the trend
output growth estimates and investigate the robustness of these estimates by considering
additional bivariate models.

4.1 Model Comparison Results

All the models are estimated using the new sampling approach based on band matrix
routines discussed in Section 2.2 and Appendix A. The marginal likelihoods are computed
using the improved cross-entropy method of Chan and Eisenstat (2015), which is outlined
in Section 3. Each set of results is based on 100000 posterior draws after a burn-in
period of 10000. For computing each marginal likelihood value, we use 50000 importance
sampling draws.
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We first address the timing of a break in GDP growth. Motivated by the results in Perron
and Wada (2009) and Luo and Startz (2014), we consider two classes of models with a
break, namely, UCUR-t0 and DT-t0. For each class of models, we consider 10 possible
break dates: every first quarter from 1971Q1 to 1975Q1, and from 2005Q1 to 2009Q1.
The latter dates are chosen so that we can determine whether trend GDP growth has
changed following the Great Recession. We only consider a break in the first quarter of
each year, given that the difference between models with breaks in consecutive quarters
is expected to be small. Hence, it might be more useful to think of the break occurring
in that year than in that particular quarter.

The model comparison results are reported in Table 1. By comparing UCUR-t0 and
DT-t0 for each break date, we conclude that UCUR-t0 uniformly outperforms DT-t0 in
fitting the US data. For example, the Bayes factor in favor of UCUR-07 against DT-07
is about 28—if we assume both models are equally likely a priori, the former becomes
28 times more likely given the data—indicating strong evidence in favor of UCUR-07.
This indicates that the GDP trend is better modeled as a stochastic process rather than
a deterministic one. In addition, for both classes of models, a break date in 2007 is most
favored by the data among the 10 possible break dates. This is similar to the break date
of 2006Q1 identified in Luo and Startz (2014). These results suggest that there seems to
be a structural break in trend GDP growth in the early stages of the Great Recession.

Table 1: Log marginal likelihoods of the UCUR-t0 and DT-t0 models with various break
dates. Numerical standard errors are in parentheses.

DT-71 DT-72 DT-73 DT-74 DT-75
−368.96 −368.52 −367.95 −367.50 −368.20
(0.008) (0.010) (0.005) (0.009) (0.019)
DT-05 DT-06 DT-07 DT-08 DT-09
−367.43 −367.55 −367.37 −367.62 −369.86
(0.006) (0.006) (0.007) (0.006) (0.006)

UCUR-71 UCUR-72 UCUR-73 UCUR-74 UCUR-75
−366.25 −366.03 −365.69 −365.39 −365.99
(0.046) (0.077) (0.046) (0.090) (0.049)

UCUR-05 UCUR-06 UCUR-07 UCUR-08 UCUR-09
−364.45 −364.29 −364.04 −364.29 −365.60
(0.045) (0.065) (0.039) (0.036) (0.050)

The above results show that if a break is assumed, the break is most likely to have oc-
curred in 2007. Next, we address the question of whether a break is needed by comparing
models with and without a break. A related question is whether one break is sufficient.
To answer the latter question, we also include a model with two breaks in 1973Q1 and
2007Q1, given the large literature around a break in 1973, which we call UCUR-(73,07).
The model comparison results are reported in Table 2.

Among all the models we consider, the overall best model is UCUR-07. For example,
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compared to DT-73—the preferred model in Perron and Wada (2009)—the Bayes factor
in favor of UCUR-07 is about 50, showing strong support for the latter model. UCUR-07
also compares favorably against the more general UCUR-(73,07), indicating that in the
presence of a break in 2007, an additional break in 1973 is not needed. This also gives an
example of the built-in penalty for model complexity within the Bayes factor: it prefers
the more restricted UCUR-07 when an additional break in 1973 does not substantially
improve the model fit.

Table 2: Log marginal likelihoods of competing models with and without a break. Nu-
merical standard errors are in parentheses.

DT UC0 UCUR DT-07 UCUR-07 UCUR-(73,07)
−370.63 −370.54 −365.02 −367.37 −364.04 −365.30
(0.004) (0.030) (0.026) (0.007) (0.039) (0.087)

Next, we investigate whether allowing for a nonzero correlation between the permanent
and transitory shocks substantially improves model fit. This can be done by directly
comparing UC0 and UCUR. Indeed, the Bayes factor in favor of UCUR against UC0 is
about 250, indicating overwhelming support for the former. This is consistent with the
findings in Morley et al. (2003) and Oh, Zivot, and Creal (2008). The former reports the
maximum likelihood estimate of the correlation ρ to be about −0.9 with a relatively small
standard error; the latter rejects the null hypothesis that ρ = 0 using the likelihood ratio
test. In contrast, using information criteria to compare models, Morley and Piger (2012)
find mixed results: Akaike information criterion weakly prefers UCUR but Bayesian
information criterion slightly favors UC0.

To conclude, the model comparison results show that it is useful to allow for a nonzero
correlation between the permanent and transitory shocks, and a break in trend GDP
growth is likely to have occurred in the early stages of the Great Recession.

4.2 Trend-Cycle Estimates and Variance Decomposition

In this section we first report the trend and cycle estimates under three models: DT-
73, the deterministic trend model with a break in trend growth in 1973; UCUR, the
correlated unobserved components model of Morley et al. (2003); and UCUR-07, an
extension of UCUR with a break in growth in 2007. Then, we consider whether permanent
or transitory shocks are more important under these models. In the next section, we
investigate the breaks in trend output growth and address the question of whether trend
output growth has substantially slowed in the past decade.
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Figure 1: Estimates of trend (left panel) and cycle (right panel) under DT-73. The shaded
region represents the 10% and 90% quantiles.

Figure 1 plots the trend and cycle estimates under DT-73.2 It can be seen in the left
panel that there is a kink in the trend in 1973, reflecting a slower estimated trend growth
rate after the break date. Under this deterministic trend model, all variation in output is
attributed to the cyclical component. Consequently, the cycles are large and persistent.
For example, output started to outpace its trend from the early 1990s, and the cyclical
component reached a peak in the new millennium. Output was substantially above
trend until the Great Recession—since then it has dropped below trend. Interestingly,
the output gap seems to have widened since 2010, reflecting the slower growth in GDP
compared to the historical trend.

We report the trend and cycle estimates of UCUR and UCUR-07 in Figures 2 and 3.
Compared to those of DT-73, the cycle estimates are much smaller in magnitude and
less persistent. This highlights the sensitivity of trend and cycle estimates to model
specification, and hence the importance of model comparison. The cycle estimates also
suggest that output is above trend in the run-up to the Great Recession, even though
not to the same magnitude as in DT-73.

Not surprisingly, the cycle estimates of UCUR and UCUR-07 are fairly similar. The only
noticeable difference occurs after the Great Recession: the former model suggests that
output has been at trend since 2009 and remains there, whereas the latter model indicates
that output has been slightly below trend since 2009. Figure 4 plots the trend estimates
of the three models from 2005Q1 to 2014Q4.

2The trend estimates reported in this section are smoothed values obtained conditional on the whole
sample. More specifically, the point estimates are the posterior means E(τ |y). The cycle estimates are
then given by y − E(τ |y).
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Figure 2: Estimates of trend (left panel) and cycle (right panel) under UCUR. The shaded
region represents the 10% and 90% quantiles.
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Figure 3: Estimates of trend (left panel) and cycle (right panel) under UCUR-07. The
shaded region represents the 10% and 90% quantiles.
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Figure 4: Estimates of trend from 2005Q1 to 2014Q4 under the DT-73 model (left panel),
UCUR model (middle panel) and UCUR-07 model (right panel).
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In addition to the different trend-cycle decompositions, these models also differ in their
conclusions regarding the relative importance of permanent and transitory shocks. As
mentioned above, DT-73 has a deterministic trend and therefore all variation of output
is due to the transitory shocks. In contrast, both UCUR and UCUR-07 allow us to
decompose the variance of output into the portions contributed by the permanent and
transitory shocks. Table 3 reports the parameter estimates of the three models. For
comparison, we also include results from UCUR-(73,07), a model with two breaks in
1973Q1 and 2007Q1.

Under UCUR-07 the estimates of σ2
τ and σ2

c are 1.42 and 0.9 respectively, giving a ratio of
about 1.5. This indicates that permanent shocks are relatively more important compared
to transitory shocks; similar conclusions can be drawn from the results of UCUR and
UCUR-(73,07). These results are in line with the conclusion in Morley et al. (2003).
However, since the variance parameters are not precisely estimated, we need to take
account of parameter uncertainty.

Table 3: Estimated posterior means under DT-73, UCUR, UCUR-07 and UCUR-(73,07).
Numerical standard errors are in parentheses.

DT-73 UCUR UCUR-07 UCUR-(73,07)
φ1 1.34 0.95 1.10 1.17

(0.057) (0.343) (0.361) (0.338)
φ2 -0.37 -0.36 -0.44 -0.46

(0.057) (0.184) (0.180) (0.169)
σ2
c 0.79 1.12 0.90 0.84

(0.069) (0.553) (0.486) (0.478)
σ2
τ – 1.85 1.42 1.17

(0.494) (0.593) (0.695)
ρ – -0.87 -0.76 -0.61

(0.071) (0.246) (0.417)
P(σ2

τ > σ2
y) – 0.92 0.83 0.71

In Figure 5 we plot the posterior densities of the variance ratio σ2
τ/σ

2
c under the three

models.3 The majority of the mass for the densities is in regions that are larger than
unity. In fact, the posterior probabilities P(σ2

τ > σ2
c |y) are 0.92, 0.83 and 0.71 for

UCUR, UCUR-07 and UCUR-(73,07), respectively. These results show that despite the
high parameter uncertainty, the three models conclude that real shocks are relatively
more important in explaining the variation in output.

3For each model, posterior draws of the ratio σ2

τ
/σ2

c
are first obtained using the MCMC sampler

described in Appendix A. These draws are then used to compute the density using the kernel density
estimator of Botev, Grotowski, and Kroese (2010).
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Figure 5: Posterior densities of the variance ratio σ2
τ/σ

2
c under UCUR (left panel), UCUR-

07 (middle panel) and UCUR-(73,07) (right panel).

Next, we consider the estimates of ρ under the three correlated unobserved components
models. The estimates of ρ are negative and large in magnitude for all three models.
In particular, ρ is estimated to be −0.87, −0.76 and −0.61 for UCUR, UCUR-07 and
UCUR-(73,07), respectively. In contrast, Luo and Startz (2014) report an estimate of
0.18 under their preferred model of UCUR-06.4 The posterior densities of ρ are plotted
in Figure 6. The posterior modes of the three densities are near −0.9, which is in line
with the results in Morley et al. (2003). In addition, all densities have little mass near 0,
showing the empirical relevance of allowing for nonzero correlation between the permanent
and transitory shocks.

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

2

4

6

8

10

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

2

4

6

8

10

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

2

4

6

8

10

Figure 6: Posterior densities of ρ under UCUR (left panel), UCUR-07 (middle panel) and
UCUR-(73,07) (right panel).

4The difference in our results might be due to different parameterizations and priors. Specifically,
instead of using the parameterization in terms of (σ2

c
, σ2

τ
, ρ), Luo and Startz (2014) transform the pa-

rameters to (σ2

1
, σ2

2
, b) via the transformation

(
σ2

τ
ρσcστ

ρσcστ σ2

c

)
=

(
1 0
b 1

)(
σ2

1
0

0 σ2

2

)(
1 b
0 1

)
.

Then, they assume priors on the transformed parameters (σ2

1
, σ2

2
, b). It is unclear what the implied prior

for ρ is. Instead, we parameterize the model in terms of (σ2

c
, σ2

τ
, ρ) and assume a uniform prior on (−1, 1)

for ρ.
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4.3 Breaks in Trend Output Growth

In this section we first report the trend output growth rates for the four univariate models:
DT-73, UCUR, UCUR-07 and UCUR-(73,07). Our main conclusion is that the trend
output growth rate has substantially slowed since 2007. We then check the robustness
of this result by considering bivariate correlated unobserved components models of GDP
and inflation, and GDP and the unemployment rate.

Table 4 presents the trend output growth rates for the four univariate models. For ease
of comparison, each row reports the growth rates for a specific period. For instance,
under the UCUR model, the annualized trend growth rate from 1947 to 2014 is 3.12%
(0.78%× 4). As the table shows, there is substantial variation across different periods.

Table 4: Estimated trend output growth rates under DT-73, UCUR, UCUR-07 and
UCUR-(73,07). Numerical standard errors are in parentheses.

DT-73 UCUR UCUR-07 UCUR-(73,07)
µ: 1947-2014 – 0.78 – –

(0.082)
µ: 1947-2006 – – 0.84 –

(0.077)
µ: 1947-1972 0.97 – – 0.93

(0.039) (0.106)
µ: 1973-2014 0.70 – – –

(0.039)
µ: 1973-2006 – – – 0.77

(0.093)
µ: 2007-2014 – – 0.37 0.32

(0.199) (0.197)

First, recall the model comparison results in Section 4.1 that show between the two
deterministic trend models DT-73 and DT, the data favor the former. The parameter
estimates of the trend growth under DT-73 support this conclusion. In particular, the
annualized trend growth rate drops from 3.88% before 1973 to 2.80% after 1973. The
left panel of Figure 7 plots the posterior density of the difference in trend growth rates,
which has virtually no mass below zero.

Also recall that the overall best model is UCUR-07, which allows for a break in 2007.
Under UCUR-07, the annualized trend growth rate more than halves before and after
2007—dropping from 3.36% to 1.48%. UCUR-(73,07) gives similar estimates: the annu-
alized trend growth rate drops from 3.08% between 1973-2006 to 1.28% after 2007. The
low estimates of the trend growth rates after 2007 for UCUR-07 and UCUR-(73,07) are
partly due to the influence of the Great Recession—we only have eight years of data after
the 2007 break. Even so, our results support the view that growth has slowed after the
Great Recession.
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The posterior densities of the difference in trend growth for UCUR-07 and UCUR-(73,07)
in Figure 7 show that there is more parameter uncertainty for both models compared to
DT-73, reflecting the difficulty in estimating the growth of a stochastic trend as opposed to
a deterministic one. Nevertheless, both densities have little mass below zero, reinforcing
the conclusion that trend growth has slowed after 2007.
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Figure 7: Posterior densities of the difference in trend growth between 1947-1972 and
1973-2014 under DT-73 (left panel); between 1947-2006 and 2007-2014 under UCUR-07
(middle panel); between 1973-2006 and 2007-2014 under UCUR-(73,07) (right panel).

Next, we investigate the robustness of our results by considering various bivariate models.
A few recent papers have extended univariate unobserved components models to multi-
variate settings. For example, Basistha (2007) and Basistha and Nelson (2007) introduce
bivariate unobserved components models for GDP and inflation; Sinclair (2009) proposes
a bivariate correlated unobserved components model for GDP and unemployment; and
Berger and Kempa (2011) consider a trivariate system that includes GDP, inflation and
the exchange rate.

Following Sinclair (2009), we consider the following bivariate correlated unobserved com-
ponents model:

yit = τit + cit (10)

for i = 1, 2, where the trend and cyclical components are modeled as:

τit = µi11(t < t0) + µi21(t > t0) + τi,t−1 + uτ
it, (11)

cit = φi1ci,t−1 + φipci2 + uc
it. (12)

We further assume that the innovations ut = (uc
1t, u

c
2t, u

τ
1t, u

τ
2t)

′ are jointly normal, i.e.,
ut ∼ N (0,Σ). We fit this model with two sets of data: GDP and inflation, and GDP
and the unemployment rate.5 As before, we also consider two types of break dates: a
break at 2007Q1, and two breaks at 1973Q1 and 2007Q1.

5The inflation rate is computed from the consumer price index and is available from 1947Q2 to
2014Q4. The sample for the unemployment rate is from 1948Q1 to 2014Q4. Both series are sourced
from the Federal Reserve Bank of St. Louis economic database.
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The estimated trend output growth rates for these four specifications are reported in
Table 5. For example, the second column reports the estimates from the bivariate model
of GDP and inflation with a break in 2007. All four specifications give similar trend
output growth estimates after 2007 compared to those obtained from univariate models.
In particular, the annualized trend output growth rates are between 1.16% and 1.33%.

Table 5: Estimated trend output growth rates under four bivariate models. Numerical
standard errors are in parentheses.

2007 break 1973 + 2007 breaks
inflation unemployment inflation unemployment

µ: 1947-2006 0.86 0.85 – –
(0.045) (0.087)

µ: 1947-1972 – – 0.96 0.97
(0.060) (0.126)

µ: 1973-2006 – – 0.77 0.77
(0.053) (0.111)

µ: 2007-2014 0.29 0.33 0.30 0.32
(0.144) (0.221) (0.132) (0.212)

These results can be compared to the recent commentary on secular stagnation. Summers
(2013, 2015) discusses a return of “secular stagnation” due to insufficient investment—the
natural rate of interest is negative but the nominal interest rate cannot fall appreciably
below zero, thus creating a saving glut and inadequate investment. This in turn raises
the concern that actual output growth has slowed reflecting slower long-run potential
growth.

In addition, Gordon (2012) argues that US labor productivity has already slowed markedly
after 1972 compared to the previous eight decades, because the main ideas of the Sec-
ond Industrial Revolution—the inventions of electricity, the internal combustion engine
and running water with indoor plumbing—had mostly been implemented by then. In a
follow-up paper, Gordon (2014) takes the realized productivity growth from 1972-2007
as the starting point, from which to subtract two “headwinds”: demographics and edu-
cation. Together with a projected US population growth of 0.6%–0.65%, Gordon (2014)
gives a forecast of 1.5%–1.55% of potential output growth from 2007 to 2032. While our
estimates are not forecasts, our baseline model UCUR-07 shows that trend output growth
from 2007 to 2014 has dropped to 1.48%. Results from the bivariate models give even
slightly smaller estimates.

Next, Figure 8 plots the output gap estimates of the two bivariate models with a break
in 2007. While these two models provide similar estimates of trend output growth, the
estimates of the output gap are quite different: the output gap from the GDP and inflation
model is substantially larger than that from the GDP and unemployment model.
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Figure 8: Estimates of the output gap for the two bivariate unobserved components
models with a break in 2007: GDP and inflation (left panel) and GDP and unemployment
(right panel).

Table 6: Selected parameter estimates for the GDP process under four bivariate models.
Numerical standard errors are in parentheses.

2007 break 1973 + 2007 breaks
inflation unemployment inflation unemployment

variance of innovation 0.51 0.75 0.47 0.74
to GDP cycle (0.284) (0.377) (0.215) (0.373)
variance of innovation 0.49 1.84 0.35 1.75
to GDP trend (0.285) (0.413) (0.173) (0.446)
correlation between −0.18 −0.86 −0.04 −0.84
innovations (0.351) (0.043) (0.320) (0.155)

One factor that contributes to this difference is that under the model with inflation,
the estimated variance of the innovation to the trend component of GDP becomes much
smaller, which makes the relative contribution of the cyclical component larger (see Ta-
ble 6). On the other hand, the estimates from the bivariate model with GDP and the
unemployment rate are more similar to those from the univariate unobserved components
models.6 These results indicate that the estimated correlation structure of the innova-
tions can be sensitive to the choice of variables included in the estimation.7 This might
reflect an inherent estimation problem: in a univariate model there is only one correlation

6Under the univariate models, we assume uniform priors for the variances and the correlation. Under
the bivariate models, the covariance matrix Σ is assumed to have an inverse-Wishart prior centered at
the identity matrix. Despite these two very different forms of priors, the parameter estimates from the
bivariate model of GDP and unemployment are similar to those under the UCUR-07 model, indicating
that priors do not play an important role in driving the results.

7Mertens (2014) raises the concern that the relationship between inflation and economic slack might
not be stable over time. This might contribute to the difference in output gap estimates.
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parameter; in a bivariate model, there are six. This makes it is more difficult to precisely
estimate these correlation parameters in the bivariate models.

Given the very different output gap estimates of the two bivariate models, it is of interest
to perform a model comparison exercise to see which model fits the data better. How-
ever, this exercise is complicated by the fact that the two bivariate models fit different
dependent variables—GDP and inflation versus GDP and unemployment—and therefore
the marginal likelihoods from the two models are not directly comparable. To get around
this problem, we compute the “conditional” marginal likelihood of GDP given the other
variable.8 This measure evaluates the fit of GDP given the information of the other vari-
able. In addition, this measure is directly comparable to the marginal likelihood from
the univariate models of GDP.

Table 7 reports the log marginal likelihoods of the two bivariate models with different
types of breaks.9 The bivariate model of GDP and unemployment fits the data substan-
tially better than the model of GDP and inflation—the log Bayes factor in favor of the
former model with a break in 2007 against the latter is 58. In fact, the bivariate model of
GDP and unemployment does better than the univariate model of GDP alone, whereas
the model of GDP and inflation does substantially worse. One can also conclude from
the results of the bivariate model of GDP and unemployment that one break in 2007 is
sufficient.

Table 7: Log marginal likelihoods of various univariate and bivariate models.

2007 break 1973 + 2007 breaks
UCUR inflation unemployment UCUR inflation unemployment
−359.61 −385.16 −327.39 −365.21 −384.48 −342.00
(0.053) (0.388) (0.205) (0.092) (0.360) (0.605)

To conclude, these results suggest that the estimated correlation between the innovations
in the GDP process can be sensitive to the choice of dependent variables: the estimated
correlation is large and negative as in the univariate UCUR model if the unemployment
rate is included, but it becomes close to zero if inflation is included instead. However, the
model comparison results show that the bivariate model of GDP and inflation fits the data
substantially worse compared to the univariate model as well as the bivariate model of
GDP and unemployment. We take these results as evidence in favor of a strong negative
correlation between the innovations to the trend and cycle components. In addition, all
the results from the bivariate models support the conclusion that the trend output growth
rate substantially slowed after 2007.

8Specifically, let y1 denote log real GDP and let y2 represent the other variable. The
conditional version of the marginal likelihood under model Mk is defined as p(y1 |y2,Mk) =∫
p(y1 |y2,θk,Mk)p(θk |Mk)dθk, where p(y1 |y2,θk,Mk) is the integrated likelihood of y1 given y2

and the parameter vector θk.
9Since data on the unemployment rate are only available after 1948Q1, the sample period for all the

models in Table 7 is taken from 1948Q1 to 2014Q4. This ensures that the log marginal likelihoods are
comparable across models.
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5 Concluding Remarks and Future Research

We have undertaken a formal Bayesian model comparison exercise to assess a number of
models for decomposing US output into its trend and cyclical components. We find that it
is empirically important to allow for correlation between permanent and transitory shocks.
The correlated unobserved components model dominates any deterministic trend models
with or without a break in growth. The overall best model is the correlated unobserved
components model with a break in 2007. The annualized trend output growth decreases
from about 3.4% to 1.2%-1.5% after the break. This model also indicates that permanent
shocks are relatively more important in explaining the variation in output compared to
transitory shocks. It would be interesting to see if these conclusions remain true if a
broader set of nonlinear and asymmetric models are included, such as those in Morley
and Piger (2008), Sinclair (2010) and Morley and Piger (2012).

Many recent papers, including Stock and Watson (2007), Chan (2013) and Clark and Doh
(2014), have demonstrated the importance of allowing for stochastic volatility in model-
ing inflation using unobserved components models. More recently, Mertens (2014) has
shown that stochastic volatility is also useful for decomposing output and unemployment.
For future research, it would be worthwhile to add stochastic volatility to the bivariate
unobserved components models for decomposing output. One particular focus would be
on determining whether the addition of stochastic volatility reconciles the results between
the GDP and inflation and GDP and unemployment rate models, and whether the mod-
els continue to give similar conclusions about trend output growth. More generally, it
is of interest to develop parsimonious multivariate unobserved components models with
stochastic volatility for decomposing output.
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Appendix A: Estimation Details

This appendix discusses the priors and provides the estimation details of the unobserved
components models discussed in Section 2.

Estimation of the UCUR Model

For the UCUR model in (1)–(3), the model parameters are φ = (φ1, φ2)
′, σ2

c , σ
2
τ , ρ, µ1 and

τ0. We assume standard independent priors for φ, µ1 and τ0:

φ ∼ N (φ0,Vφ)1(φ ∈ R), µ1 ∼ N (µ0, Vµ), τ0 ∼ N (τ00, Vτ ),

where R is the stationarity region. We assume relatively large prior variances with
Vφ = I2, Vµ = 1 and Vτ = 100. For the prior means, we set φ0 = (1.3,−0.7)′, τ00 = 750
and µ0 = 0.75. In particular, these values imply that the prior mean of the annualized
growth rate is 3% and the AR(2) process of the transitory component has two complex
roots. Next, σ2

c , σ
2
τ and ρ have uniform priors:

σ2
c ∼ U(0, bc), σ2

τ ∼ U(0, bτ ), ρ ∼ U(−1, 1),

where we set the upper bounds as bc = bτ = 3.

Posterior draws are obtained by sequentially sampling from: 1. p(τ |y,φ, σ2
c , σ

2
τ , ρ, µ1, τ0);

2. p(φ |y, τ , σ2
c , σ

2
τ , ρ, µ1, τ0); 3. p(σ2

c |y, τ ,φ, σ
2
τ , ρ, µ1, τ0); 4. p(σ2

τ |y, τ ,φ, σ
2
c , ρ, µ1, τ0);

5. p(ρ |y, τ ,φ, σ2
c , σ

2
τ , µ1, τ0); and 6. p(τ0, µ1 |y, τ ,φ, σ

2
c , σ

2
τ , ρ). The implementation of

Step 1 is discussed in Section 2.2. Here we provide the details of the other steps.

To sample φ in Step 2, recall that uc and τ are jointly normal:

(
uc

τ

)
∼ N

((
0

α

)
,

(
σ2
c IT ρσcστ (H

′)−1

ρσcστH
−1 σ2

τ (H
′H)−1

))
, (13)

where α = H−1α̃ with α̃ = (µ1 + τ0, µ1, . . . , µ1)
′. Hence, the conditional distribution of

uc given τ and the other parameters is

(uc | τ , σ2
c , σ

2
τ , ρ, µ1, τ0) ∼ N

(
ρσc

στ

H(τ −α), (1− ρ2)σ2
c IT

)
.

Next, we write (3) as
c = Xφφ+ uc,

where Xφ is a T×2 matrix consisting of lagged values of ct. Then, by standard regression
results, we have

(φ |y, τ , σ2
c , σ

2
τ , ρ, µ1, τ0) ∼ N (φ̂,K−1

φ )1(φ ∈ R),
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where

Kφ = V−1
φ +

1

(1− ρ2)σ2
c

X′

φXφ,

φ̂ = K−1
φ

(
V−1

φ φ0 +
1

(1− ρ2)σ2
c

X′

φ

(
c−

ρσc

στ

H(τ −α)

))
.

A draw from this truncated normal distribution can be obtained by the acceptance-
rejection method, i.e., keep sampling from N (φ̂,K−1

φ ) until φ ∈ R.

To implement Steps 3 to 5, we first derive the joint density of uc and uτ . To that end,
note that given σ2

c , σ
2
τ and ρ, we can factorize (uc

t , u
τ
t ) as:

uτ
t ∼ N (0, σ2

τ ), (uc
t | u

τ
t ) ∼ N

(
ρσc

στ

uτ
t , (1− ρ2)σ2

c

)
.

Hence, the joint density of uc and uτ is given by

p(uc,uτ | σ2
c , σ

2
τ , ρ) ∝ (σ2

τ )
−

T
2 e

−
1

2σ2
τ

∑T
t=1(u

τ
t )

2

((1− ρ2)σ2
c )

−
T
2 e

−
1

2(1−ρ2)σ2
c

∑T
t=1(uc

t−
ρσc
στ

uτ
t )

2

,

= ((1− ρ2)σ2
cσ

2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

, (14)

where k1 =
∑T

t=1(u
c
t)

2, k2 =
∑T

t=1 u
c
tu

τ
t and k3 =

∑T

t=1(u
τ
t )

2. It follows from (14) that

p(σ2
c |y, τ ,φ, σ

2
τ , ρ, µ1, τ0) ∝ p(σ2

c )× (σ2
c )

−
T
2 e

−
1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

,

where p(σ2
c ) is the truncated normal prior specified above. This full conditional density

of σ2
c is not a standard density and we sample from it using a Griddy-Gibbs step. That

is, we evaluate the full conditional density on a fine grid, and obtain a draw from the
density using the inverse-transform method (see, e.g., Kroese, Taimre, and Botev, 2011,
pp. 45–47). Steps 4 and 5 can be similarly implemented by noting that

p(σ2
τ |y, τ ,φ, σ

2
c , ρ, µ1, τ0) ∝ p(σ2

τ )× (σ2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

p(ρ |y, τ ,φ, σ2
c , σ

2
τ , µ1, τ0) ∝ p(ρ)× (1− ρ2)−

T
2 e

−
1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

,

where p(σ2
τ ) and p(ρ) are the priors for σ2

τ and ρ respectively.

Lastly, to jointly sample τ0 and µ1, note that we can write α = τ01T + µ1H
−11T = Xδδ,

where 1T is a T × 1 column of ones, Xδ = (1T ,H
−11T ) and δ = (τ0, µ1)

′. It follows from
(13) that the conditional distribution of τ given uc and other parameters is

(τ |uc, σ2
c , σ

2
τ , ρ, µ1, τ0) ∼ N

(
Xδδ +

ρστ

σc

H−1uc, (1− ρ2)σ2
τ (H

′H)−1

)
.

Then, by standard regression results, we have

(τ0, µ1 |y, τ , σ
2
c , σ

2
τ , ρ,φ, τ0) ∼ N (δ̂,K−1

δ ),
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where

Kδ = V−1
δ +

1

(1− ρ2)σ2
τ

X′

δH
′HXδ,

δ̂ = K−1
δ

(
V−1

δ δ0 +
1

(1− ρ2)σ2
τ

X′

δH
′H

(
τ −

ρστ

σc

H−1uc

))
,

where Vδ = diag(Vτ , Vµ) and δ0 = (τ00, µ0)
′.

Estimation of the UCUR-t0 Model

We now consider an extension of the UCUR model that allows for a break in the growth
rate of the trend at time t0. Specifically, we replace (4) with (5), which is reproduced
below:

τt = µ11(t < t0) + µ21(t > t0) + τt−1 + uτ
t ,

where 1(A) is the indicator function that takes the value 1 if the condition A is true and 0
otherwise. Compared to the UCUR model, the only additional parameter is µ2. Its prior
is assumed to be the same as that of µ1, i.e., µ2 ∼ N (µ0, Vµ) with µ0 = 0.75 and Vµ = 1.
For the common parameters, we assume exactly the same priors as in the UCUR model.

Only minor modifications of the sampler for the UCUR model are needed to fit this
extension. For example, if we redefine

α̃ = (µ1 + τ0, µ1, . . . , µ1︸ ︷︷ ︸
t0−1

, µ2, . . . , µ2︸ ︷︷ ︸
T−t0+1

)′

and α = H−1α̃, then Steps 1 and 2 can be implemented exactly as before. Similarly, if
we compute uτ using uτ = Hτ − α̃, then Steps 3–5 remain the same as before. Lastly,
to sample τ0, µ1 and µ2 jointly, write α = τ01T + µ1H

−1d1 + µ2H
−1d2 = Xδδ, where

d1 is a T × 1 vector of dummy variables where the first t0 − 1 elements are 1 and the
rest are 0, and d2 is defined so that d1 + d2 = 1T . Note that Xδ and δ are redefined as
Xδ = (1T ,H

−1d1,H
−1d2) and δ = (τ0, µ1, µ2)

′. Then, the last step is implemented as
before.

Estimation of the DT-t0 Model

For the deterministic trend model with the trend

τt = µ11(t < t0) + µ21(t > t0) + τt−1,

the model parameters are φ, σ2
c , µ1, µ2 and τ0. We adopt the same priors as in the UCUR-

t0 model. Note that we can write this model as

y = Xδδ + c, (15)

c = H−1
φ uc,
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where Xδ = (1T ,H
−1d1,H

−1d2) and δ = (τ0, µ1, µ2)
′.

Posterior draws can be obtained by sequentially sampling from: 1. p(φ |y, σ2
c , µ1, µ2, τ0);

2. p(σ2
c |y,φ, µ1, µ2, τ0); and 3. p(τ0, µ1, µ2 |y,φ, σ

2
c ). To implement Step 1, note that

(uc | σ2
c ) ∼ N (0, σ2

c IT ). Hence, we have

(φ |y, σ2
c , µ1, µ2, τ0) ∼ N (φ̂,K−1

φ )1(φ ∈ R),

where

Kφ = V−1
φ +

1

σ2
c

X′

φXφ, φ̂ = K−1
φ

(
V−1

φ φ0 +
1

σ2
c

X′

φc

)
.

A draw from this truncated normal distribution can be obtained by using the acceptance-
rejection method.

Next, the full conditional density of σ2
c is given by

p(σ2
c |y,φ, µ1, µ2, τ0) ∝ p(σ2

c )× (σ2
c )

−
T
2 e

−
1

2σ2
c

∑T
t=1(u

c
t )

2

,

where uc can be computed by uc = Hφ(y−Xδδ). As before, a draw of σ2
c can be obtained

using the Griddy-Gibbs step. Lastly, it follows from (15) that

(τ0, µ1, µ2 |y, σ
2
c ,φ) ∼ N (δ̂,K−1

δ ),

where

Kδ = V−1
δ +

1

σ2
c

X′

δH
′

φHφXδ, δ̂ = K−1
δ

(
V−1

δ δ0 +
1

σ2
c

X′

δH
′

φHφy

)
.
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Appendix B: Integrated Likelihood Evaluation

This appendix derives analytical expressions for the integrated likelihoods under the
unobserved components models discussed in Section 2. These integrated likelihoods can
then be evaluated using band matrix routines, which are more efficient than using the
conventional Kalman filter.

The UCUR Model

Recall that the prior density of τ and the conditional likelihood under the UCUR model
are given by

p(τ | σ2
τ , µ1, τ0) = (2πσ2

τ )
−

T
2 e

−
1

2σ2
τ
(τ−α)′H′H(τ−α)

p(y | τ ,φ, σ2
c , σ

2
τ , ρ, µ1, τ0) = (2πσ2

c (1− ρ2))−
T
2 e

−
1

2(1−ρ2)σ2
c
(Hφy−a−Bτ )′(Hφy−a−Bτ )

,

where
a = −

ρσc

στ

Hα, B = Hφ +
ρσc

στ

H.

Let k4 = (2π)−T ((1− ρ2)σ2
cσ

2
τ )

−
T
2 . Then, the integrated likelihood can be derived as

follows:

p(y |φ, σ2
c , σ

2
τ , ρ, µ1, τ0) =

∫
p(y | τ ,φ, σ2

c , σ
2
τ , ρ, µ1, τ0)p(τ | σ2

τ , µ1, τ0)dτ

= k4

∫
e
−

1

2(1−ρ2)σ2
c
(Hφy−a−Bτ )′(Hφy−a−Bτ )

e
−

1

2σ2
τ
(τ−α)′H′H(τ−α)

dτ

= k4

∫
e
−

1
2

(

1

(1−ρ2)σ2
c
((Hφy−a)′(Hφy−a)−2τ ′B′(Hφy−a)+τ ′B′Bτ)+ 1

σ2
τ
(τ ′H′Hτ−2τ ′H′Hα+α′H′Hα)

)

dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
c
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα

) ∫
e−

1
2
(τ ′Kττ−2τ ′dτ )dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
c
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

) ∫
e−

1
2((τ−K

−1
τ dτ )′Kτ (τ−K

−1
τ dτ ))dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
c
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

)

(2π)
T
2 |Kτ |

−
1
2

= (2π(1− ρ2)σ2
cσ

2
τ )

−
T
2 |Kτ |

−
1
2 e

−
1
2

(

1

(1−ρ2)σ2
c
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

)

,

where

Kτ =
1

σ2
τ

H′H+
1

(1− ρ2)σ2
c

B′B, dτ =
1

σ2
τ

H′Hα+
1

(1− ρ2)σ2
c

B′(Hφy − a).

SinceH,Hφ andKτ are band matrices, this integrated likelihood can be evaluated quickly
using the band matrix algorithms discussed Chan and Grant (2016).

26



The UCUR-t0 Model

For the extension of the UCUR model that allows for a break in the growth rate of the
trend at time t0, only minor modifications are needed. In particular, if we redefine

α̃ = (µ1 + τ0, µ1, . . . , µ1︸ ︷︷ ︸
t0−1

, µ2, . . . , µ2︸ ︷︷ ︸
T−t0+1

)′

and α = H−1α̃, then the integrated likelihood of this generalization is exactly the same
as that of the UCUR model.

The DT-t0 Model

For the deterministic trend model, recall that from (15) we have

y = Xδδ +H−1
φ uc,

where uc ∼ N (0, σ2
c IT ), Xδ = (1T ,H

−1d1,H
−1d2) and δ = (τ0, µ1, µ2)

′. Hence, the
likelihood is given by

p(y |φ, σ2
c , µ1, µ2, τ0) = (2πσ2

c )
−

T
2 e

−
1

2σ2
c
(y−Xδδ)

′H′

φHφ(y−Xδδ)
.
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