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Abstract
Super-harmonic resonances may appear in a forced weakly nonlinear system of 

cubic nonlinearity, when the forcing frequency is approximately equal to one-third 
of the linearized natural frequency. In contrast with the corresponding linear 
oscillator, the free-oscillation term does not decay to zero despite of the presence of 
damping and the nonlinearity adjusts the frequency of the free-oscillation term to 
exactly three times the frequency of the excitation. Saddle-node bifurcations may 
appear in the frequency-response curve for the amplitude of the free-oscillation 
terms, which may lead to jump and hysteresis phenomenon. 

A small linear vibration absorber is designed to suppress the super-harmonic 
resonance response of the forced oscillator of cubic nonlinearity.  The absorber can 
be considered as a small mass-spring-damper oscillator in the sense that the mass 
and stiffness of the absorber are less than one-tenth of the values of the mass and 
linear stiffness of the forced nonlinear oscillator.  It is shown that a small linear 
vibration absorber is effective in suppressing the super-harmonic resonance 
response of the system by transferring the vibrational energy from the main
nonlinear oscillator to a small mass-spring-damper oscillator.  Saddle-node 
bifurcations and jump phenomena can be easily eliminated by adding the small 
linear vibration absorber to the forced oscillator.

Key words: Nonlinear vibration, Super-harmonic resonances, Vibration 
suppression, Vibration absorber.

1. Introduction

In a forced single-degree-of-freedom weakly nonlinear system, nonlinear resonances 
may occur if the linearized natural frequency and the frequency of an external excitation 
satisfy a certain relationship. A small-amplitude excitation may produce a relatively 
large-amplitude response under primary resonance conditions, when the forcing frequency 
is in the neighbourhood of the linearized natural frequency. Super-harmonic resonance may 
also appear in the forced response of a weakly nonlinear system of cubic nonlinearity when 
the forcing frequency is approximately equal to one-third of the natural frequency 
(i.e. 3/0 ). The free-oscillation term does not decay to zero in spite of the presence 
of damping and in contrast with the linear case.  As in the case of primary resonances, the 
frequency-response curve of the nonlinear system may exhibit saddle-node bifurcations, 
jump and hysteresis phenomena [1]. These behaviours may be unwanted in many 
applications because they can result in discontinuous behaviour.

Over the past decade, active control methods have been developed to suppress the 
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nonlinear resonance vibrations of weakly nonlinear systems with parametric or external 
periodic excitations. These methods include time-delayed feedback control [2-6], a 
linear-plus-nonlinear feedback control [7,8], and a nonlinear parametric feedback control 
[9], and an internal resonance control technique [10-12].  The use of active controllers for 
vibration attenuation is not feasible in many applications, for reasons including cost, or 
required independent energy supply. A passive control approach is an alternative under 
these circumstances [13]. On the other hand, a passive system may be required as a back-up 
to prevent complete disaster in the event of the failure of active control methods. In 
controlling the vibrations of linear system, one possible method of reducing vibration levels 
is to add an extra system on the existing structure. The extra system, also known as 
vibration absorber, may be a simple mass-spring-damper system being attached at a single 
point of structure. The dynamic vibration absorber is designed such that the natural 
frequencies of the resulting system are away from the excitation frequency [14,15].

The main purpose of the present paper is to suppress the super-harmonic resonance 
vibrations of a weakly nonlinear system with periodic excitations by using a 
mass-spring-damper absorber.  The absorber refers to here as a mass that is relatively light 
in comparison with the mass of primary system and is attached to the primary system by a 
linear spring and a linear damping (also called coupling).  The damping coefficient and the 
spring stiffness are much lower than their counterpart, so that the absorber can be considered 
as a small attachment to the main system. The addition of an absorber to a 
one-degree-of-freedom weakly nonlinear system (a primary system) results in a new two 
degree-of-freedom weakly nonlinear system. The characteristics of the primary system 
attached by an absorber change only slightly in terms of the values of its linearized natural 
frequency, damping coefficient and frequency interval for nonlinear resonance, because the 
absorber is a small attachment and does not contribute significantly to the changes of these 
parameters.

2. Mathematical Modelling

The equations of motion for a weakly nonlinear oscillator with periodic external 
excitation attached by a small linear vibration absorber can be written as

    )cos()()( 012212311
3
121111 tfxxcxxkxcxkxkxm   ,

    )()( 12212322 xxcxxkxm   ,                  (1)

where 1m denotes the mass of the primary system and 2m the mass of the small 

attachment. 1k , 2k and 1c represent the linear, nonlinear stiffness and damping 

coefficient in relation to mass 1m , respectively. The coupling stiffness and damping 

coefficient are 3k and 2c . The displacements of the primary nonlinear system and the 

small attachment, as shown in Figure 1, are denoted by 1x and 2x . An overdot indicates 

the differentiation with respect to time t.

Equation (1) can be simplified by dividing 1m on both sides of the first equation and 

dividing 2m on both sides of the second equation as
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where 1211 /)( mcc  , 131
2

1 /)( mkk  , 12 / mmm  , 222 / mc , 

23
2
2 / mk , 12 / mk , 10 / mff  .

Figure 1: A main nonlinear system linearly coupled with a relatively light mass

It should be mentioned that the main purpose of the current research is to investigate the 
suppression of nonlinear vibrations of a forced nonlinear oscillator using a small attachment 
without adversely affecting the performance of the main oscillator.  The small attached mass 
and the damping and spring stiffness of coupling can be considered as a perturbation to the 
primary oscillator, in a sense that the primary nonlinear system is weakly coupled with a 
small attachment. As a result, the stiffness and mass of the primary oscillator should be much 
larger than the stiffness of the linked spring and the mass of the small attachment. For the 
attached aborber, though its stiffness and mass are small in comparison with those of the 
primary system, the linear stiffness of the attachment is comparable with its mass and thus is 
assumed to be leading terms in equation (2b). In particular, all damping terms and nonlinear 
terms are assumed to be small and in the order of O( ) in equation (2a) and the damping 
terms are considered to be in the order of O( ) in equation (2b). From above discussions on 
the order of the coefficients, equation (2) can be rewritten as

      )cos(3
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where  is a dimensionless parameter with 1 , the coefficients of the damping 

term and nonlinear term, 1 , 2 and  in equation (2) have been re-scaled in terms of 

11   , 22   , and   , and the overbars in 1 , 2 and  have been 

removed for brevity. Equation (3) can be regarded as a weakly nonlinear main system being 
coupled to a linear system with an external excitation.

3. Perturbation Analysis

The method of multiple scales is employed to obtain a set of four averaged equations that 
determine the amplitudes and phases of the steady state solutions on a slow scale [1]. For the 
sake of simplicity, only the first-order approximate solutions will be sought in subsequent 
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analysis. It is assumed that the solutions of equation (3) in the neighbourhood of the trivial 
equilibrium are represented by an expansion of the form

   )(),(),();( 2
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where  is a non-dimensional small parameter, tT 0 is a fast scale associated with 

changes occurring at the frequencies 1 and  , and tT 1 is slow scale associated 

with modulations in the amplitude and phase caused by the non-linearity, damping and 

resonances. The derivatives of 1x and 2x with respect to t then become expansions in 

terms of partial derivatives with respect to 0T and 1T .

Substituting the approximate solutions (4) into (3) and then balancing the like powers of 
 , results in the following ordered perturbation equations:
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The general solutions of equation (5) can be written as
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where )( 1TA and )( 1TB are arbitrary functions of 1T at this order of approximation, 
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stands for complex conjugate of the preceding terms. 
Substituting the general solutions (7) into equation (6) yields
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The particular solution 11x of equation (8) can be written as
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for the terms that do not produce secular terms in seeking solution 21x .
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For super-harmonic resonance response of the forced nonlinear oscillator, the nearness 

of  to 13
1 can be expressed by introducing the detuning parameter  according to 

  13 . Eliminating the terms that lead to secular terms from equations (8) and (9) 

yields
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where the prime indicates the differentiations with respect to the slow scale 1T .

The functions )( 1TA and )( 1TB can be expressed in the polar form:
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where )( 1Ta , )( 1Tb , )( 1T and )( 1T are real functions of time 1T .

Substituting equation (12) into equation (11) and then separating real and imaginary 
parts gives rise to
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Therefore for the first approximation
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The frequency-response curve for super-harmonic resonances is determined by
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The stability of the steady-state motions depends on the eigenvalues of the coefficient matrix 
on the right-hand side of the perturbed averaged equations in terms of small perturbation. The 
three eigenvalues are found to be

2
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4. Illustrative Examples

Numerical simulations have been performed under the following values of the system 
parameters: kg0.101 m , kg8.02 m , Ns/m1.01 c , Ns/m08.02 c , 
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N/m0.441 k , 3
2 N/m0.8k , N/m0.23 k , unless otherwise specified.  This 

combination of system parameters indicates that the mass ratio is 08.0m and the 
coupling stiffness is approximately 4.55% of the stiffness of the primary system. This set of 
system parameters confirms a small mass attachment to the primary system. The linearized 
natural frequencies of the primary system before and after being attached by the absorber are 
found to be approximately 0976.210  , 1448.21  , and the natural frequency of 
the absorber be 5811.12  .  The linearized natural frequencies of the primary system 
before and after the addition of absorber change slightly, only at approximately 2.19%. For 
this given set of system parameters, super-harmonic resonances may appear in the nonlinear 
oscillator (without being attached by vibration absorber) when the forcing frequency is
approximately equal to 0.6992.

Figure 2: Frequency-response curves for Super-harmonic resonance response

The performance of vibration absorber on attenuation of super-harmonic resonance 
response of nonlinear oscillator can be clearly demonstrated with the help of 
frequency-response curves. Figure 2 shows the frequency-response curves of the primary 
system before and after the addition of the absorber for the amplitude of excitation 

8.130 f . Dashed lines and dotted line are used to represent the amplitudes of the stable 
and unstable solutions of the super-harmonic resonance response of the nonlinear oscillator 
alone, and solid lines are used to denote the amplitudes of stable solutions of the nonlinear 
oscillator attached with absorber, respectively. The horizontal axis represents an interval of 
external detuning ]14.0,06.0[ , which corresponds to a small interval of forcing 
frequency ]0.7459,6792.0[ . Without adding the absorber, the peak amplitude of 
super-harmonic resonance response of the primary system is 0.1777 and saddle-node 
bifurcations occur in the frequency-response curve. In the interval ]014.0,0035.0[ , 
two stable solutions coexist with a unstable solution in between. Jump-up phenomenon 
happens at 0035.0 when decreasing forcing frequency from 14.0 , and 
jump-down phenomenon occurs at 014.0 when increasing forcing frequency from 

06.0 . After adding the absorber to the primary system, the peak amplitude of 
super-harmonic resonance response of the primary system has been greatly reduced to 
0.0166. The interval of the multiple coexisting solutions disappears and the jump phenomena 
are eliminated. The super-harmonic resonance vibrations of the primary system have been 
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significantly attenuated.  As shown in Figure 2, the frequencies at which the amplitudes of 
super-harmonic resonance vibrations reach their maximum have shifted slightly from 

014.0 for the primary system alone to 089.0 for the primary system with 
absorber.  In terms of the frequency of excitation, the maximum amplitudes of 
super-harmonic resonance vibrations occur at 7039.0 for the primary system without 
absorber and at 7289.0 for the primary system with absorber.

5. Conclusion

The super-harmonic resonance response of a nonlinear oscillator can be suppressed by a 
linear vibration absorber which consists of a relatively light mass attached to a main 
nonlinear oscillator by a linear damper and a linear spring.  The small attachment of the light 
mass can absorb vibrational energy without significantly modifying the primary system and 
adversely affecting its performance. The stiffness of the linked spring is much lower than the 
stiffness of the primary system itself. The linearized natural frequencies of the primary 
system before and after addition of vibration absorber change only slightly.  It has been 
shown that a small linear vibration absorber is effective in suppressing the super-harmonic 
resonances of the nonlinear system.  Saddle-node bifurcations and jump phenomena can be 
eliminated by adding a linear vibration absorber to the forced nonlinear oscillator.
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