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Abstract— Legged robots offer mobility and agility in un-
charted terrains. Tracking is central to legged operations and
has traditionally been performed using inertial measurement
techniques. The discontinuous foot fall patterns and flight
phases that yield this unrivaled mobility serve to limit the
motion measurement. In particular, the severe impact from
repeated leg landings results in an excessive accumulation of
drift. Ground range measurements, amongst several others,
are robust to this drift yet are limited in application due to
their low-bandwidth and variability to ground conditions.

This paper outlines the attitude estimation problem for
legged locomotion, extends the ground range measurement
method as an update to an inertial sensing approach, in-
troduces the use of a hybrid estimator based on the flight-
phases of the legged motion, and shows preliminary results
this combined approach. Based on an Extended Kalman
Filter, the method takes advantage of the mostly ballistic
nature of the flight phases in dynamic locomotion. Initial
results indicate that the method provides fast update rates yet
controls drift. In single leg experiments, which were conducted
using low-cost sensing hardware, this method had an RMS
error of <0.7◦, which was a third that of the next comparable
approach. Together this provides rapid, robust estimates of
flight phases and attitude necessary for extended dynamic
legged operations.

I. I NTRODUCTION

Legged locomotion is ideally suited for natural and
rugged environments. Humans and other animals easily
traverse rough, obstacle strewn, terrains without requiring a
prepared path, as is necessary for wheeled vehicles. In or-
der to traverse these environments efficiently and at speed,
legged robotic platforms will require the use of dynamic
locomotion principles [1]. Such a form of locomotion is the
galloping gait of quadrupeds. The galloping gait is efficient
and robust in terrain, yet is only dynamically stable. Thus,
the operation and control of this rapid gait is particularly
challenging as it requires an accurate estimate of robot
attitude and position within this environment [2].

The rapid changes in motion associated with galloping
essentially dictate that the motion measurement for dy-
namic legged gaits have low latency and high-bandwidth
[3]. Thus, a self-contained method is desired. This is
because measurements from external references, such as
fixed cameras or updates from Global Position System
(GPS) satellites, cannot be relied on due to the poten-
tial for occlusion, sensor eccentricities, and the extended
ranges of operation needed for galloping locomotion [4].
The classical approach is to internally sense accelerations

and angular motions using inertial techniques and then
numerically integrate these measurements, via a dead-
reckoning approach, to obtain the requisite estimates. This
approach has the advantage of providing rapid, high fidelity
motion measurements that are robust to occlusion from
external navigation aids. However, inertial navigation is an
inherently difficult problem due to the inevitable drift in
the estimation [5]. The long-term stability of the sensed
position is diminished by integration errors, noisy readings,
and offset errors. Gravitational and inertial accelerations are
inseparable (for a given measurement), thus small align-
ment or calibration errors may appear as robot accelerations
which, when integrated, results in position errors that grow
quadratically in time [4]. While it is possible to regulate the
drift using updates from a secondary measurement source,
often with a Kalman Filter (KF), such an approach is
limited in cases such as dynamic legged locomotion where
many KF assumptions do not hold [6].

In dynamic legged locomotion the quadratic drift prob-
lem of inertial sensors is especially pronounced. The
discontinuous foot fall patterns and phasing of legged
robots, which yield its unrivaled mobility, result in re-
peated impacts and generate oscillations in body attitude.
This acts to limit attempts at measuring this motion as
the impacts excite secondary motions (i.e., mechanical
vibration) which can not be readily filtered as they are
often at frequencies of interest for navigation [2]. However,
this vexing characteristic of dynamic legged locomotion is
not without its advantages. Most legged gaits tend to be
periodic and simplifying the motion provides some insight.
First, [1] details a process for decomposing quadruped
motion to a single-leg analog for symmetric gaits. Second,
the motion of a single leg may be considered as having
five phases, namely: flight, landing, compression, thrust,
and lift-off [1]. The flight phase, which can be further
simplified as being ballistic, is the dominant phase in
which the single-leg spends most of its time [2]. Although
these simplifications are idealistic and neglect key dynamic
parameters, it implies that the estimation should be carried
out in two parts: one for flight phase and one for ground
contact [7].

Terrestrial locomotion also has the characteristic of close
proximity to ground. This allows range or vision sensors to
act a redundant form of position measurement. Although
such methods are typically limited by sensor bandwidth,



this approach is complementary as it is not plagued by the
quadratic error growth seen in inertial approaches. Such an
approach has the advantage of allowing a (exteroceptive)
sensor to correct the drift from (proprioceptive) inertial sen-
sors and further to provide gravitational vector disambigua-
tion. The inertial sensors provide rapid updates allowing for
dynamic operations and thus aid in the calibration of the
external measurements.

This paper describes a procedure for gauging attitude
that locates three points (via range measurements to
ground), uses these points define a plane on the body of the
robot, and solves for the attitude via kinematics equations.
To overcome the limited bandwidth and noise of the range
sensors, the estimation method uses inertial data and in-
troduces a hybrid Extended Kalman Filter (EKF) estimator
that takes advantage of the ballistic nature of flight phases
in dynamic legged motion. The paper concludes by de-
scribing results from experimentally validating this method
using a vertical hopping leg connected to an instrumented
boom-arm platform are detailed. The approach is currently
being adapted to a galloping quadrupedal robot, KOLT.

II. KOLT PLATFORM DESCRIPTION

The Kinetically Ordered Locomotion Test (KOLT)
quadrupedal robot is part of an effort to characterize and
test high-speed (up to 7 m/s [25 km/h]) dynamic robot
locomotion by galloping. Galloping is a fast, nimble gait
that is preferred for quadrupeds moving at high speeds
[2]. The KOLT robot (Figure 1) was designed using
biomimetic principles. Unlike many research quadrupedal
robots, KOLT is is of larger scale and is unique in that its
twelve degrees of freedom (DOF) are fully actuated [2].

Fig. 1. The KOLT robot has been constructed specifically to study
dynamic maneuvers of legged systems. The four identical legs each have
three DOF and thrust primarily along the leg axis. It is approximately two
meters long and weighs 70 kg.

To propel itself and execute the maneuvers necessary for
galloping, the KOLT must accurately and rapidly perform
a complex series of motions. To maintain controllability
and quantify the galloping motion, the on-board sensing
needs to determine attitude with respect to the ground
rapidly (¿100 Hz) for extended durations (up to 10 minutes)
[3]. Rapid state changes, large ground impacts, asymmetric
impulses, and rapid force cycling characterize galloping

locomotion. These motions, in addition to being particu-
larly strenuous on an inertial sensing, require a robust and
stiff mechanical structure as ground reaction and propulsion
impulses (which are on the order of4g in nature and
are nearly9g for KOLT) [2] for the entire robot must be
supported instantaneously by only one leg.

III. M ETHOD

There are a variety of methods for measuring attitude.
In general, the estimation problem is to determine the
most likely attitude given the measurement(s) and their
properties [6]. In the deterministic case, where errors are
negligible, the estimate is the measurement. The algorithm
presented solves for the attitude using location of at least
three fixed points on the body. These points are determined
relative to the ground using range measurements. This is
then combined with inertial measurements via a hybrid
estimator that considers whether the robot is in a flight
phase to yield the final estimate of the fixed point locations
and hence the attitude.

A. Attitude from multiple range measurements

The use of range data to provide a measure of orientation
has been shown and is derived for an ideal planar case in
[8]. This method expands on the ground range approach
illustrated in [8] by using these sensors to estimate attitude
and to use this data in a batch process with the inertial
data. The attitude is determined for a spatial geometry as
this yields a more general solution. The range equations
using frame transformations (Figure 2) instead of a purely
geometric approach. The orientations are solved using a
pitch-roll-yaw orθy-then-θx-then-θz rotation sequence.

Fig. 2. Spatial estimation of attitude determination using range sensors
(Si located by vectorr iB ) that measure the distance to point Pi

Analysis of the spatial case starts by making the fol-
lowing assumptions: sensor positions(Si) with respect
the body frame (B) are known and given by the vector
r ib =

[
xi yi zi

]T
, the ground is planar (i.e., the

projection point Pi is in thexy plane of the origin frame),
that both the magnitude and angle of the sensed range are
known (i.e., the vectorli). The location and attitude of the



body frame with respect to the ground is represented by the
position vectorpB and the rotation matrixM respectively.
This is solved for by taking advantage of the equivalence of
the projection point (Pi) as described in both the body and
fixed frames, namely that the location of P via the body
frame (pB → r ib → li) is equivalent to its location in the
fixed frame(pPi).

By further assuming that the beam direction is perpen-
dicular to thexy-plane of the body (i.e.,li aligned to thezB

axis), the analysis is simplified considerably. As a practical
matter it is also assumed that the surface is lambertian and
non-black (i.e., a visible matte surface that allows sensor
to discern the range). Considering this, the position of the
ith sensor relative to the fixed frame can be expressed in
terms of the position vectorpSi as:

pSi = Mr ib + pB (1)

where the rotation matrix,M , is given by:

[
CθyCθz −CθyCθz −Sθy

CθxSθz−SθxSθyCθz CθxCθz+SθxSθySθz −SθxCθy

SθxSθz+CθxSθyCθz SθxCθz−CθxSθySθz CθxCθy

]
(2)

similarly the position vector,pB , is given as:

pB =
[

xB yB zB

]T
(3)

The perpendicular beam projection assumption gives that
orientation of the beam (li) may be represented by a unit
vector parallel to thezB axis (kb). Thus, the direction of
the beam relative to the fixed frame is:

kr = Mk b =

 −Sθy

−SθxCθy

CθxCθy

 (4)

Thus, the position of the pointPi in the fixed frame
becomes:

pPi = pSi − likr = Mr ib + pB − likr (5)

The planar ground assumption gives that the z compo-
nent of thepi is zero. so:

k · (Mr ib + pG − likr) = 0 (6)

This assumption also has the consequence of making
the range measurements indeterminate to changes in yaw.
Thus,θz is assumed to be zero, which gives:

k ·Mr ib = CθxSθyxi + Sθxyi + CθxCθyzi (7)

thus, the governing equation for each sensor (Si) and
measurement (li) couple is:

CθxSθyxi + Sθxyi + CθxCθy(zi − li) + zB = 0 (8)

For the three range sensors this will result in a simultaneous
set of equations of the form in (8). The solution is obtained
by eliminating the height(zB) and then the roll(θx) which
gives the solution for the pitch(θy) as:

N =

(
(y2 − y1) ((z3 − z1)− (l3 − l1))
− (y3 − y1) ((z2 − z1)− (l2 − l1))

)
(9a)

D = (y1 − y2) (x3 − x1) + (y3 − y1) (x2 − x1) (9b)

tan(θy) = N/D (9c)

Note that a redundant configuration (in this case, more
than three sensors) can be used in conjunction with the
estimation process to improve robustness.

B. Attitude from inertial measurements

Inertial sensing entails the use of motion sensors, such
as accelerometers and gyroscopes, whose measurements
are integrated over time to monitor the body position
and attitude. This is well suited for dynamic application
due to the kilohertz bandwidth of the underlying motion
sensors and its isolation from environmental factors. The
performance is limited by noise and misalignment which
leads to measurement drift. The full kinematics for six
DOF inertial measurement are detailed in [5]. The discrete
case may be treated effectively in state-space form as this
provides a convenient method for performing the (Euler)
integration [6].

An alternative approach for inertial attitude measure-
ment on a rigid body is to instead track the location of
three points by double integrating their accelerations. If
the location of these points is known relative to a body
centered frame, then the attitude maybe calculated via
kinematic techniques similar to those shown in section III-
A. In cases where multiple accelerometers maybe placed
on the body with large baselines, this approach allows
for angle measurement in the cases when a gyroscope
data is colored by excessive drift or simply not available.
It simplifies kinematics since the position measurements,
unlike attitudes, are commutative.

C. Estimation of Attitude Via a Kalman Filter

Given the multiple measurements sources, estimation
is the process for deducing the state of the system. The
Kalman filter is a linear estimation technique that provides
a least-squares optimal solution to the multisensor tracking
problem under several (ideal) assumptions, which include
linear system dynamics and mutually independent, zero-
mean Gaussian (white) noise [6]. The derivation of this is
detailed in [6] and demonstrated in [5] and [9].

If we define x as the target state vector,F as the
system dynamics matrix,H as the measurement matrix,
and v and w as the process and measurement noise
vectors respectively; then the system can be modeled as
ẋ = Fx + v, and the measurement asz = Hx + w.
Discritization of these relations is performed for a known
sampling timets via the fundamental matrix,Φ(t). This
givesFk = Φ(ts), whereΦ(t) = L −1

[
(sI− F)−1

]
.

Similarly, the covariance of the noise vectors,v andw,
can be discritized to get the process and measurement noise
matriciesQk and Rk respectively. As the KF progresses
in two stages (prediction and update of the state vector



and its covariance), we introduce the notationxA|B to
mean the state ofx at time A based on data taken up to
time B. The Kalman Gain,Kk scales the update between
the measurement and the prediction and is derived via the
Riccati equations [9]. Thus the final state estimate,x̂k|k, is
found recursively as follows [6], [9]:

Prediction:x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1FT
k−1,

K. Gain: Kk = Pk|k−1HT[HPk|k−1HT + Rk]−1,

Update:Pk|k = [I−KkH]Pk|k−1,

x̂k|k = x̂k|k−1 + Kk(zk −Hx̂k|k−1)

(10)

D. Legged Locomotion Extensions to the Kalman Filter

The Kalman Filter assumptions are not very realistic for
dynamic legged locomotion. This motion is unique in that it
is discontinuous, the system is non-linear, and measurement
noise is non-Gaussian. A general workaround is to use an
EKF as it allows for nonlinear state transitions by providing
a means for linearization (such as a Taylor series evaluation
of Fk) [9]. An alternative approach is hybrid estimation
with a separate estimators for each principal phases of
legged locomotion. In [7] a similar hybrid estimation
technique is considered for a walking machine so as to
ignore acceleration as a gravity reference during ground
contact.

The flight phase is the predominant mode of operation
in dynamic legged locomotion. It is defined as the state
when the body is freely falling [1]. This motion may
be considered a ballistic trajectory and is modeled as a
(nonlinear) differential equation (Eq. 11) whereg is the
gravitational acceleration,ρ is the air density, andβ is the
ballistic coefficient (i.e., the extent of drag).

ẍ =
ρgẋ2

2β
− g (11)

This may be further simplified (and made linear) by
neglecting the air friction. This simplification holds for
low speeds and may be partially compensated for when
tuning the system covariance of the Kalman filter [9]. The
presence of ground contact may be determined simply by
a switch or various other methods. Flight phase may be
simplified as being the absence of ground contact giving
the following model:

σ(t) =

{
1, no ground contact

0, ground contact
(12)

σ(t) = (1− σ) (13)

This gives the following state representation (in Carte-
sian coordinates):

ẋ
ẍ
ẏ
ÿ

=


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0




x
ẋ
y
ẏ

+σ


0
0
0
−g

+σ(t)


0
ax

0
ay

+vσ (14)

IV. I MPLEMENTATION ON KOLT

A design goal for the sensing system for dynamic legged
locomotion is to minimize the weight, while preserving
robustness to the shock from the landing leg landing.
Sensor selection should also be compatible the assumptions
underlying the modified EKF estimation method. That
is, it simplifies estimator tuning to calibrate the sensors
in advance; however, changes in calibration along with
unmodeled errors may be accounted in part for by adding
a bias term to the state vector.

The ground range measurement is obtained using three
low-cost Sharp infrared range sensors. These miniature
and mechanically robust sensors are low-weight and easily
exchanged. They are not-ideal as they have large delays (>
5 ms), low-bandwidth (20 Hz), variation to reflected surface
color/texture, a highly non-linear response characteristic,
and significant noise (1cm/

√
Hz). This is compensated by

aggressively filtering the data; but, this has the consequence
of adding nearly 50 ms of delay, which limits its applica-
tion.

The inertial measurements on KOLT are obtained using
a standard commercial IMU based on MEMS (MicroElec-
troMechanical Systems) accelerometers and gyros [2]. Mi-
cromachined inertial sensors, like those used on the KOLT
robot, display non-linear characteristics. In particular, these
sensors are marked by a predominance of1/f (or flicker)
noise, offset bias, hysteresis, and misalignment. Reference
[10] presents an empirically derived model for correct-
ing addressing these factors in MEMS accelerometers. A
quadratic response model, shown in Equation 15, is used
to some of the non-linearity present capacitive MEMS
accelerometers. In this model,H1i andH0i are polynomial
terms obtained empirically through calibration.

Ai (Vi) = H1iV
2
i + H0iVi + Biasi [i ∈ (x, y)] (15)

The misalignment of the axis (γ) was determined by
checking the response at rest state when the only accel-
eration present is gravity. This is addressed by:[

ax

ay

]
=
[

cos γ − sin γ
sin γ cos γ

] [
Ax

Ay

]
(16)

While high-order low-pass filters (similar to those uses
with the range sensors) can remove some of the noise,
such filters add delay. This is particularly undesired for
the inertial sensor. Furthermore, in order to insure proper
synchronization any delay must be adjusted for when being
compared to update sources, especially flight phase data.
High-order filters complicate this process as the delay
added is a function of the signal’s frequency. Thus, the
acceleration values are considered without any additional
high-order filters.

Finally, flight phase timing is determined using a force
sensing resistor. As detailed in [2], it is attached so as to
undergo compression when the foot contacts the ground.
The unit is designed with hysteresis in order to make it
robust to minor perturbations.



V. EXPERIMENTS AND RESULTS

This procedure was evaluated via experimental opera-
tions on a single leg connected to an instrumented, six-
foot long boom arm with two degrees of freedom (roll
and yaw). For these experiments, data from the precision
encoders on the boom arm, although not without error, are
considered to be the actual or control values. The attitude
estimates computed on the robot leg are transformed to
the boom arm origin for comparison. As alluded to in the
previous section, the method cannot correct for yaw in its
current configuration. It is possible to use the magnetometer
heading or to range to a point not on the ground plane for
yaw correction.

Due to the constraints imposed by the boom arm, the
linear dynamic system used by the Kalman filter was
modified to include the relations present between the boom
arm origin and the leg position (at the end of the arm).
Here x,y are the position estimates,ẋ, ẏ are the velocity
estimates,̈x, ÿ are the acceleration estimates,xbias, ybias

are the accelerometer biases,ax, ay are the measured
accelerations,w is Gaussian system noise,zRange is the
IR range measurement, andv is the noise model for the
range sensor based on its position.


ẋ
ẍ

ẋbias
ẏ
ÿ

ẏbias

 =

 0 1 0 0 0 0
0 0−1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0−1
0 0 0 0 0 0

 x
ẋ

xbias
y
ẏ

ybias

+

 0
1
0
0
1
0

[ ax
ay ] + w (17)

[ zRange ] = [ 0 0 0 0 1 0 ]

 x
ẋ

xbias
y
ẏ

ybias

+ v (18)

In order to gauge the effectiveness of incorporating spe-
cific variations made to the EKF for legged locomotion, the
data was also processed using a standard EKF formulation
that used constant covariances for the measurement noise
and did not include data from the stride period.

Experiments were performed at speeds ranging from0 to
3.5 m/s with an average of 100 hops per experimental run.
During these runs the amount of roll and yaw was estimated
using the modified EKF estimation method. As there were
no measurement updates along the yaw axis, the estimator
had no direct means of performing drift correction. As
such, the bias estimate determined for the roll (y-axis) was
used instead.

The results for this method are promising and show
improvement over Kalman filtered estimates, but remain
colored by errors. As shown in Figures 4 and 3, the
extended method described has less error compared to the
control (0.7◦ rms error) than the standard EKF routine
(1.93◦ rms error). Qualitatively the proposed method is
better able to estimate the full range of motions. The extent
of the noise suppression resulting from the hybrid method
is shown in Figure 5, which plots the raw acceleration
data against values imposed by flight phase constraint (i.e.,
a = σ · ameasured − σ · g).
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Fig. 3. Roll angle estimates for a section of the experimental run showing
the slight differences between modified and standard EKF estimators. The
plot shows a section consisting of four bounding periods and the attitude
estimates of the two methods compared to the control value calculated
from high-resolution encoders attached to the boom arm.
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Fig. 4. Roll angle data using only the sensor data illustrates the delays
present in the range measurement. Integration of the inertial measurement,
even when corrected via the flight phase constraint, drifts rapidly and is
greater than30◦ within 4 seconds.

VI. CONCLUSIONS

Dynamic legged locomotion is a unique domain separate
from aerial or wheeled locomotion. The classic solution to
robot position and attitude estimation in this domain has
been to use a EKF to overcome the non-linearities. This
paper presents a simplified hybrid estimation architecture
that is keyed to the locomotion phases. It then details and
experimentally validates a hybrid method based on flight
phases, which represents 81% of the operation cycle during
leg boom arm experiments.
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Fig. 5. Comparison between measured accelerations and acceleration
data corrected such that its value is−g during flight phase. The plot
clearly shows the noise and cross-coupling that colors the measurement
for low accelerations

Through the use of a proposed and shown that modify-
ing EKF estimation techniques to include characteristics
unique to legged robotics results in improved attitude
tracking.These estimation techniques will aid in the rapid
and accurate on-board estimation of attitude necessary
for dynamic motion, such as galloping. The experiments
performed show the use of updates from optical range
measurements to be a promising means of addressing the
classic quadratic drift present in inertial sensors. The in-
frared ranger sensors used in these preliminary experiments
are very limited in applicability beyond the laboratory due
to their slow performance, variance with ground reflective
properties. Even with an ideal sensor, the ground based
range techniques described assume a level ground plane,
which thereby precludes field operations.

While it is possible to replace the infrared range sen-
sors with laser-based range estimators, this would still be
subject to geometric uncertainties and interference. Further,
such an approach is still limited to planar terrains and does
not provide a means to correct yaw. Ongoing experimental
efforts are looking at visual odometry (and related vision
routines) to determine this motion and perform the nec-
essary updates to enable field-robust high-fidelity attitude
estimations.
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