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Abstract—Legged robots offer mobility and agility in un-
charted terrains. Tracking is central to legged operations and
has traditionally been performed using inertial measurement
techniques. The discontinuous foot fall patterns and flight
phases that yield this unrivaled mobility serve to limit the
motion measurement. In particular, the severe impact from
repeated leg landings results in an excessive accumulation of
drift. Ground range measurements, amongst several others,
are robust to this drift yet are limited in application due to
their low-bandwidth and variability to ground conditions.

This paper outlines the attitude estimation problem for
legged locomotion, extends the ground range measurement
method as an update to an inertial sensing approach, in-
troduces the use of a hybrid estimator based on the flight-
phases of the legged motion, and shows preliminary results
this combined approach. Based on an Extended Kalman
Filter, the method takes advantage of the mostly ballistic
nature of the flight phases in dynamic locomotion. Initial
results indicate that the method provides fast update rates yet
controls drift. In single leg experiments, which were conducted
using low-cost sensing hardware, this method had an RMS
error of <0.7°, which was a third that of the next comparable
approach. Together this provides rapid, robust estimates of
flight phases and attitude necessary for extended dynamic
legged operations.

I. INTRODUCTION

and angular motions using inertial techniques and then
numerically integrate these measurements, via a dead-
reckoning approach, to obtain the requisite estimates. This
approach has the advantage of providing rapid, high fidelity
motion measurements that are robust to occlusion from
external navigation aids. However, inertial navigation is an
inherently difficult problem due to the inevitable drift in
the estimation [5]. The long-term stability of the sensed
position is diminished by integration errors, noisy readings,
and offset errors. Gravitational and inertial accelerations are
inseparable (for a given measurement), thus small align-
ment or calibration errors may appear as robot accelerations
which, when integrated, results in position errors that grow
quadratically in time [4]. While it is possible to regulate the
drift using updates from a secondary measurement source,
often with a Kalman Filter (KF), such an approach is
limited in cases such as dynamic legged locomotion where
many KF assumptions do not hold [6].

In dynamic legged locomotion the quadratic drift prob-
lem of inertial sensors is especially pronounced. The
discontinuous foot fall patterns and phasing of legged
robots, which vyield its unrivaled mobility, result in re-
peated impacts and generate oscillations in body attitude.

Legged locomotion is ideally suited for natural and This acts to limit attempts at measuring this motion as

rugged environments. Humans and other animals easilthe impacts excite secondary motions (i.e., mechanical
traverse rough, obstacle strewn, terrains without requiring &ibration) which can not be readily filtered as they are
prepared path, as is necessary for wheeled vehicles. In ooften at frequencies of interest for navigation [2]. However,
der to traverse these environments efficiently and at speethis vexing characteristic of dynamic legged locomotion is
legged robotic platforms will require the use of dynamicnot without its advantages. Most legged gaits tend to be
locomotion principles [1]. Such a form of locomotion is the periodic and simplifying the motion provides some insight.
galloping gait of quadrupeds. The galloping gait is efficientFirst, [1] details a process for decomposing quadruped
and robust in terrain, yet is only dynamically stable. Thusmotion to a single-leg analog for symmetric gaits. Second,
the operation and control of this rapid gait is particularlythe motion of a single leg may be considered as having
challenging as it requires an accurate estimate of robdive phases, namely: flight, landing, compression, thrust,
attitude and position within this environment [2]. and lift-off [1]. The flight phase, which can be further
The rapid changes in motion associated with gallopingsimplified as being ballistic, is the dominant phase in
essentially dictate that the motion measurement for dywhich the single-leg spends most of its time [2]. Although
namic legged gaits have low latency and high-bandwidtithese simplifications are idealistic and neglect key dynamic
[3]. Thus, a self-contained method is desired. This igparameters, it implies that the estimation should be carried
because measurements from external references, such asg in two parts: one for flight phase and one for ground
fixed cameras or updates from Global Position Systentontact [7].
(GPS) satellites, cannot be relied on due to the poten- Terrestrial locomotion also has the characteristic of close
tial for occlusion, sensor eccentricities, and the extendeg@roximity to ground. This allows range or vision sensors to
ranges of operation needed for galloping locomotion [4].act a redundant form of position measurement. Although
The classical approach is to internally sense acceleratiorsmich methods are typically limited by sensor bandwidth,



this approach is complementary as it is not plagued by theocomotion. These motions, in addition to being particu-
guadratic error growth seen in inertial approaches. Such darly strenuous on an inertial sensing, require a robust and
approach has the advantage of allowing a (exteroceptivestiff mechanical structure as ground reaction and propulsion
sensor to correct the drift from (proprioceptive) inertial sen-impulses (which are on the order dfy in nature and
sors and further to provide gravitational vector disambiguaare nearlydg for KOLT) [2] for the entire robot must be
tion. The inertial sensors provide rapid updates allowing forsupported instantaneously by only one leg.
dynamic operations and thus aid in the calibration of the
external measurements. 1. METHOD

This paper describes a procedure for gauging attitude There are a Variety of methods for measuring attitude.
that locates three points (via range measurements t& general, the estimation problem is to determine the
ground), uses these points define a plane on the body of thgost likely attitude given the measurement(s) and their
robot, and solves for the attitude via kinematics equationgproperties [6]. In the deterministic case, where errors are
To overcome the limited bandwidth and noise of the rangé€gligible, the estimate is the measurement. The algorithm
sensors, the estimation method uses inertial data and ifresented solves for the attitude using location of at least
troduces a hybrid Extended Kalman Filter (EKF) estimatorthree fixed points on the body. These points are determined
that takes advantage of the ballistic nature of flight phasefelative to the ground using range measurements. This is
in dynamic legged motion. The paper concludes by dethen combined with inertial measurements via a hybrid
scribing results from experimentally validating this methodestimator that considers whether the robot is in a flight
using a vertical hopping leg connected to an instrumente@hase to yield the final estimate of the fixed point locations
boom-arm platform are detailed. The approach is currentland hence the attitude.

being adapted to a galloping quadrupedal robot, KOLT. A. Attitude from multiple range measurements

II. KOLT PLATFORM DESCRIPTION The use of range data to provide a measure of orientation

The Kinetically Ordered Locomotion Test (KOLT) has been shown and is derived for an ideal planar case in
guadrupedal robot is part of an effort to characterize an ]. This ”Feth"d exp_ands on the ground range appr_oach
test high-speed (up to 7 m/s [25 km/h]) dynamic robot' lustrated in [8_] by using these sensors to es_tlmate gttltUQe
locomotion by galloping. Galloping is a fast, nimble gait and to use thls da}ta in a b_atch process Wlth the inertial
that is preferred for quadrupeds moving at high speed a}ta. .The attitude is determlned.for a spatial geometry as
[2]. The KOLT robot (Figure 1) was designed usingt is yields a more gene_ral solgtlon. The range equations
biomimetic principles. Unlike many research quadrupeda}lSIng fr?me transformations _(F|gur_e 2) instead of a pL_Jrer
robots, KOLT is is of larger scale and is unique in that itsggometrlc approach. The or|entat|ons.are solved using a
twelve degrees of freedom (DOF) are fully actuated [2]. pitch-roll-yaw or6,-thend,;-thend, rotation sequence.

Fig. 1. The KOLT robot has been constructed specifically to stuo
dynamic maneuvers of legged systems. The four identical legs each have
three DOF and thrust primarily along the leg axis. It is approximately two

meters long and weighs 70 kg. Fig. 2. Spatial estimation of attitude determination using range sensors

(S; located by vector; 5 ) that measure the distance to point P
To propel itself and execute the maneuvers necessary for

galloping, the KOLT must accurately and rapidly perform Analysis of the spatial case starts by making the fol-
a complex series of motions. To maintain controllability lowing assumptions: sensor positio§;) with respect

and quantify the galloping motion, the on-board sensinghe body frame (B) are known and given by the vector
needs to determine attitude with respect to the ground;, = [ Ty Yi 2 ]T, the ground is planar (i.e., the
rapidly (¢,100 Hz) for extended durations (up to 10 minutesprojection point R is in the xy plane of the origin frame),

[3]. Rapid state changes, large ground impacts, asymmetribat both the magnitude and angle of the sensed range are
impulses, and rapid force cycling characterize gallopingknown (i.e., the vectol;). The location and attitude of the



body frame with respect to the ground is represented by the
position vectorpp and the rotation matrid respectively.
This is solved for by taking advantage of the equivalence of N = <(y2 — ) (8 = 21) = (I — 1)) ) (9a)

the projection point (P as described in both the body and = (g3 = 1) ((z2 = 21) = (I = 1))

fixed frames, namely that the location of P via the body D = (y; —y2) (w3 — 1) + (y3 —y1) (z2 — 1) (9b)
f_rame(pB — Iy — |;) is equivalent to its location in the tan(,) = N/D (9¢)
fixed frame(pp,;).

By further assuming that the beam direction is perpen- Note that a redundant configuration (in this case, more
dicular to thexy-plane of the body (i.el; aligned to thez than three sensors) can be used in conjunction with the
axis), the analysis is simplified considerably. As a practicagstimation process to improve robustness.
matter it is {:\Iso ass.u.med that the surface is lambertian ar‘gi_ Attitude from inertial measurements
non-black (i.e., a visible matte surface that allows sensor ) ) ) ]
to discern the range). Considering this, the position of the Inertial sensing entails the use of motion sensors, such

ith sensor relative to the fixed frame can be expressed i#S accelerometers and gyroscopes, whose measurements
terms of the position vectqpy, as: are integrated over time to monitor the body position
, as:

and attitude. This is well suited for dynamic application
1) due to the kilohertz bandwidth of the underlying motion

Ps; =Mri, +pg o . )
sensors and its isolation from environmental factors. The

where the rotation matrixM, is given by: performance is limited by noise and misalignment which
leads to measurement drift. The full kinematics for six
C,CH, —C0,C0, —56, ) DOF inertial measurement are detailed in [5]. The discrete
ce,56.—-50,56,C0, C0,C0.4+50,56,50. —S6,C0, i H H
5650, +00..56.C. S0.C6. 65056, O, CH, ) case may be treat(_ad effectively in state—Spgce form as this
o N o provides a convenient method for performing the (Euler)
similarly the position vectorp, is given as: integration [6].
T An alternative approach for inertial attitude measure-
ps=[28 ys 2B | (3)  ment on a rigid body is to instead track the location of

The perpendicular beam projection assumption gives thdpree points by double integrating their accelerations. If

orientation of the beami;) may be represented by a unit the location of these points is known relative to a body
vector parallel to the:p axis ;). Thus, the direction of centered frame, then the attitude maybe calculated via
the beam relative to the fixed frame is: kinematic techniques similar to those shown in section IlI-

A. In cases where multiple accelerometers maybe placed

—S0, on the body with large baselines, this approach allows
k. =Mk, = | —560,C0, (4) for angle measurement in the cases when a gyroscope
Co,Co, data is colored by excessive drift or simply not available.

It simplifies kinematics since the position measurements,

Thus, the position of the poinP; in the fixed frame unlike attitudes, are commutative.

becomes:

C. Estimation of Attitude Via a Kalman Filter
Pp; = Pg; — liky =Mr i +pg — LK, (5) . . . )
Given the multiple measurements sources, estimation

The planar ground assumption gives that the z compais the process for deducing the state of the system. The

nent of thep, is zero. so: Kalman filter is a linear estimation technique that provides
a least-squares optimal solution to the multisensor tracking
K- (Mr+pe—ULk,)=0 (6) problem under several (ideal) assumptions, which include

linear system dynamics and mutually independent, zero-

This assumption also h_as the consequence of ”_'a"'”l%ean Gaussian (white) noise [6]. The derivation of this is
the range measurements indeterminate to changes in YalWatailed in [6] and demonstrated in [5] and [9]
Thus, 6, is assumed to be zero, which gives: '

If we define x as the target state vectoE as the
system dynamics matrixfI as the measurement matrix,
k-Mr g, = C0,50,2; + S0,y +C0,C0,2  (7) and v and w as the process and measurement noise
vectors respectively; then the system can be modeled as
thus, the governing equation for each sens$) @nd % — Fx + v, and the measurement as= Hx + w.
measurementl{) couple is: Discritization of these relations is performed for a known
_ _ g _ sampling timet, via the fundamental matrixp(¢). This
OO 58,71 + 503 + CO.CO(z — 1) + 25 =0 @) LO0Ed TR W et (f) = 21 [(o] - F)Q}_
For the three range sensors this will result in a simultaneous Similarly, the covariance of the noise vectovsandw,
set of equations of the form in (8). The solution is obtainedcan be discritized to get the process and measurement noise
by eliminating the heighfzz) and then the rol(8,) which  matriciesQ; and Ry, respectively. As the KF progresses
gives the solution for the pitctd,) as: in two stages (prediction and update of the state vector



and its covariance), we introduce the notatienz to IV. I MPLEMENTATION ON KOLT
mean the state af at time A based on data taken up to
time B. The Kalman GainK, scales the update between
the measurement and the prediction and is derived via th
Riccati equations [9]. Thus the final state estimatg, is
found recursively as follows [6], [9]:

A design goal for the sensing system for dynamic legged
Igcomotion is to minimize the weight, while preserving
robustness to the shock from the landing leg landing.
Sensor selection should also be compatible the assumptions
underlying the modified EKF estimation method. That
is, it simplifies estimator tuning to calibrate the sensors

Prediction: Xy|k—1 = Fr—1Xk—1]5-1, in advance; however, changes in calibration along with

Prjp—1 = Qr-1 + Fr P11 Fi_y, unmodeled errors may be accounted in part for by adding
K. Gain: K, = Pklk_lﬂT[HPk_‘k_lHT + Ry, (10) a bias term to the state vector. _ _ _
Update: Py, = [T — K HIPyp g, The ground range measurement is obtained usmg_three
R R R low-cost Sharp infrared range sensors. These miniature
Xijk = Xijh—1 + Ki(zk — HXpp1) and mechanically robust sensors are low-weight and easily

D. Legged Locomotion Extensions to the Kalman Filter exchanged. They are not-ideal as they have large detays (
The Kalman Filter assumptions are not very realistic for> MS), low-bandwidth%0 Hz), variation to reflected surface
dynamic legged locomotion. This motion is unique in that itcolor/texture, a highly non-linear response characteristic,

is discontinuous, the system is non-linear, and measuremeffid significant noiselem/vHz). This is compensated by
noise is non-Gaussian. A general workaround is to use agdgressively filtering the data; but, this has the consequence
EKF as it allows for nonlinear state transitions by providing®f @dding nearly 50 ms of delay, which limits its applica-

a means for linearization (such as a Taylor series evaluatiotn-

of F},) [9]. An alternative approach is hybrid estimation ~The inertial measurements on KOLT are obtained using
with a separate estimators for each principal phases ¢ standard commercial IMU based on MEMS (MicroElec-

legged locomotion. In [7] a similar hybrid estimation troMechanical Systems) accelerometers and gyros [2]. Mi-
technique is considered for a Wa|k|ng machine so as t§r0maChined inertial sensors, like those used on the KOLT

ignore acceleration as a gravity reference during groungobot, display non-linear characteristics. In particular, these
contact. sensors are marked by a predominance ff (or flicker)

The flight phase is the predominant mode of operatiorﬂOise, offset bias, hysteresis, and misalignment. Reference
in dynamic legged locomotion. It is defined as the statd10] presents an empirically derived model for correct-
when the body is freely falling [1]. This motion may INg addressing these factors in MEMS accelerometers. A
be considered a ballistic trajectory and is modeled as 8uadratic response model, shown in Equation 15, is used
(nonlinear) differential equation (Eq. 11) whegeis the t0 some of the non-linearity present capacitve MEMS
gravitational acceleration is the air density, and is the ~ accelerometers. In this modéf;,;; and Ho; are polynomial
ballistic coefficient (i.e., the extent of drag). terms obtained empirically through calibration.

. pgE? 1) A; (Vi) = Hy; V2 + Ho,V; + Bias; [i € (x,y)] (15)
G = _
25 ! The misalignment of the axisy] was determined by

This may be further simplified (and made linear) bychecking the response at rest state when the only accel-
neglecting the air friction. This simplification holds for eration present is gravity. This is addressed by:
low speeds and may be partially compensated for when
tuning the system covariance of the Kalman filter [9]. The [ ay ] _ { cosy —sinvy } { A, } (16)
presence of ground contact may be determined simply by siny cosvy A
a switch or various other methods. Flight phase may be

simplified as being the absence of ground contact giving _While high-order low-pass filters (similar to those uses
the following model: with the range sensors) can remove some of the noise,

such filters add delay. This is particularly undesired for

Qy y

1, no ground contact the inertial sensor. Furthermore, in order to insure proper
o(t) = (12) hronizati | . f h :
0, ground contact synchronization any delay must be adjusted for when being
compared to update sources, especially flight phase data.
o(t)=(1-0) (13)  High-order filters complicate this process as the delay

This gives the following state representation (in Carte—adde Is a function of the signal's frequency. Thus, the
sian cogr dinates): 9 P acceleration values are considered without any additional
: ! ' high-order filters.

Finally, flight phase timing is determined using a force

&l 101001 0 0 sensing resistor. As detailed in [2], it is attached so as to
Zl_ 8 8 (1) 8 . 8 L5 () aom +v, (14) undergq gomprgssion vyhen the foqt contacts the grouqd.
Y Y The unit is designed with hysteresis in order to make it
gl [0 00 0]l[y -9 ay robust to minor perturbations.



V. EXPERIMENTS AND RESULTS

This procedure was evaluated via experimental opere
tions on a single leg connected to an instrumented, Six
foot long boom arm with two degrees of freedom (roll
and yaw). For these experiments, data from the precisic
encoders on the boom arm, although not without error, ar
considered to be the actual or control values. The attitud
estimates computed on the robot leg are transformed
the boom arm origin for comparison. As alluded to in the
previous section, the method cannot correct for yaw in it
current configuration. It is possible to use the magnetomete
heading or to range to a point not on the ground plane fao
yaw correction.

Due to the constraints imposed by the boom arm, th OB R ena L 0
linear dynamic system used by the Kalman filter was
modified to include the relations present between the boom
arm origin and the leg position (at the end of the arm).Fig. 3. Roll angle estimates for a section of the experimental run showing

Here x,y are the position estimates, ¢ are the velocity the slight differences between modified and standard EKF estimators. The
plot shows a section consisting of four bounding periods and the attitude

estimates;z, § are the acc_eleratlon estimat@s;as, Yvias estimates of the two methods compared to the control value calculated
are the accelerometer biases,, a, are the measured from high-resolution encoders attached to the boom arm.

accelerationsyw is Gaussian system noise’*®"9¢ is the
IR range measurement, andis the noise model for the
range sensor based on its position.

T
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— Flight Phase Modified EKF
----- Control (Boom Encoder)

Leg roll (in radians)

S

T T T
=+~ Tnertal (Flght Phase Corrected)
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----- Control (Boom Encoder)

i 010 00 0 x 0
Bbias 0070000 ||z 5l e ; ]
v | = |o00010 vl 0] [y ] +w (17)
i 00 0 001 v 1 ~
Dbsas 000 000 d Luvias 0
v =
i o
[2Remse] = [000010] | "™ | +v (18) B

]
Ybias

In order to gauge the effectiveness of incorporating spe
cific variations made to the EKF for legged locomotion, the
data was also processed using a standard EKF formulatic ‘
that used constant covariances for the measurement noi C T Aegnseconas Y
and did not include data from the stride period.

Experiments were performed at speeds ranging fddm
3.5 m/s with an average of 100 hops per experimental runFig. 4. Roll angle data using only the sensor data illustrates the delays
During these runs the amount of roll and yaw was esiimatef[SSe71 "€ rge Tecserien negialon o he et megeurenert
using the modified EKF estimation method. As there wergyreater thar80° within 4 seconds.
no measurement updates along the yaw axis, the estimator
had no direct means of performing drift correction. As
such, the bias estimate determined for the rglakis) was
used instead.

The results for this method are promising and show
improvement over Kalman filtered estimates, but remain
colored by errors. As shown in Figures 4 and 3, the VI. CONCLUSIONS
extended method described has less error compared to the

control (0.7 rms error) than the standard EKF routine . . : :
(1.93 rms error). Qualitatively the proposed method iSfrom aerial or wheeled locomotion. The classic solution to
| ’ robot position and attitude estimation in this domain has

better able to estimate the full range of motions. The exter}it)een to use a EKE to overcome the non-linearities. This

of the noise suppression resulting from the hybrid metho A . S !
. i ; . paper presents a simplified hybrid estimation architecture
is shown in Figure 5, which plots the raw acceleration . . .
. . : .. that is keyed to the locomotion phases. It then details and
data against values imposed by flight phase constraint (i.e. . . ; .
-7 a - 9) experimentally validates a hybrid method based on flight
measured 97 phases, which represents 81% of the operation cycle during

leg boom arm experiments.

Dynamic legged locomotion is a unique domain separate
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Fig. 5. Comparison between measured accelerations and acceleration
data corrected such that its value sy during flight phase. The plot
clearly shows the noise and cross-coupling that colors the measuremeni]
for low accelerations -

Through the use of a proposed and shown that modifyH0]
ing EKF estimation techniques to include characteristics
unique to legged robotics results in improved attitude
tracking.These estimation techniques will aid in the rapid
and accurate on-board estimation of attitude necessary
for dynamic motion, such as galloping. The experiments
performed show the use of updates from optical range
measurements to be a promising means of addressing the
classic quadratic drift present in inertial sensors. The in-
frared ranger sensors used in these preliminary experiments
are very limited in applicability beyond the laboratory due
to their slow performance, variance with ground reflective
properties. Even with an ideal sensor, the ground based
range techniques described assume a level ground plane,
which thereby precludes field operations.

While it is possible to replace the infrared range sen-
sors with laser-based range estimators, this would still be
subject to geometric uncertainties and interference. Further,
such an approach is still limited to planar terrains and does
not provide a means to correct yaw. Ongoing experimental
efforts are looking at visual odometry (and related vision
routines) to determine this motion and perform the nec-
essary updates to enable field-robust high-fidelity attitude
estimations.
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