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Abstract

Seismic random vibration responses of multi-story buildings with interval
parameters are investigated. A multi-story building is modelled as a shear beam
structure, and the structural mass, stiffness and damping are considered as interval
parameters. The earthquake inputs are random process ground acceleration in the
horizontal direction. Using the interval factor method, an interval structural
parameter can be expressed as the product of its midpoint value and interval factor.
Structural natural frequencies, power spectral density and mean square value of
structural seismic random displacements can then be expressed as functions of
interval factors of structural parameters. The expressions for the lower bound,
midpoint, upper bound, maximum width and interval change ratio of structural
random responses are derived by means of the interval operations. The effects of the
uncertainties of structural parameters on the random responses of a 10-story building
are investigated and discussed in detail.
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1. Introduction

The random motions such as wind loading, seismic waves and ocean waves etc., are often
encountered in the design and manufacture of structures. Many structures are subjected to the
action of non-stationary random loading, e.g., buildings subjected to earthquakes. Seismic
response of structures and buildings has been widely investigated due to heavy loss of human
life and property caused by earthquakes [1-3]. Uncertainty exists in most structures such as
buildings, bridges, antennas, aircraft, vehicles, ships and aerospace structures which are
essential parts of our modern lives. For example, the material properties of a real structure
may vary considerably from the design values. Over the lifetime of a structure, the damaging
effects associated with attacks from environmental aggressive agents such as a progressive
deterioration of concrete and corrosion of steel usually lead to significant variations of system
parameters. Therefore, the investigation of the problem of structures with uncertain
parameters subject to random seismic excitation is of great significance in engineering
practice.

The significant effects of inherent uncertainties on system behaviour have led the
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scientific community to recognize the importance of a stochastic approach to engineering
problems. Probabilistic methods are most popular for analysis of systems with uncertainties
in system parameters and inputs [4-6]. Under these circumstances, the mean value, variance
and standard deviation of individual structural parameter and the correlation between
different structural parameters are provided by the probabilistic information (probability
density function and joint probability distribution function) of the structural parameters.
However, the probabilistic methods are only applicable when information about an uncertain
parameter in the form of a preference probability function is available. The interval methods
can be used when the probability function is unavailable but the range of the uncertain
parameter is known. The response quantities of interest will also be intervals. In the past
decade, significant progresses in interval analyses of structures with bounded parameters
have been achieved. Interval static response [7,8], natural frequencies/eigenvalues [9,10],
dynamic response [11,12] and optimization [13] of structures with interval parameters have
been investigated.

A shear beam structure is shown schematically in Fig. 1. This simple structural model can
represent various types of engineering systems such as buildings, dams or soil profiles. The
shear beam is widely used as the model of multistorey building [14-16]. Although the shear
beam seems quite simple as a building model, it allows the analysis of complicated shear
wave propagation effects which are very difficult to be explained by the traditional finite
element approach commonly used in earthquake engineering. Chopra and Chintanapakee
[17] showed that the shear beam was an effective structural model and it is independent of the
type of seismic excitations. Sasani et al. [18] improved the shear beam wave propagation
model to properly account for the dispersive type of damping.

To the authors’ knowledge there has been very little research using interval technique to
investigate the random response of structures with uncertainty. In this paper, the interval
factor method (IFM) [8] is further developed to predict the random responses of shear beam
structures with interval parameters subjected to stationary and non-stationary seismic
excitations.

Fig. 1 Shear beam model of a multi-story building.
2. Interval seismic vibration of shear beam structures

The equation of motion of a uniform cantilever shear beam under horizontal seismic
excitations takes the following form [19]
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where m, ¢ and k are the mass per unit length, damping and shear stiffness respectively.

X, (t) is the ground acceleration.

In Eq.(1), the input ground acceleration can be described by the modulated non-stationary
random process as follows

(0= o)1) @

A(a),t) is a given envelope (or modulation) function, and f (t) is a stationary random
Gaussian process. The input ground acceleration X, (t) becomes a stationary random force
and X, (t)= £ (¢) when A(@,1)=1(-0<t<w).

The natural frequencies @, and mode shapes ¢, of mode j(j=1,2,---) can be written

in closed form solutions
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where H is the height of the shear beam shown in Fig. 1.
Considering the structural shear stiffness &, mass m and damping ¢ as interval

w,=(2j-1)

variables, by means of the interval factor method [8], they can be respectively expressed as

K=kl -k, m"=m’.-m°, ¢’ =c’ ¢ 5
F b F b F

where k, , m, and c, are interval factors of interval variables k' , m' and

F

¢’ respectively. k¢, m° and c¢° are midpoints values of k', m'and ¢’ respectively.

Substituting Eq.(5) into Eq.(3) yields
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Substituting Egs.(5) and (6) into Eq.(4) yields
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The power spectral density (PSD) S, (t,a)) of displacement response in frequency

domain is given by [5,14]
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where S, (w) is the PSD of f (t). i=+~1 is the complex number. hj*(a)) is the complex

conjugate of h/(a)). h/(a)) is the interval frequency response function and can be

expressed as
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After integrating S, (l, a)) within the frequency domain, the interval mean square

displacements along the height z of the shear beam are given by

vy =0 a @[ M) () S, (0)Aw.0)k (o) do
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3. Interval random responses of shear beam structures

From Eq.(9) and by using the interval operations [8], the midpoint value and maximum
width of frequency response function can be expressed as
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Similarly, the midpoint and maximum width of the PSD of structural random
displacement response can be obtained
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Then, the interval values of mean square value of seismic random response can be written
as
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Therefore, the lower bound 2, , upper bound t//_fzand interval change ratio Ay, of

mean square seismic displacement are given by
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4. Numerical example

The shear beam shown in Fig. 1 is used as an example to investigate the seismic random
response of multi-storey buildings with uncertainty. The height of shear beam is H =35m .
The midpoint values of the structural shear stiffness, mass and damping ratio

arek* =8.1x10%kg -m/s*, m* =22x10°kg/m and c¢=18.5x10’kgm/s respectively.
For the stationary random ground acceleration, let A(w,f)=1and the power spectral
density of f (t) is described by the modified version of the Kanai-Tajimi model [20]
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where §; is the ordinate of the PSD of the bedrock acceleration. @, and £, are the

natural frequency and critical damping ratio of soil layer, @, and ¢, are meters of a




second filter which is introduced to assure a finite power for the ground displacement. In this

example, w, =15.0rad /s ,{, =0.6,5,=2.0cm’ /s’ ,w, =1.5rad /s and ¢, =0.6.
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Fig. 3 Power spectral density of AS (t, a)) .

The midpoint value of the PSD of the random displacement at Level 10 of the building

(z=35m)S,,(t,®) is shown in Fig. 2. The effect of each of vibration modes on the
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structural response can be seen from this figure. The lower order natural frequencies and
mode shapes contribute more to the structural responses, especially for the first five modes.
Therefore, the structural responses could be sufficiently accurate when the integration
region of the frequency of the ground acceleration excitation is selected as [0,40] rad/s,
which includes the dominant vibration modes of the structure.

To determine the effect of the change of interval parameters variables on the structural
responses, the values of interval change ratios of interval structural parameters are taken as
different groups. The effect of the uncertainty of structural stiffness, mass and damping on

the maximum width of the PSD of the random displacement of Level 10 AS,,(z,) can be

examined from Figures 3(a)-(d). In order to show the peaks of the response PSDs more
clearly, the frequency region of earthquake excitation is selected as [0,40] rad/s. The peaks
of the response PSDs in Fig. 2 are very sharp, however, they have ranges as shown in Fig. 3
because each natural frequency has its own change ranges depending on the interval change
ratios of structural parameters. Therefore, the resonant response at any natural frequency
also has a change region. It can be seen that the stiffness and mass produce the similar effects
on the uncertainty of structural random displacement because they produce the similar effect
on structural natural frequencies.

Computational results of the midpoint value _," , maximum width Ay, and interval

change ratio Ay, of the mean square displacement response szl (z=3.5,7,...,35m) of

each level of the building when Ak, =Am,=Ag . =0.1 are given in Table 1. The midpoint

values increase along the height of the building, that is, higher levels have larger
displacement responses. Similarly, it can be seen from Table 1 that the maximum widths of
the random displacement at higher levels are also bigger. Generally speaking, the
uncertainties of structural parameters will produce greater effect on the structural responses
of higher levels. It is hard to say they will produce the biggest effect on the highest level
because its corresponding interval change ratios may not be the biggest one.

Table 1. Interval values of mean square random responses

Z(m) v, (x107cm*) Ay,, (x107cm®) Ay,

3.5 (level 1) 1.03 0.05 0.0486

7.0 (level 2) 2.08 0.21 0.1009

10.5 (level 3) 2.55 0.36 0.1398
14.0 (level 4) 2.83 0.49 0.1738
17.5 (level 5) 3.19 0.60 0.1879

21.0 (level 6) 3.56 0.76 0.2134
24.5 (level 7) 3.88 0.95 0.2439
28.0 (level 8) 4.36 1.08 0.2473
31.5 (level 9) 5.43 1.17 0.2152
35.0 (level 10) 6.52 1.20 0.1843

For the non-stationary random ground excitation, the following envelop function of the
input acceleration are considered [21]
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(20)

1)

where a=0.25, b=0.5, w,=150rad/s, {, =025 and S, =2.0cm’/s".

For non-stationary seismic responses, curves of the lower and upper bounds of the mean
square displacement response at Level 10 are shown in Fig. 4. It can be observed that the
uncertainties of the structural non-stationary random responses are quite similar to those of
the structural stationary random responses. The changes of the stiffness and mass have
similar effect on the uncertainty of structural non-stationary seismic displacement, and the
uncertainty of the structural non-stationary mean square random displacement is very
obvious when the uncertainties of all structural parameters are taken into account.
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Fig. 4 Non-stationary random displacement response l//le (z=35m).

5. Conclusions

In this paper, the effects of bounded structural parameters on the change of the natural
frequencies, power spectral density of structural random responses and mean square
displacement shear beams are presented. Expressions for the midpoint value, lower bound,
upper bound, interval maximum width, interval change ratio for the mean square value of
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seismic responses of shear beams under the stationary and non-stationary random earthquake
excitations are developed. The dynamic responses of shear beams with uncertainty under
random seismic excitations can be obtained expediently.
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