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Abstract
Seismic random vibration responses of multi-story buildings with interval 
parameters are investigated. A multi-story building is modelled as a shear beam 
structure, and the structural mass, stiffness and damping are considered as interval 
parameters. The earthquake inputs are random process ground acceleration in the 
horizontal direction. Using the interval factor method, an interval structural 
parameter can be expressed as the product of its midpoint value and interval factor. 
Structural natural frequencies, power spectral density and mean square value of 
structural seismic random displacements can then be expressed as functions of 
interval factors of structural parameters. The expressions for the lower bound, 
midpoint, upper bound, maximum width and interval change ratio of structural 
random responses are derived by means of the interval operations. The effects of the 
uncertainties of structural parameters on the random responses of a 10-story building 
are investigated and discussed in detail. 
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1. Introduction 

The random motions such as wind loading, seismic waves and ocean waves etc., are often 
encountered in the design and manufacture of structures. Many structures are subjected to the 
action of non-stationary random loading, e.g., buildings subjected to earthquakes. Seismic 
response of structures and buildings has been widely investigated due to heavy loss of human 
life and property caused by earthquakes [1-3]. Uncertainty exists in most structures such as 
buildings, bridges, antennas, aircraft, vehicles, ships and aerospace structures which are 
essential parts of our modern lives. For example, the material properties of a real structure 
may vary considerably from the design values. Over the lifetime of a structure, the damaging 
effects associated with attacks from environmental aggressive agents such as a progressive 
deterioration of concrete and corrosion of steel usually lead to significant variations of system 
parameters. Therefore, the investigation of the problem of structures with uncertain 
parameters subject to random seismic excitation is of great significance in engineering 
practice. 

The significant effects of inherent uncertainties on system behaviour have led the 
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scientific community to recognize the importance of a stochastic approach to engineering 
problems. Probabilistic methods are most popular for analysis of systems with uncertainties 
in system parameters and inputs [4-6]. Under these circumstances, the mean value, variance 
and standard deviation of individual structural parameter and the correlation between 
different structural parameters are provided by the probabilistic information (probability 
density function and joint probability distribution function) of the structural parameters. 
However, the probabilistic methods are only applicable when information about an uncertain 
parameter in the form of a preference probability function is available. The interval methods 
can be used when the probability function is unavailable but the range of the uncertain 
parameter is known. The response quantities of interest will also be intervals. In the past 
decade, significant progresses in interval analyses of structures with bounded parameters 
have been achieved. Interval static response [7,8], natural frequencies/eigenvalues [9,10], 
dynamic response [11,12] and optimization [13] of structures with interval parameters have 
been investigated. 

A shear beam structure is shown schematically in Fig. 1. This simple structural model can 
represent various types of engineering systems such as buildings, dams or soil profiles. The 
shear beam is widely used as the model of multistorey building [14-16]. Although the shear 
beam seems quite simple as a building model, it allows the analysis of complicated shear 
wave propagation effects which are very difficult to be explained by the traditional finite 
element approach commonly used in earthquake engineering. Chopra and Chintanapakee 
[17] showed that the shear beam was an effective structural model and it is independent of the 
type of seismic excitations. Sasani et al. [18] improved the shear beam wave propagation 
model to properly account for the dispersive type of damping. 

To the authors’ knowledge there has been very little research using interval technique to 
investigate the random response of structures with uncertainty. In this paper, the interval 
factor method (IFM) [8] is further developed to predict the random responses of shear beam 
structures with interval parameters subjected to stationary and non-stationary seismic 
excitations.
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Fig. 1  Shear beam model of a multi-story building. 

2. Interval seismic vibration of shear beam structures 

The equation of motion of a uniform cantilever shear beam under horizontal seismic 
excitations takes the following form [19] 
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where ,  and k  are the mass per unit length, damping and shear stiffness respectively. 

 is the ground acceleration. 

m c

� �txg��

   In Eq.(1), the input ground acceleration can be described by the modulated non-stationary 
random process as follows 

� � � � � �tftAtxg ,����  (2) 

� tA , ��  is a given envelope (or modulation) function, and  is a stationary random 

Gaussian process. The input ground acceleration 

� �tf

� �txg��  becomes a stationary random force 

and � � � �tft �xg��  when � � )(1, �		��� ttA � .

   The natural frequencies j�  and mode shapes j
  of mode can be written 

in closed form solutions 
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where H is the height of the shear beam shown in Fig. 1. 
   Considering the structural shear stiffness , mass  and damping  as interval 
variables, by means of the interval factor method [8], they can be respectively expressed as 
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   Substituting Eqs.(5) and (6) into Eq.(4) yields 
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   The power spectral density (PSD) � ��,tSu  of displacement response in frequency 

domain is given by [5,14] 
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 (8) 

where
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   After integrating � ��,tS

he height

u  in the frequency domain, thwith e interval mean square 

isplacements along t of the shear beam are given by 

 (10) 
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3. Interval random responses of shear beam structures 

   From Eq.(9) and by using the interval operations [8], th
w
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mum width of the PSD of structural random 
isplacement response can be obtained 

   Similarly, the midpoint and maxi
d
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mean square value of seismic random response can be written 
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4. Numerical example 

   The shear beam shown in Fig. 1 is used as an example to investigate the seism  
response of multi-storey buildings with uncertainty. The height of shear beam is mH 35� .
The  damping ra midpoint values of the structural shear stiffness, mass and

are ,  and  resp

   For the stationary random ground acceleration, let 
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where is the ordinate of the PSD of the bedrock acceleration. 0S g�  and g!  are the 

natural frequency and critical damping ratio of soil layer, f�  and f!  are meters of  a 
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  idpoint value of the PSD of the random displacement at Level 10 of the building 
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� �u tS �,10 is shown in Fig. 2. The effect of each of vibration modes on the c
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 is selected as [0,40] rad/s, 

ss and dam

structural response can be seen from this figure. The lower order natural frequencies and 
mode shapes contribute more to the structural responses, especially for the first five modes. 
Therefore, the structural responses could be sufficiently accurate when the integration 
region of the frequency of the ground acceleration excitation
which includes the dominant vibration modes of the structure. 
      To determine the effect of the change of interval parameters variables on the structural 
responses, the values of interval change ratios of interval structural parameters are taken as 
different groups. The effect of the uncertainty of structural stiffness, ma ping on 

the maximum width of the PSD of the random displacement of Level 10 � �u tS �,10�  can be 

examined from Figures 3(a)-(d). In order to show the peaks of the response PSDs more 
clearly, the frequency region of earthquake excitation is selected as [0,40] rad/s. The peaks 
of the response PSDs in Fig. 2 are very sharp, however, they have ranges as shown in Fig. 3 
because each natural frequency has its own change ranges depending on the interval change 
ratios of structural parameters. Therefore, the resonant response at any natural frequency 
also has a change region. It can be seen that the stiffness and mass produce the similar effects 
on the uncertainty of structural ran

c

dom displacement because they produce the similar effect 

   Computational results of the midpoint value  , maximum width  and interval 

change ratio of the mean square displacement response of

on structural natural frequencies. 
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values increase along the height of the building, that is, higher levels have larger 
displacement responses. Similarly, it can be seen from Table 1 that the maximum widths of 
the random displacement at higher levels are also bigger. Generally speaking, the 
uncertainties of structural parameters will produce greater effect on the structural responses 
of higher levels. It is hard to say they will produce the biggest effect on the highest level 

ecause its corresponding interval change ratios may not be the biggest one. 

d excitation, the following envelop function of the 
input acceleration are considered [21]  
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where 25.0�a , 5.0�b , sradg /0.15�� , 25.0�g!  and 0 /0.2 scmS � .

   For non-stationary seismic responses, curves of the lower and upper bounds of the mean 
square displacement response at Level 10 are shown in Fig. 4. It can be observed that the 
uncertainties of the structural non-stationary random responses are quite similar to those of 
the structural stationary random responses. The changes of the stiffness and mass have 
similar effect on the uncertainty of structural non-stationary seismic displacement, and the 
uncertainty of the structural non-stationary mean square random displacement

32

 is very 
bvious when the uncertainties of all structural parameters are taken into account. o
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Fig. 4  Non-stationary random displacement response 

5. Con
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clusions 

In this paper, the effects of bounded structural parameters on the change of the natural 
frequencies, power spectral density of structural random responses and mean square 
displacement shear beams are presented. Expressions for the midpoint value, lower bound, 
upper bound, interval maximum width, interval change ratio for the mean square value of 
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ear beams with uncertainty under 
 excitations can be obtained expediently. 
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