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ABSTRACT 

In this paper, a previously derived theoretical model of 
an integrated hydraulically interconnected suspension 
(HIS) half-car system is experimentally validated. The 
paper outlines the development of the HIS fluid system 
model and its integration into a four degree-of-freedom, 
roll-plane half-car system. An experimental approach to 
validate the model is outlined, and the resulting purpose-
built half-car test facility is described in detail. 
Experimental results from both free and forced vibration 
testing are presented and compared with model-based 
simulations. In general, very good agreement is 
observed. Limitations of the testing approach and 
reasons for any discrepancies are discussed. Finally, the 
broader implications of the obtained results in terms of 
practical HIS system design are considered. 

INTRODUCTION 

Vehicle suspension design usually involves a trade-off 
between handling stability and ride comfort. A relatively 
stiff suspension, in general, provides good handling 
stability but poor ride comfort, and vice versa. One 
approach to overcoming this compromise is through the 
use of hydraulic or mechanical interconnections between 
the individual wheel stations (spring-damper elements). 
An interconnected suspension system is one in which a 
displacement at one wheel station can produce forces at 
other wheel stations [1]. 

Interconnected suspensions, in theory, allow the 
designer to achieve greater control over the stiffness 
and damping of each suspension mode (i.e., bounce, 
roll, pitch and warp). The designer of a conventional 
non-interconnected suspension, however, remains 
reliant on single-wheel stiffness and damping to implicitly 
define modal characteristics. The degree to which 
individual modes are controlled depends on the exact 
method and arrangement of interconnection used. 

In recent experimental studies, vehicles with 
hydraulically interconnected suspension (HIS) systems 
displayed significantly improved handling capability in 
comparison to their non-interconnected ‘equivalents’ 
[2,3]. Meanwhile a recent theoretical study concluded 

that, for a half-car model (with ‘typical’ passenger vehicle 
parameters) subjected to a stochastic road input, the 
added roll stiffness achieved with an HIS system 
resulted in better ride comfort and smaller tire normal 
force fluctuations than if the increased roll stiffness had 
been achieved with a stiffer conventional suspension [4]. 
The study, however, did not involve any experimental 
validation, and a question remains as to the veracity of 
its conclusions.  

In this paper, an experimental validation of that modeling 
approach is presented. First, the model and basic 
equations are briefly reviewed. Next, the purpose-built 
test facility is described and the experimental results 
presented. These results are then compared with the 
theoretical predictions. Finally, the implications of the 
results are discussed and conclusions are given. 

MODELING 

SYSTEM DESCRIPTION – The system studied in this 
paper consists of two subsystems: one mechanical, one 
hydraulic, as outlined below. 

Mechanical subsystem - The conventional quarter-car 
approach to ride modeling is inadequate for the study of 
interconnected suspensions. In order to retain simplicity 
whilst still accounting for fluid interconnections between 
wheel stations, a lumped-mass four-degree-of-freedom 
(4-DOF), roll-plane half-car model is used in this 
investigation. Numerical simulations of a similar full-car 
model show that the half-car simplification is capable of 
capturing the essential dynamics of the system [5]. The 
half-car (as shown in Figure 1) consists of linear tire 
damping and springing, linear conventional suspension 
springing, and a roll-plane HIS system. The considered 
degrees-of-freedom are the vertical displacements of the 
unsprung masses, the vertical displacement of the 
sprung mass and the roll displacement of the sprung 
mass. Although the focus of this paper is on a roll-plane 
half-car, there is nothing about the theory or test rig that 
would prevent them being applied to a pitch-plane 
model. The theory could also easily be applied to a full-
car model. 



Hydraulic subsystem - A typical HIS system consists of: 
double-acting cylinders, which replace conventional 
suspension shock absorbers (as shown); diaphragm-
type accumulators, which provide an ‘air-spring’ effect; 
damper valves, which provide the desired damping in 
various modes; three-way pipe junctions; flexible 
hydraulic hoses; and thin-walled pipeline elements. 

There are two basic types of two-wheel interconnection 
schemes: anti-oppositional arrangements, which stiffen 
out-of-phase motion of the connected wheel stations, 
relative to in-phase motion; and anti-synchronous 
arrangements, which do the opposite [6]. In the context 
of the HIS with double-acting cylinders shown in Figure 
1, an anti-oppositional arrangement would require 
hydraulic lines set out diagonally (connecting the top-left 
chamber with the bottom-right one, and the top-right with 
the bottom-left), while an anti-synchronous scheme 
would require parallel pipelines. Both arrangements are 
examined in this paper. 
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Figure 1: Schematic of a roll-plane half-car with an HIS 

THEORETICAL APPROACH AND BASIC EQUATIONS 
– A derivation of the equations of motion of the 
integrated half-car and HIS system has been given 
elsewhere [7] and is not repeated in detail here; what 
follows is a brief outline. 

Mechanical subsystem equations - Treating the pressure 
forces in the hydraulic cylinders as external loads acting 
on the vehicle, we obtain the equation of motion for the 
system: 

 ( ) ( )t t+ + = +1 GMy Cy Ky D Ap f&& &  (1) 

where M, C and K are the mass, damping and stiffness 
matrices, respectively; [ ], , , T

wl wr vy y y θ=y  is the  

displacement vector and [ ]1 2 3 4, , , Tp p p p=p  is the 
pressure vector (where the subscript numerals relate to 
the cylinder chambers numbered in Figure 1); ( )t1D Ap  
and ( )tGf  represent, respectively, the pressure forces in 
the hydraulic cylinders and the forces due to ground 
excitation – other external forces are omitted. 

As well as the pressure vector, the hydraulic cylinder 
force is comprised of the area matrix, 

( )1 2 3 4diag , , ,A A A A=A  - which represents the surface 
area of the piston in the corresponding chamber - and a 
linear transformation matrix, 1D . 

Mechanical-fluid boundary equations - The mechanical-
fluid system boundary conditions are treated as ideal, 
with all piston motion transferred into fluid flow. The 
boundary flow equation can thus be written: 

 ( )t = 2q AD y&     (2) 

where the flow vector [ ]1 2 3 4, , , Tq q q q=q  and 2D  is a 
linear transformation matrix. 

Hydraulic subsystem equations - To solve Eqs. (1) and 
(2), a fluid system equation is needed which relates p 
and q. This can be done using the linear hydraulic 
impedance method, which is computationally efficient 
and uses equations of the form 1( ) ( ) ( )s s s−=Q Z P  [8]. 
Z  is the system impedance matrix, which is derived 
using the transfer matrix method by multiplying the 
impedance characteristics of the individual fluid system 
elements, as detailed in [7]. 

Integrated system equations of motion - The fluid system 
impedance equation can be combined with the Laplace 
transform of Eqs. (1) and (2) to obtain the complete 
integrated system equation of motion: 

 ( )2 ( ) ( ) ( )s s s s s+ + = GM C K Y F  (3) 

in which ( ) ( )s s′= +C C C  is the complex frequency 
dependent system damping matrix, which includes both 
the mechanical system damping matrix C, and 

( ) ( )s s′ = − 1 2C D AZ AD , the damping contribution from 
the hydraulic subsystem. 

Integrated system frequency response functions - The 
system’s frequency response functions (FRFs) can be 
found by expressing the road force vector as 

( ) ( ) ( )s s s=GF F ξ . [ ], ,0,0 T
l rξ ξ=ξ  is a vector of the 

road displacement from the equilibrium position, and F  
is a 4 4×  matrix comprising all zero elements except the 
upper two diagonal terms, 11( ) tl tlF s sc k= +  and 

22 ( ) tr trF s sc k= + . Eq. (3) can thus be written in the form: 

 ( ) ( ) ( ) ( )s s s s=B Y F ξ    (4) 

We may now define the FRFs matrix for the half-car:  

 1( ) ( ) ( ) ( ) ( )s s s s s−= =H Y ξ B F   (5) 



Upon setting s jω= , the FRFs matrix describes the 
system displacement response to any harmonic road 
excitation. The FRFs for this system have been 
published elsewhere and are not repeated here [4]. 

HYDRAULIC SYSTEM AND COMPONENT MODELS - 
The hydraulic system is modeled using the impedance 
method, which is most often applied in the frequency 
domain and requires linearisation of each component. 
The technique accounts for fluid resistance (pressure 
loss), inductance (fluid inertia) and capacitance (fluid 
compressibility). The method makes use of the one-
dimensional, two-port two-node) hydraulic component 
representation [9], in which the pressure and flow at 
adjacent nodes are related by a transmission matrix, T : 
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21 22

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )D U

P s T s T s P s
Q s T s T s Q s
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (6) 

where the subscripts ‘D’ and ‘U’ mean ‘downstream’ and 
‘upstream’, respectively. 

Once a transmission matrix for each component is 
determined, the transfer matrix method [10] can be 
applied to connect all the nodal states within the circuits. 
The accuracy of this approach depends on the capacity 
to precisely model the impedance characteristics of each 
fluid element. The assumption that such a capacity 
exists underpins the proposed modeling procedure. 

Present space limitations preclude a thorough 
explanation of the component models used in the 
simulations – further information can be found in [7]. It 
should be noted, however, that the damper valves – 
which provide the desired level of damping in a given 
suspension mode – are modeled here as purely resistive 
elements, with a linear loss coefficient, vk : 

 vk p q= Δ     (7) 

where pΔ  is the pressure drop across the valve and q  
is the volumetric flow rate of the fluid through the valve. 

EXPERIMENTATION 

INTRODUCTION AND RATIONALE - An attempt is 
made here to experimentally validate the modeling 
approach outlined above. This is done with a purpose-
built, 4-DOF, half-car test rig, specially designed at the 
University of Technology, Sydney (UTS). The test 
program consists of both free and forced vibration 
testing. The free vibration testing is used to determine 
the stiffness and damping of the bounce and roll modes, 
from which the value of vk  is estimated. This value is 
used in simulations to compare the experimental forced 
vibration data with the theoretical predictions. 

DESCRIPTION OF TEST RIG - The free and forced 
vibration experiments were performed on the half-car 

test rig shown in Figures 2, 3 and 4. The rig was 
designed, manufactured and operated at UTS. 

General layout - The apparatus was designed 
specifically to operate like the half-car model introduced 
earlier. The test set-up consists of: two rigid unsprung 
masses, each constrained with low friction roller 
bearings to only one vertical degree of freedom; and the 
rigid sprung mass, with two degrees of freedom: bounce 
and roll. One double-acting hydraulic cylinder is placed 
at each wheel station, so the rig can accommodate any 
two-wheel HIS arrangement (anti-oppositional or anti-
synchronous). The sprung mass and roll inertia can 
easily be varied, and the rig can accommodate rigid or 
conventional rubber top mounts. External force 
application, when required, is provided via an external 
servovalve hydraulic system and an actuator attached 
rigidly to the underside of one of the unsprung masses. 

 

Figure 2: Half-car test rig: main view 

 

Figure 3: Half-car test-rig: top view 



All the results presented in this paper relate to testing 
with rubber top mounts and with four sprung mass/roll 
inertia combinations. The HIS mean system pressure 
and pipeline arrangement were also varied throughout 
the testing. 

 

Figure 4: Half-car test-rig: side view, showing guide rails 
and roller bearings 

Hydraulic system - Two hydraulic system arrangements 
were tested: anti-oppositional (free and forced vibration) 
and anti-synchronous (forced vibration only), shown in 
Figures 5 and 6, respectively. Experiments with the anti-
oppositional set-up were performed both with (free and 
forced vibration) and without (free vibration only) damper 
valves. The anti-synchronous tests were all performed 
with the damper valves installed. A steel pipeline of 13.3 
mm diameter and 500 mm length was used, and two 
12.7 mm diameter flexible hoses – of 300 mm (Hose 1) 
and 500 mm (Hose 2) length – were used concurrently. 
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Figure 5: Hydraulic layout for anti-oppositional half-car 
testing 

The mean system pressure, p , for the free vibration 
testing was 10 bar; pressures of 15, 20 and 25 bar were 
used for each set of forced vibration tests. The 
accumulators are 320 cc, and were pre-charged to 2 bar 
gauge pressure. The four one-way ‘cylinder’ damper 
valves – positioned on each cylinder port – consist of a 
shim-stack-and-spring arrangement, chosen during the 
free vibration testing to achieve a bounce damping ratio 
of approximately 40%. Additional (mode-dependent) 
damping can be achieved by adding ‘accumulator’ 

damper valves, but these were not used in any of the 
tests. Each hydraulic line includes a quick release 
coupling to allow simultaneous pressure charging of 
both circuits, thus ensuring pressure equalization 
throughout the system. 

Hose 1 Hose 2

Hose 2 Hose 1

Pipe 1

Pipe 1

 

Figure 6: Hydraulic layout for anti-synchronous half-car 
testing 

Mechanical system - The mechanical subsystem is 
described by the properties shown in Tables 1 and 2. 
For the free vibration testing, the sprung mass and roll 
inertia were varied between mass configurations 1, 2 
and 3. In the forced vibration tests, only configuration 4 
was used. 

Table 1: Constant parameters of the half-car 
experimental rig mechanical subsystem 

Symbol Value Units Description 

jb  0.75 m 
Distance from c.g. to suspension strut 
(subscript ,j r l= ) 

jm  51.1/49.4 kg Unsprung mass with/without hydraulic 
system installed 

,sl srk k  20.6, 20.4 kN m-1 Mechanical suspension spring stiffness 
(left, right) 

,tl trk k  182.8, 185.6 kN m-1 Tire spring stiffness (left, right) 

tjc  0 N s m-1 Tire damping (i.e., only a spring is 
used) 

 
Table 2: Variable mass properties of the half-car 
experimental rig 

Symbol Value Units Description 

Mass configuration 1   

M  648.8/645.7 kg Sprung mass with/without hydraulic 
system installed 

I  347.4/345.6 kg m2 Sprung mass roll inertia with/without 
hydraulic system installed 

Mass configuration 2   

M  648.8/645.7 kg Sprung mass with/without hydraulic 
system installed 

I  271.7/269.9 kg m2 Sprung mass roll inertia with/without 
hydraulic system installed 

Mass configuration 3   

M  648.8/645.7 kg Sprung mass with/without hydraulic 
system installed 

I  159.3/157.6 kg m2 Sprung mass roll inertia with/without 
hydraulic system installed 

Mass configuration 4   

M  599.6 kg Sprung mass with hydraulic system 
installed 

I  261.3 kg m2 Sprung mass roll inertia with hydraulic 
system installed 

 



External force application - The forced vibration testing 
was performed with a single harmonic input applied 
directly to the left unsprung mass with a double-acting 
hydraulic cylinder. This, in effect, reduced the 
mechanical half-car system to one determined and three 
undetermined degrees-of-freedom. The actuator was 
driven by an external electrohydraulic servovalve 
system. The input force was governed by a constant 
amplitude, harmonic displacement control signal from a 
custom Moog Hydraulic Servo Controller and a Wavetek 
75 Arbitrary Waveform Generator. 

TEST METHODOLOGY - Prior to undertaking each test, 
whether free or forced vibration, a standard procedure 
was followed to ensure that the rig was set-up correctly. 
This included: checking that the circular guide rails were 
all purely vertical; checking that there was (roughly) 
uniform contact between all the roller bearings and guide 
rails; ensuring that the static pressure was equal in both 
lines (easily achieved by charging the system through 
the removable  pressure equalizing line); minimizing the 
amount of entrained air in the oil (by careful bleeding 
after each hydraulic component change); and setting the 
pistons to be positioned at the midpoint of the stroke. 

Free vibration - The free vibration tests involved a series 
of single, human-applied, short duration impulses 
exerted on the sprung mass. First, four such impulses 
were applied to the left side of the sprung mass, then 
four to the right side. The magnitudes of all eight 
impulses were approximately equal, yet because the 
force was human-applied, variations inevitably occurred. 
After each impulse, the system was left to return to its 
equilibrium state before another impulse was applied. 
Each of the eight free decay responses was recorded 
and analyzed, as outlined in [11]. The main objective of 
the testing was to determine the (approximate) bounce 
and roll natural frequencies and damping ratios. This 
was done by averaging the eight responses and by 
assuming that the duration of the applied force was 
infinitesimal. These damping ratios were then used to 
calculate the approximate damper valve loss coefficients 
for use in the forced vibration response predictions. 

A secondary objective was to establish the level of 
(undesired) damping produced by friction in the guide 
bearings and the structural damping in the suspension 
and tire springs. This was determined by conducting free 
vibration tests without the hydraulic system installed. 
Aside from these tests, experiments were also 
performed with the anti-oppositional hydraulic set-up, 
both with and without damper valves installed. In both 
cases, the mean system pressure was set to 10 bar. 

Forced vibration - The forced vibration tests were 
performed by applying a harmonic input to the left 
unsprung mass. The frequency of the input, of constant 

2.6± mm nominal amplitude, was varied in small 
increments ( 0.25≤ Hz) and data (the acceleration of the 
sprung and unsprung masses) were recorded at each 
frequency step. 
 

Due to the high transmissibilities involved, forced 
vibration tests were not carried out on the undamped 
half-car set-up; testing was only performed with the 
dampers installed. The hydraulic arrangement, however, 
was switched between anti-oppositional and anti-
synchronous, and testing was performed at 15, 20 and 
25 bar with both arrangements. As most of the vehicle 
weight was borne by the suspension springs, a change 
in mean system pressure did not change the ride height 
significantly. For example, a change in mean pressure of 
10 bar altered the ride height by about 4.6 mm. During 
all tests, the temperature of the servovalve was 
monitored to ensure that it did not exceed 90°C. 

The main objective of the forced vibration testing was to 
determine, relative to the left unsprung mass, the 
transmissibilities for the bounce, roll and right unsprung 
mass motion variables. This allows a direct comparison 
with the theoretical frequency response functions 
previously described. 

APPLICATION OF MATHEMATICAL MODEL - The 
general approach used to model the test rig was 
introduced under ‘Modeling’. As the damper valves are 
not modeled parametrically, an approach for deciding on 
the value of the loss coefficient ( vk  from Eq. (7)) must 
be developed. In this paper, two such approaches were 
taken.  

Theory 1 - First, an iterative approach was used to 
determine vk  by matching the damping ratios obtained 
in the free vibration testing. These loss coefficients were 
then used in the initial simulations – hereafter denoted 
‘Theory 1’ – for comparison with the forced vibration test 
results. 

Theory 2 - The second approach for determining vk  was 
based on the forced vibration testing. The new value for 
the coefficient was calculated by minimizing the sum-of-
squares error, ε , between the theoretical and 
experimental transmissibilities over the n data points in 
the frequency range , if , from 0 to 20 Hz: 

[ ] [ ]{ }22 2

1

1 ( ) ( ) ( )
n

i
wr i v i iy f y f f

n
ε θ

=

= + +Δ Δ Δ⎡ ⎤⎣ ⎦∑  (8) 

where, for a given variable y: 

( ) ( )
( )

( ) ( )

t e
i i

i t e
wl i wl i

y f y f
y f

y f y f
Δ = −   (9) 

where the superscripts ‘t’ and ‘e’ denote ‘theory’ and 
‘experiment’, respectively. Thus, for each test set-up, 
one ‘best-fit’ loss coefficient is determined based on all 
three transmissibilities. This approach is referred to as 
‘Theory 2’ in the following sections. It should be noted, 
however, that the underlying theory behind ‘Theory 1’ 
and ‘Theory 2’ is identical; the labels are simply used to 



indicate the way in which the vk  value has been 
determined. 

RESULTS 

FREE VIBRATION - The results from testing without the 
hydraulic system installed indicated that the 
unintentional damping in the system (e.g. guide bearing 
friction, structural damping in the springs, etc.) was very 
low ( 1%ζ <  for the bounce and roll modes in all tests). 
This suggests that the obtained results are unlikely to be 
significantly corrupted by external effects. 

Table 3 shows the free vibration results – that is, the 
natural frequencies and damping ratios for the bounce 
and roll modes – for testing with the hydraulic system 
and damper valves installed. It was found that, in 
comparison to the system without hydraulics, the bounce 
mode was softened slightly by the hydraulic system – a 
finding consistent with simulations – and the roll mode, 
as expected, was significantly stiffened by it. The table 
also shows the approximate valve loss coefficients 
required, in simulations, to deliver the experimentally 
obtained bounce and roll damping ratios. It can be seen 
that in each case these values are identical – 

92.665 10×  kg s-1m-4 for the cylinder dampers; 0, as 
expected, for the (uninstalled) accumulator dampers – 
suggesting that the testing methodology was sufficiently 
robust to deliver repeatable results. 

Table 3: Bounce and roll natural frequencies, damping 
ratios and approximate valve loss coefficients from free 
vibration testing: hydraulic system installed with damper 
valves; 10p = bar 

 Bounce mode Roll mode 
Approx. vk x 10-9  

(kg s-1m-4) 

Mass 

config. 
nω  

(rad/s) 
ς (%) nω  

(rad/s) 
ς (%) ( )v cylk  ( )v acck  

1 7.85 40.9 12.45 17.5 2.665 0 

2 7.85 40.9 14.16 19.7 2.665 0 

3 7.85 40.9 18.94 25.2 2.665 0 

 

FORCED VIBRATION - The forced vibration results – 
that is, the obtained transmissibilities, relative to the 
input at the left unsprung mass, of the right unsprung 
mass and the sprung mass bounce and roll modes – are 
shown in Figures 7 and 8. Each of the plots shows the 
frequency responses for testing at mean pressures of 
15, 20 and 25 bar. 

The differences between the anti-oppositional and anti-
synchronous arrangements can clearly be seen. The 
former (Figure 7) stiffens the roll mode significantly 
(giving a natural frequency in that mode of 3-4 Hz, 
depending on system pressure) but leaves the bounce 
mode relatively soft. The latter (Figure 8), on the other 
hand, stiffens the bounce mode but not the roll mode. 
This is consistent with expectations, due to the nominal 

fluid flow paths in each mode. In the anti-oppositional 
arrangement, roll motion causes a large amount of fluid 
to flow into/out of the accumulators, which offer a 
resistance due to gas compressibility (often called the 
‘air spring’ effect), giving added stiffness to the roll 
mode. While in the bounce mode, only a very small 
amount of fluid flows into the accumulators, so very little 
stiffness is added to that mode. In the anti-synchronous 
arrangement, the reverse is true. It is for this reason that 
interconnected suspensions are sometimes said to 
‘break the compromise’ between ride and handling, as 
desirable levels of stiffness and damping for each mode 
can be achieved, at least in principle. 

It is immediately apparent from the graphs that the mean 
system pressure has a significant effect on the 
transmissibility of the right wheel. In the anti-oppositional 
case, the roll mode is also significantly affected around 
its single peak, as is the bounce mode in the anti-
synchronous arrangement. As expected, at higher mean 
pressure, the accumulator ‘air spring’ is stiffer, thus 
generally leading to higher transmissibilities over most of 
the frequency range, as well as reduced damping. 
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Figure 7: Transmissibilities from forced vibration testing: 
anti-oppositional arrangement; 15,20,25p = bar 

COMPARISON WITH THEORY - In this section, the 
experimental data for 20 barp = , presented in Figures 
7 and 8, are compared with the theoretical predictions – 
‘Theory 1’ and ‘Theory 2’. The valve loss coefficients 
and corresponding sum-of-squares error terms for each 
experiment and modeling approach are shown in Table 
4. And in Figures 9 and 10, the theoretical 



transmissibilities obtained with Theory 1 and Theory 2 
are plotted with the experimental data. 

From Table 4 it can be seen that, compared with Theory 
1, Theory 2 achieves only a slightly better fit with the 
experimental data in the anti-synchronous test. In the 
anti-oppositional test, however, the best-fit valve loss 
coefficient is 10% higher than that obtained in the free 
vibration testing, and the resulting error term is 20% 
lower. 
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Figure 8: Transmissibilities from forced vibration testing: 
anti-synchronous arrangement; 15,20,25p = bar 

Table 4: Valve loss coefficients and sum-of-squares 
error from forced vibration testing: 20p = bar 

 Theory 1 Theory 2 

Arrangement 
910vk −×   

(kg s-1m-4) 
210ε ×  

910vk −×  
(kg s-1m-4) 

210ε ×  

Anti-oppositional 2.665 1.622 2.932 1.290 

Anti-synchronous 2.665 1.682 2.735 1.665 

 

The agreement between the modeling and the 
experimental data shown in Figures 9 and 10 is, in 
general, quite good. One point of note is that, with both 
arrangements, the right wheel damping around the 
wheel hop frequency (~10 Hz) is slightly lower than 
predicted. This is most likely due to the nonlinearity in 
the damper valves; they may have been operating near 
the end of the ‘transition region’ [12], with the high wheel 

velocities associated with that mode fully opening the 
valves briefly. 

The predicted roll response in the anti-oppositional 
arrangement and the bounce response in the anti- 
synchronous case agree very well with the obtained 
data. One reason for this could be the higher 
transmissibilities involved rendering some of the 
unmodeled nonlinearities (e.g., friction in the guide 
bearings and the piston rod seals) less significant than in 
the other responses. Although a larger response 
amplitude is also likely to introduce other nonlinear 
effects (e.g., damper valve pressure losses, nonlinear 
‘air spring’ effect, etc.), these have not caused 
discrepancies of any note between the two sets of data. 

The least accurate predictions are of the anti-
oppositional bounce response and the anti-synchronous 
roll response. In each of these plots, the trend of the 
curve matches the data points reasonably well, but the 
predicted response is shifted down the frequency range 
slightly. This is a potential topic for further investigation. 
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Figure 9: Comparison between experimental and 
theoretical frequency responses: anti-oppositional 
arrangement; 20p = bar 
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Figure 10: Comparison between experimental and 
theoretical frequency responses: anti-synchronous 
arrangement; 20p = bar 

DISCUSSION 

UNMODELLED EFFECTS - The modeling used in the 
preceding section overlooked a number of factors that 
may have reduced the accuracy of the results. The most 
significant of these is almost certainly the damper 
valves. Due to the large number of components in the 
valve assembly (shims, valve body, pre-loaded spring, 
etc.), developing an accurate, parametric model of the 
dampers’ pressure-flow properties presents a 
challenging undertaking. 

Figure 11 shows these properties for a typical shock 
absorber damper valve [12]. A cutaway view of the valve 
itself is shown in Figure 12 [13]. The area of the graph 
referred to as ‘Stage 1’ corresponds to operation with 
the valve completely closed, the only flow passing 
through the slotted bleed shims. In ‘Stage 2’, the 
transition region, the valve gradually opens through the 
compression of the spring, until, in ‘Stage 3’, it reaches 
its fully open state. Thus stages 1 and 3 are governed 
essentially by constant-area flow dynamics, with a 
complex transition region linking the two. Accurately 
modeling this phenomenon would probably require the 
use of sophisticated CFD software [13], though the plots 
in the preceding section suggest that that level of detail 
may not be necessary for some purposes. A rough 
calculation of the loss coefficient – based only on the 
flow area in the bleed shims used on the test rig – gives 

a value of about 11 1 41.5 10  kg s mvk − −× , much larger than 
the results in Table 4. It is clear, then, that the valves 
were opening during the tests, and that any parametric 
model for use in such circumstances must account for 
the transition region. 

 

Figure 11: Pressure loss versus flow rate for a typical 
shock absorber damper valve [12] 

 

 

Figure 12: Cutaway view of damper valve [13] 

Some simulations were performed incorporating the 
hydraulic cylinder’s rubber top mounts into the model. 
They were treated as constant-stiffness spring elements, 
with a stiffness value supplied by the manufacturer. This, 
however, reduced the accuracy of the simulations, 
compared with both the ‘Theory 1’ and ‘Theory 2’ 
results. This may be because the mounts’ stiffness is 
both frequency-dependent and nonlinear, neither of 
which is accounted for in the manufacturer’s statically-
derived stiffness coefficient. Dynamic testing of the top 
mounts, to ascertain their stiffness and damping 
properties as a function of amplitude and frequency, 
would be a potential step in any subsequent 
investigation. 

SUGGESTIONS FOR FURTHER TESTING - If the 
methodology proposed here is to be used in practice, 
there is a clear need to obtain accurate empirical 
hydraulic component models. No such testing has been 
undertaken in this investigation, but much work has 
previously been done by others in the field. In particular, 
researchers at the University of Bath have devised a 
robust experimental technique for determining the 
impedance characteristics of individual hydraulic 



components over a wide frequency range. It may even 
be possible to establish amplitude-dependent 
characteristics – in the form of, say, a frequency-
amplitude map – in the more nonlinear components 
(e.g., valves), though incorporating that information into 
a practical vehicle model may be difficult. The interested 
reader is referred to the appropriate references for 
further information on experimental impedance 
determination [9,14]. 

PRACTICAL DESIGN IMPLICATIONS - The 
experimental results clearly illustrate the significant 
effect that the mean system pressure and damper valve 
properties have on the frequency response of HIS-
equipped vehicles. The bounce and roll responses, in 
particular, are of critical importance as they are directly 
related to the discomfort experienced by the vehicle 
occupants [15]. It is noted that in the forced vibration 
tests, the broad trends in the frequency responses were 
well predicted by the theory, suggesting a suitability for 
the model, as it stands, in the early stages of the vehicle 
design process, when quickly establishing general 
trends is of principle importance.  

The most challenging aspect to extending the generality 
of the model lies, almost certainly, with the damper 
valves. In hydraulic impedance terms, these may exhibit 
capacitive or inductive characteristics at very high 
frequencies [16,17], but a purely resistive model is 
probably adequate for any vehicle ride study. This 
resistance, however, is not a constant function of either 
amplitude or frequency, and further investigation is 
required to establish the conditions under which such an 
assumption is valid. Even so, it was found that using the 
free vibration tests to determine the valve loss coefficient 
produced a value that returned reasonably accurate 
forced vibration results – in one case, these results were 
indistinguishable from those found using a best-fit loss 
coefficient. 

CONCLUSION 

This paper briefly introduced a previously-derived model 
of a multi-body half-car system with a hydraulically 
interconnected suspension. A unique, purpose-built half-
car test rig was described and used to validate the 
proposed model. The obtained results suggest that the 
modeling approach is sound for simulating vehicle 
response under certain conditions. More specifically, 
good agreement was found between the theoretical and 
experimental frequency responses when a harmonic 
force of 0-20 Hz and 2.6± mm nominal amplitude was 
applied to the left unsprung mass. 

Although the experimental frequency responses were 
well predicted by the theory, more detailed, component-
level experimentation (and modeling) is recommended 
for predicting more accurately the system response to 
specific inputs under a variety of operating conditions. 
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