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Abstract— This paper presents a novel solution for building
three-dimensional dense maps in unknown and unstructured
environment with reduced computational costs. This is achieved
by giving the robot the ‘intelligence’ to select, out of the steadily
collected data, the maximally informative observations to be
used in the estimation of the robot location and its surroundings.
We show that, although the actual evaluation of information
gain for each frame introduces an additional computational
cost, the overall efficiency is significantly increased by keeping
the matrix compact. The noticeable advantage of this strategy
is that the continuously gathered data is not heuristically
segmented prior to be input to the filter. Quite the opposite,
the scheme lends itself to be statistically optimal and is capable
of handling large data sets collected at realistic sampling rates.
The strategy is generic to any 3D feature-based simultaneous
localization and mapping (SLAM) algorithm in the information
form, but in the work presented here it is closely coupled to a
proposed novel appearance-based sensory package. It consists
of a conventional camera and a range imager, which provide
range, bearing and elevation inputs to visual salient features
as commonly used by three-dimensional point-based SLAM,
but it is also particularly well adapted for lightweight mobile
platforms such as those commonly employed for Urban Search
and Rescue (USAR), chosen here to demonstrate the excellences
of the proposed strategy.

I. INTRODUCTION

One of the many important applications of mobile robots
is to reach and explore terrains which are inaccessible or
considered dangerous to humans. Such environments are
frequently encountered in USAR scenarios where, prior
knowledge of the environment is unknown but required
before any rescue operation can be deployed. A small mobile
robot equipped with an appropriate sensor package can
possibly be regarded as the best aid in such scenario. The
robot is expected to navigates itself through the site and
generate maps of the environment which human rescuers
can then use for navigating and locating victims. Despite the
wealth of research in planar robot mapping, the limitations
of traditional 2D feature maps in providing useful and
understandable information in these scenarios have propelled
increasing research efforts towards the generation of rich
textural 3D maps instead.

3D mapping of a USAR scenario using a light-weight and
highly mobile autonomous robot is a challenging predica-
ment which can be framed within the generic simultaneous
localization and mapping (SLAM) problem [4], where a
robot is expected to move with six degrees-of-freedom in
a three-dimensional environment. This, per se, demanding

picture is further complicated by the lack of odometry infor-
mation from the wheel encoders, as this tends to be totally
unreliable due to the nature of the disaster environment.
The emerging approach based on the ubiquitous laser range
scanner lies in deriving odometry from 3D scan matching,
possibly fusing textured images a-posteriori to recover the
final shape [9]. When the noise on the relative locations is
small, as is the case of accurate range sensor such as tilting
laser range finders or other forms of egomotion sensors, such
as large and expensive IMUs, a good quality estimate of
the final 3D map can be expected if displacement between
robot poses is limited. By doing so the SLAM problem is
reduced to that of the estimation of a state vector containing
all the camera/robot poses. This is the approach used by
many researchers in the SLAM community, e.g. [3], [11], [7].

Wide availability of lower cost, lower power, lighter-
weight passive cameras as well as maturity of computer
vision algorithms have made real-time vision processing
much more practical in recent times, and consequently there
has been an increasing interest in visually based navigation
systems in the robotics community. Cameras are particularly
interesting as they provide a wealth of geometric information
from an unmodified scene, as well as perceptual information
such as textures and colours, which can be matched by
few other sensors. Vision SLAM in particular has seen
many advances in recent years [10], and our efforts have
also veered towards sequential 3D dense map reconstruction
within a visual SLAM framework to meet the challenges
intrinsic to disaster environments such as USAR.

In previous research work [12] an alternative compact
visual sensor package along with a SLAM algorithm has
been proposed. A traditional passive pin-hole camera is
combined with one of the recently developed low resolution
range imagers. The conventional camera is used to capture
scene texture and to extract salient visual features whilst the
range camera provides 3D data of the corresponding scene.
The combined observations made by these two cameras are
then used as the sole input in the SLAM process thereafter.
The technique employs a conventional EIF approach which
recovers the robot and feature poses at the end of each
‘acquire, update’ cycle. However, the inversion of informa-
tion matrix evoked during each estimation cycle comes at a
significant computational cost. Although the sensor package
is capable of delivering data at a minimal frame rate of
5 to 10 Hz, which should theoretically guarantee in itself



appropriate frame registration, the increasing sampling delay
between consecutive frames caused by extensive computation
yields inadequate data association and therefore unsuccessful
frame registration. Such problem is particularly magnified in
unstructured environment where the robot’s sights change
rapidly and unpredictably along its undulating path.

Many efforts have been made in recent years to reduce the
computational encumbrance generally faced by most SLAM
algorithms, particularly in its most efficient information
form. In related work [8], Eustice et al implemented an Ex-
actly Sparse Delayed-State Filter (ESDSF) which maintained
a sequence of delayed robot poses at places where low-
overlap images were captured manually. In [11], the authors
also used a Delayed State Extended Kalman Filter (EKF)
to fuse the data acquired with a 3D laser range finder. A
segmentation algorithm was employed to separate the data
stream, based on orientation restrains, into distinct point
clouds, each referenced to a vehicle position. Both imple-
mentations significantly reduced the computational cost by
eliminating features from the state vector to achieve practical
performance. However, one noticeable common problem of
these strategies is that loop closure can not be automatically
detected. Separate loop closure methods were required in
conjunction with their proposed techniques. Furthermore,
both methods require either human supervision over the
data acquisition process or raw odometry measurements to
minimize the number of critical robot poses that should be
maintained, none of which are available to us in the settings
of a USAR scenario.

It was demonstrated [12] that dense 3D maps can be con-
structed with carefully prepared data sets collected in a static
fashion, in the sense that each camera pose was manually
situated to ensure extensive overlapping between consecutive
frames as well as the full coverage of the arena. However,
in real applications such as USAR, it is unrealistic to expect
such ‘ideal’ data sets. The sensor package is more likely
to be operated at its maximum rate to overcome problems
such as motion blurriness and drastic changes in the scene
due to the inherent nature of unstructured environments.
Thus an alternative approach to address the computational
issues encountered in more realistic settings is proposed
here: instead of focusing on minimising the information
gathered and trying to compute them in mathematically
efficient ways, we seek a solution where we can collect
information at maximum sensor rates and give the robot the
‘intelligence’ to choose the critical observations that should
be incorporated in the estimation process. To accomplish
that, in this paper we extend our current methodology with
an improved filtering technique whereby given a desired
estimation error boundary, a buffer of overlapped continuous
visual scans are sampled but only those providing maximal
information gain are actually introduced in the filter. With
this technique, the filter incorporates only a minimal number
of robot poses, but critically distributed along the trajectory
in an automatic manner based on the robot uncertainty belief.
Moreover, we can also afford to maintain both robot and
feature poses in the state vector, which provides a more

Fig. 1. The sensor package: a conventional pinhole camera aligned with
the SwissRanger SR-3000 ranger

accurate estimation over camera poses and automates loop
closure.

The consistency of the proposed strategy has been exam-
ined and validated with simulated data in [13]. In this paper,
we present results obtained from real data sets collected by
the proposed sensor package while operating at a realistic
sampling rate. The outcome of a reconstructed 3D dense
map that closely reassembles the environment being explored
alongside pictures from the scene are presented to show the
qualities of the strategy.

The rest of this paper is structured as follows: Section II
describes the visual sensor package. The 3D feature ex-
traction and registration process is explained in Section III.
Section IV covers the mathematical formulation of the
EIF SLAM algorithm and the proposed information-efficient
strategy. Section V presents the experimental results. Dis-
cussion and concluding remarks are drawn in VI where
improvements and future work directions are also proposed.

II. THE VISUAL 3D SENSOR PACKAGE

In this work, we have employed an improved version of
the sensor package used in [12] which consists of a time-of-
flight range camera (SwissRanger SR-3000, low resolution,
176×144 pixels) and a higher resolution conventional camera
(Point Grey Dragonfly2, 1024×768 pixels). The two cameras
are fixed relative to each other as illustrated in Fig. I.

The SwissRanger works on the principle of emitting mod-
ulated infra-red light on the scene with a 20 MHz frequency
and then measuring the phase shift of the reflection to
provide 3D range data without an additional tilting/panning
mechanism, albeit within a limited range (the known non-
ambiguity range of the sensor [5] is 7.5 meters). Further to
distance information, the SwissRanger is also able to return
information about the reflected signal’s amplitude, hence
capturing an intensity image of the scene. However, this
is currently too noisy and subject to substantial changes in
illumination as the camera pose changes. Hence the proposal



for a conventional camera, insensitive to the infra-red light
emitted by the SwissRanger, to capture scene texture and to
extract salient visual features to aid the SLAM algorithm.

III. FEATURE EXTRACTION AND FRAME REGISTRATION

With no prior knowledge of the robot motion nor the
scene, an efficient mechanism to estimate the relative pose
between two images is required as an input to the filter. A
popular choice drawn from computer vision as a fundamental
component of many image registration and object recognition
algorithms is the Scale Invariant Feature Transformation
(SIFT) [6]. The main strength of SIFT is to produce a feature
descriptor that allows quick comparisons with other features,
and is rich enough to allow these comparisons to be highly
discriminatory.

The process for the frame registrations is as follows: firstly
the two cameras are stereo calibrated. SIFT features are then
detected in the 2D camera image and matched across those
in the previous images. Due to the offset between the two
cameras, there is not a one-to-one corresponding pixel which
can be obtained directly from the SwissRanger’s intensity
image. However, given the calibration information, we can
compute the 3D position at where the feature visual cue
(bearing) should intersect the 3D point cloud. If a point can
be located around the intersection point and its distance is
within the known SwissRanger’s measurement precision at
that depth, we register this 3D point as a potential feature as
illustrated in Fig. 2 for a single SIFT point. Applying a least
square 3D point set registration algorithm [2] and an outlier
removal [1], we obtained a subset of features which we can
use for estimating the initial value of the new camera pose
with the previous camera pose as prior.

IV. EFFICIENT EXTENDED INFORMATION FILTER SLAM

A. Information Efficient Filtering Strategy

As described in the introduction section, in USAR scenario
the desire is for a system which can deliver not only maximal
information but also a human comprehensible presentation
of the environment in minimal time. To do so, a “look-
ahead and search backwards” algorithm is proposed. The
idea is maximising data collection by buffering up all the
information available but only choosing the most crucial data
to be processed for mapping and localisation. Assuming the
robot begins at the origin [0, 0, 0] of the global coordinate
frame at time t = 0, the feature global poses can be estab-
lished and be used as the first ’base’ frame, Fbase. For the
following frames, matching features are found between Fbase

and each individual frame, unless the number of common
features reaches a predefined minimum or the number of
frames being examined exceeds the look-ahead buffer size.
The minimal number of common features is restricted by
the 3D registration algorithm [2] to 6, while buffer size is
an empirical number determined by the desired coarseness
of the map. 3D registration is performed on each frame
with respect to their matching Fbase (all global coordinates).
Given new observations made at each new robot pose,
information gain can be obtained without recovering the

state vector which is the major computational expense in
EIF SLAM. The camera pose at which the observations
provide maximal information gain is added to the filter, and
the corresponding frame is included as a new entry in the
Fbase database. Frames in the look-ahead buffer previous to
the new Fbase are dropped, and a new buffer is started from
the consecutive frame after the last entry in Fbase. The same
procedure is repeated until the end of the trajectory. The
reader is referred to [13] for a more detailed discussion of
this process.

Although the robot is not processing every frame it
acquired during the traversed course, its knowledge is not
limited to a set of known positions as is also in possession
of additional non-filtered information which it can retrieve
to increase the chances to regain its estimated location based
on past knowledge. Hence, for the occasional circumstance
when there are no matches between frames in the look-ahead
buffer and those in the Fbase database, matching is attempted
with previously dropped frames. If one of those frames
provides sufficient matching features, it will be treated as
a new frame and both will be updated in the filter. This
mechanism ensures crucial information can be added back
to the filter at any time to mitigate the undesirable situation
in USAR when rescuers become rescuees themselves.

B. EIF SLAM

Computational advantages of using an Extended Infor-
mation Filter rather than an Extended Kalman Filter are
now well known, particularly in situations where excessive
information is to be processed. This work employs an EIF
that maintains all the features as well as the entire sequence
of camera poses in the state vector. New camera poses
are initialized with respect to the best matching frame at
a known pose and measurement updates are additive in
the information form. The sensor package is assumed to
operate in full 6 DoF without a process model, therefore
the formulation of the filter becomes simpler and results in
a naturally sparse information matrix.

For full 6 DoF SLAM, the state vector X contains a set
of 3D features and a set of camera poses. The camera poses
are represented as

(xC , yC , zC , αC , βC , γC) (1)

in which αC , βC and γC represents the ZYX Euler angle
rotation and the corresponding rotation matrix is referred to
as RPY (αC , βC , γC). A 3D point feature in the state vector
is represented by

(xF , yF , zF ) (2)

expressed in the global coordinate frame.
Let i represent the information vector and I be the

associated information matrix. The relationship between the
estimated state vector X̂ , the corresponding covariance
matrix P , the information vector i, and the information
matrix I is

X̂ = I−1i, P = I−1 (3)



(a) (b) (c)

Fig. 2. Example of feature 2D to 3D registration. 2(a) 2D SIFT features are firstly extracted from the traditional camera image before their 3D locations
are registered. In the example only feature no. 90 is shown for clarity. 2(b) Bearing to feature intersecting with SwissRanger 3D point cloud. Blue area
indicates area of search in the point cloud around the bearing line depending on effective SwissRanger resolution around that range. 2(c) Potential 3D
feature projected back onto SwissRanger intensity image for comparison. It can be seen how the feature location does not appear to match exactly that of
the pin-hole camera due to significant resolution differences and calibration accuracy, but is is the closest match within the given measurement uncertain
boundaries. A subsequent 3D outlier removal step will also filter out potential mismatches.

The first camera pose is chosen as the origin of the
global coordinate system. At time t = 0, the state vector X
contains only the initial camera pose [0, 0, 0, 0, 0, 0]T , and the
corresponding 6× 6 diagonal information Matrix I is filled
with large diagonal values representing the camera starting
at a known position.

The observation model provides an estimation of the
position of the new features by



x̂F

ŷF

ẑF


 =




x̂C

ŷC

ẑC


 +

(
RPY (α̂C , β̂C , γ̂C)T

)−1




xL

yL

zL


 (4)

where xL, yL and zL are the feature location expressed in
the local reference frame. In the update step, the information
vector and information matrix update can be described by

I(k + 1) = I(k) +∇HT
k+1Q

−1
k+1∇Hk+1

i(k + 1) = i(k) +∇HT
k+1Q

−1
k+1[z(k + 1)−

−Hk+1(X̂(k)) +∇Hk+1X̂(k)]
(5)

where Qk+1 is the covariance matrix of the observation
noise wk+1 and z(k + 1) is the observation vector. The
corresponding state vector estimation X̂(k + 1) can be
computed by solving a linear equation

I(k + 1)X̂(k + 1) = i(k + 1) (6)

In error covariance form, the determinant of the N × N
covariance matrix indicates the volume of the N-dimensional
uncertainty polyhedron of the filter. The smaller the volume,
the more confident the filter is about its estimation. As
the information matrix has an inverse relationship with the
covariance matrix, as described by (3), the maximally in-
formative frame must update the information matrix to have
the largest determinant. We use the natural logarithm of the
information matrix determinant, denoted as log(det(I(k +
1))), as the measurable quantity of this information update.
As described in section IV-A, in a sequence of overlapped
images containing common features, each image is evaluated
with respect to the base frame database, Fbase, with same
number of new features. Thus, in order to proceed with the
actual update of the filter, the pose corresponding to the
frame such that log(det(I(k+1))) is maximized becomes the

Fig. 3. Distribution of selected frames over the entire data sequence.

one added to the filter. An empirical threshold to gauge the
update quality is also defined based on the desired coarseness
of the map. When the maximum determinant is smaller than
this threshold, meaning there is little information gain in
updating the filter with the current sequence in the look-
ahead buffer, all the frames in the sequence are updated to
maximize the information gain.

V. RESULTS

For experimental evaluation, scans were collected from a
mock-up USAR arena measuring 6×3 meters approximately,
depicted in Fig. 5(d). The sensor package was hand-held and
operated at a combined sampling rate of approximately 5Hz
in a modern laptop, partly due to the extra time consumed
by saving data to the hard drive for later batch-processing.
The sensor package is maneuvered in relatively slow mo-
tion and it is therefore assumed to produce synchronized
data from both cameras at this frequency. 366 scans were
collected in about 1 minute and 13 seconds. By applying
the proposed approach, 118 out of the 366 scans were
automatically selected to be added to the filtering process
based on the estimator’s uncertainty belief, which represents
around 30% of the acquired data. The final distribution of
the selected frames over the entire data sequence is depicted
in Fig. 3. The state vector ended up containing a total of
2550 elements (118 camera poses (6D) and 614 features
(3D)). The final dense 3D map constructed by superimposing
the local point clouds to the filtered camera trajectory is
shown in Fig. 5(a), where texture has been projected back
into the cloud points visible in the the 2D camera images
(field of view of the SwissRanger is very close but slightly



(a) (b) (c) (d)

Fig. 4. Partial 3D map reconstructed for the corner area covered by frames 94 to 140 (46 frames). Only 14 frames were actually processed in the filter
which was sufficient to produced the highly detailed map seen in 4(a). 4(b) Frame 94. 4(c) Frame 118. 4(d) Frame 140.

(a) (b)

(c) (d)

Fig. 5. 3D map obtained from filtering of 118 (out of 366) frames of the 6× 3 meters search and rescue arena. 5(a) Resulting 3D point cloud map of
the entire area superimposed on the selected estimated camera poses, as viewed from one the corners. 5(b) EIF SLAM result obtained by incorporating
all frames. 5(c) Final 3D point cloud reconstructed by direct 3D registration between consecutive frames. Overall view of the search and rescue arena is
showed in 5(d).



Fig. 6. xC (red), yC (blue), zC (green) covariance of camera poses. Cross
marks the frames that are incorporated in the filter.

larger than the field of view of the traditional camera). A
more detailed reconstruction of a small corner section and
some of its constituent frames is displayed in Fig. 4. Camera
covariances xC , yC and zC are further illustrated in Fig. 6 to
show to some extent (ground truth is not feasible given the
nature of the experiment) the bounded nature of the errors
and the filter corrections. Results were also collected for
comparison by implementing a standard EIF SLAM and the
direct registration of 3D features between consecutive frames
over the full data set. The 3D maps constructed by these
methods are presented in Fig. 5(b) and 5(c) respectively.
Direct registration, as expected, exhibits a large accumulated
error of more than 2 meters in the X direction. While full
SLAM, despite the extended computing time it consumed,
provides a comparably decent output.

From all the experiments presented, we can conclude that
the proposed algorithm is most valid for handling real data
sets and constitutes a significant step in visually improving
the map quality of 3D unstructured environments in an
efficient manner.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach for producing 3D texture-
rich map with a combination of vision and range sensors. The
proposed algorithm not only produces consistent SLAM out-
puts but also dynamically incorporates observations into the
estimation process for efficient 3D navigation in unstructured
terrain.

Unlike most conventional fixed time step or fixed displace-
ment approach, our proposed technique exhibits the ability
to fuse the minimal information required based on the robot
uncertainty belief and the perceived quality of the observa-
tion. Results have shown that by gauging the information
gain in each frame, we can automatically incorporate the
most apt observations for the purpose of SLAM and extract
comprehensive findings about the collective environment we
intend to explore.

The proposed knowledge-driven algorithm can be regarded
as an apparent trade off between computational efficiency
and information loss. We believe it is critical for intelligent
systems in the field to distinguish what constitutes relevant
information from what is not of the same significance
within the realm of the objective at hand. It is not hard

to imagine how, for a USAR robot exploring inside a
collapsed building, it is of higher priority to place exit points,
stairways, windows, large cavities etc. with relative accuracy,
rather than yielding undue emphasis on generating perfectly
straight walls. Providing the capacity to attribute a measure
of relevance to the information attained for a given objective
seems to us like a noteworthy step.

Although the current results appear promising, there are
still some limitations to the proposed strategy due to factors
such as the limited robustness of SIFT to more dramatic
changes in view angles, or the noisy measurements returned
by the SwissRanger when it encounters some types of
surfaces (such as glass), as well as a limited non-ambiguous
range of operation. Also, while the proposed algorithm has
been much improved in terms of computation efficiency
compared to earlier efforts, exploration of much larger areas
is still a challenge to be met.
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