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Abstract—Electroencephalography (EEG) signals are often 
contaminated with artifacts arising from many sources such as 
those with ocular and muscular origins. Artifact removal 
techniques often rely on the experience of the EEG technician 
to detect these artifact components for removal. This paper 
presents the results comparing an automated procedure (AT) 
against visually (VT) choosing artifactual components for 
removal, using second order blind identification (SOBI) and 
canonical correlation analyses. The results show that the 
resulting EEG signal after artifact removal for the AT and VT 
were comparable in both variance amongst electrodes and 
spectral energy. The AT technique is objective, faster and 
easier to use, and shown here to be comparable to the standard 
technique of visually detecting artifact components. 

I. INTRODUCTION 

Electroencephalography (EEG) involves the recording of 
electrical activity from scalp electrodes produced from 
underlying firing of neurons in the brain. It contains valuable 
information on the spontaneous electrical activity from the 
brain reflecting motor, sensory and cognitive function. 
However, EEG signals are often contaminated by many 
different types of artifact and disturbance caused by eye 
blinks, eye movement, muscle activity, line noise and heart 
signals, making analyses of the underlying processes 
difficult [1]. For example, the localization of the neuronal 
source using source localization techniques becomes more 
difficult in the presence of signals from non-neuronal 
sources. The artifact overlap with the electrical signals from 
the brain, thereby confounding the analysis of EEG signals. 
Many artifact removal techniques have been explored and 
shown to be effective, for example, using blind source 
separation (BSS) in methods such as independent component 
analysis (ICA) [1].  However, these methods rely on the user 
having a high level of expertise in identifying EEG signals. 
To remove artifactual components the person needs to be 
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able to identify the different types and sources of artifact 
components against EEG components.  This paper presents 
the results of comparing an automated artifact removal 
method [2] with the current standard method of subjectively 
choosing artifact components using visual detection. The 
automatic procedure is based on the autocorrelation of the 
signal. BSS techniques using Second Order Blind 
Identification (SOBI), and has been used to identify ocular 
artifacts for removal [2,3,4,5] and Canonical Correlation 
Analysis (CCA) has been used for muscle artifact removal 
[2,6,7]. SOBI is particularly suited to separating ocular 
sources and CCA for muscle artifact, from the total EEG 
signal. Automatic artifact removal was based on set 
parameters using a fractal [8], spectra [9], spatial and Renyi 
entropy [10] method. To test for reliability in the automatic 
method components chosen, artifact is compared with 
components chosen by an experienced EEG technician [11].  

II. METHODS 

A. Second Order Blind Identification (SOBI) 
In these BSS methods, the signals at the sensors  
                X(t)= [ )](),.......(),( 21 txtxtx K

T , t= 1,…N    
with N =number of samples, K= number of sensors ,  is 
considered to be a linear mixture of unknown K  source 
signals     
              T

K tstststS )](),......(),([)( 21= ,  
This can be written as  
                )()( tAStX =            -----(1) 
where A is the unknown mixing matrix. The goal is to 
estimate the mixing matrix A and recover the original source 
signals S(t). This is obtained by generating the de-mixing 
matrix W  that approximates 1−A .The unknown source 
signals S(t) is approximated  as 
                    Z(t)=WX(t)               ------(2) 
 
In SOBI, the source signals are assumed to be temporarily 
uncorrelated to each other but have non–zero time delayed 
autocorrelations. Under these assumptions the SOBI 
computes the mixing matrix as the matrix that jointly 
diagonalizes a set of p correlation matrices  

])()([)( T
ii tXtXER ττ −= , where i=1,…., p  and E [ ] 

is the expectation operator. In our work we used p=N/3  
In ICA based methods, the estimation of complex 

statistical measures requires independence, however, in 
SOBI only second order statistics are required, making SOBI 
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relatively easy to evaluate and robust for modeling errors 
[8].  

B. Canonical Correlation Analysis (CCA) 
In canonical correlation analysis, the sources are assumed to 
be mutually uncorrelated and maximally correlated with a 
predefined function. The predefined function is defined here 
to be:    

)1()( += tXtY  
This function is a temporarily delayed version of the original 
data matrix. The method used in CCA for the separating the 
mixed signals X(t) is to find the linear combination of the 
measured EEG signals in the K  sensors that has the 
maximum correlation with the linear combination of Y(t). 
This is solved using the Matlab routine ‘cannoncorr’, which 
estimates the demixing matrix W and the sources Z(t).   

Both CCA and SOBI were carried out using moving data 
windows. This copes with the non-stationarity property of 
the EEG signals. The optimum window temporal length 
should be such that it covers enough data samples to 
estimate reliably the mixing matrix and learn about the 
artifact. Although there is no easy and objective way of 
selecting the optimum window length, the presence of 
relatively stable spatial patterns for ocular artifact prompts 
the use of a longer window length for SOBI [8]. On the other 
hand, for the removal of the shorter duration EMG bursts, a 
shorter window length is used in CCA [12]. For SOBI, we 
used the full data size of 0.058 *K*K s (60s) samples as the 
window length while a size 0.0097*K*Ks (10s) was chosen 
for CCA. 

C. Automatic Artifact Removal Procedure 
Once the sources are separated then several methods were 

adopted to identify artifact. To identify ocular artifact, 
fractal [8], spectra [9] with spatial characteristics, and Renyi 
entropy [10] methods were applied. Of these, the spectral 
method with spatial characteristics was found to be the most 
reliable and was consequently used here. The information on 
the spatial characteristics of the sources was obtained from 
the mixing matrix A.  Eye blinks produce high amplitude, 
low frequency activity (1-3 Hz) which was located mainly in 
the frontal electrodes. Morphologically, eye blinks appear as 
large amplitude in downward or upward deflections mostly 
in the frontal electrodes, such as FP1, FP2 sites. Lateral eye 
movements often appear as low frequency movements in 
electrodes F7, F8.  

In addition to the eye artifact, sources located mainly in 
one electrode were also detected and eliminated at the SOBI 
stage.  The basis for this decision is that neural activities are 
unlikely to appear exclusively in a single scalp sensor. The 
skull and scalp act as a low pass spatial filter and neural 
activity spreads across channels via volume conduction. If 
such a spread does not occur, the most likely reason is that 
the activity has been generated outside of the skull, and thus 
can be considered artifact. Morphologically this appears as 
single or multiple sharp waveforms. At other times when the 
impedance change is not so abrupt it may mimic low voltage 
arrhythmic delta waves.   

Once the ocular artifact and additional artifact located 
mainly in one electrode are identified in SOBI, the columns 
of the mixing matrix A, which represent the activations of 
the artifactual sources, are set equal to zero and the cleaned 
data reconstructed.    
                )()( tzAtX cleanclean =          -----(3) 
 
The cleaned data from SOBI is then used as input to CCA. It 
was observed that the muscle artifact is well separated from 
components related to the brain activity and that they are 
found in the lowest components of CCA [6]. Muscle artifact 
is further identified by using the average and relative power 
in the typical EEG and EMG bands [12]. Identification of 
these muscle artifacts was easy since these artifacts were 
well separated in the CCA analysis. As before, once these 
artifacts were identified, the corresponding columns in the 
mixing matrix was set to zero and cleaned data was obtained 
using equation (3).  

D. Comparison between  Automatic (AT) and Visual 
Technique(VT) 

Automatic artifact removal (AT) was performed using 
data obtained from a 32 channel EEG recording of 40 
second duration. The 32-channels were recorded following 
the International 10-20 Montage system and the channels 
numbers (1-32) are in the following order (FP1, AP3, F7, 
F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, PZ, PO3, O1, OZ, 
O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, 
FP2, FZ, CZ). The data used was sampled at 256 Hz. The 
multi-channel EEG data collected and preprocessing was 
conducted using EEGlab [1]. In EEGlab, the following 
preprocessing was carried out: removal of non–EEG 
channels; linear trend in the data set removed using short IIR 
and highpass filter with a cut off frequency of 1 Hz; notch 
filtered in the frequency bands 45 to 55 Hz and 95 to 110 Hz 
to remove line noise and its harmonics; and data was then 
average referenced. 

Once the components were generated using the SOBI 
method, the component data was sent to an EEG technician, 
with experience using ICA for removal of artifact, to 
identify the artifact components in the files using a 
subjective visual technique (VT). Comparisons from n=9 
files from nine separate participants were analyzed. 
Comparisons were mainly performed using variance 
amongst electrodes as an index of artifact removal. A further 
n=30 files were analyzed using the automatic method to 
demonstrate its effectiveness and this data is presented in 
this paper.  

One of the problems when artifact is removed from 
contaminated EEG is to determine how well the artifact 
algorithm has performed. One possible approach to check 
this in multi-channel EEG data is to check the variance 
amongst the multi-channels. If EEG channels contained 
neuronal activity only, one would expect that due to volume 
conduction, neuronal activity will be dispersed throughout 
the different EEG channels. This would ensure that the time 
series recorded at the various channels will be similar and 
hence the variance amongst the electrodes will be small.  On 



  

the other hand if artifact external to brain activity is 
recorded, this similarity will be lost. The time series 
recorded at the various electrodes in this case will be 
different and the variance amongst the electrodes will be 
large. This is the principle idea behind using variance to 
monitor artifact removal in this paper.  

In this procedure comparisons were made with the value 
in matrix X, of size (N x M) where N represents the 
electrodes and M the number electric potential values 
recorded at each electrode, with another matrix Y of similar 
size. The values contained in the matrix X are the values 
before artifact removal and the values contained in Y are 
after artifact removal. However the values in X and Y can 
also represent the different stages of artifact removal 
procedure. The time intervals at which the potential values 
are recorded in X and Y, was determined by the sampling 
frequency. For each electrode i, the variance v(i)  is 
calculated as follows: 
 
    )):1,(var()( MjiXivx ==             i=1,…N    ----(1) 

     )):1,(var()( MjiYivy ==              i=1,…N   ----(2) 

III. RESULTS 
Table 1 shows the results comparing the components 

chosen using SOBI in the automatic technique (AT) 
compared with visually choosing (VT) the artifactual  
components by an EEG signal expert. The majority of the 
components chosen as artifact were common using both 
techniques. As SOBI was applied for the comparison, the 
VT would choose some components as artifact, which were 
line noise or muscular in nature, that was not detected using 
AT. CCA was used by AT to detect muscle artifact. For 
example in Subject 1, components 13, 16, 19, 20, 22 were 
muscle artifact chosen using VT, which were not selected by 

the AT method.  However, AT was able to detect 
components 23 and 24 as components arising from one 
electrode source, which the VT was unable to find. 

Fig 1. shows the overall artifact removel in both the AT 
(Red) and VT (Green) compared with the preprocessed raw 
EEG data (Blue) using the variance amonst the electrodes 
technique. The AT and VT plots are similar to each other 
with only very small differences in the variance, compared 
to the raw EEG. The data for the figure was from Subject 
No. 1 who was representative of the other eight subjects. 
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Fig. 1.  Comparisons in variance in all 32 channels between Raw EEG 
(Blue), with AT (Red) and VT (Green) in representative Subject 1 

 
Fig 2. Shows the mean electrode variance in the 32 

channels in all nine subjects. Once again AT (Red) and VT 
(Green) are comparable as they overlap, showing that similar 
amounts of artifact were removed using both techniques 
compared to the raw EEG (Blue). 
 
 
 
 
 
 
 
 
Fig. 2.  Comparison in variance over 32 channels in N=9 subjects. The y-
axis shows the log10 value of the mean variance. The raw EEG (Blue) had 
substantially larger variance values compared to the EEG signal after AT 
(Red) and VT (Green).  
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Fig. 3.  Shows the spectral energy in delta (Top), theta (2nd Top), alpha (2nd 
bottom) and beta (bottom) bands over 32 channels in N=9 subjects. Blue 
line= raw EEG; Red line= AT; Green line= VT.  

Spectral analyses was also computed to evaluate the 

TABLE I 
COMPARISON OF AUTOMATIC (AT) AND VISUAL (VT) TECHNIQUE 

Subject 
No. Components using AT Components using VT 

1 1, 5, 18,21, 23, 24, 26 30, 
31, 32 
 

1,5,13, 16, 18, 19, 20,21, 
22, 26, 30, 31, 32 
 

2 1, 3, 9, 10, 15, 18, 22, 23, 
25, 26, 29, 30, 31, 32 

1, 3, 8, 9, 10, 15, 22,23, 
25, 26, 30, 31,32 
 

3 1, 8, 12, 14, 19, 22, 24, 
25, 26, 27, 30, 31, 32 
 

1, 11, 14, 18, 21, 22, 24, 
25, 26, 27, 29, 30, 31, 32 

4 1,2,3, 6, 10, 11, 13 19, 21, 
22,26, 27,28, 29,30,31,32 

1, 16, 17, 18, 21, 22, 
26,27, 28, 29, 30, 31, 32 
 

5 1, 2, 8, 13, 21 22, 30, 31, 
32 
 

1, 2, 6, 20, 21,22, 25, 
30,32 

6 1,10,14,17,20,21,23,26,27
,30, 31,32 

1, 14, 16, 17,18, 23, 26, 
31,32 

7 1, 4,   13,    21,    23,    25,    
26,    30,    31,    32 
 

1, 10, 13, 14, 15, 19, 20, 
21, 23, 25, 26, 30, 31, 32 
 

8 1, 7,  11, 14,15,18, 20, 24,    
26, 27, 28,29,30,31, 32 
 

1, 5, 10, 15, 16, 17, 21, 
24, 26, 27, 28, 29, 30, 31, 
32 
 

9 1, 6, 8,12,15,18, 21, 22, 
23, 24, 25, 26, 30, 31, 32 
 

1, 20, 22, 23, 24, 26, 30, 
31, 32 

1 2 3 4 5 6 7 8 9
1

2

3

4

Subject No. 
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artifact removal from both AT and VT. Fig 3. shows that AT 
and VT were comparable. There was a reduction in spectral 
amplitude mostly in slow frequencies such as delta (1-3Hz) 
and theta (3.5-7.5 Hz) demonstrating a reduction in ocular 
activity. Alpha activity (8-13Hz) remained mostly 
unchanged from the raw EEG. There was also a reduction in 
beta (13-45 Hz) activity from the raw EEG, this shows 
reduction in muscular artifact. The AT program was used to 
evaluate a further 30 subjects. Results were similar to that 
seen in the n=9 data above in both variance of electrodes and 
spectral analyses. Fig. 4 & 5. Shows the variance and 
spectral results in the total N=39 participants, respectively.  

 
 
 

 
 
 
Fig. 4.  Comparison in variance over 32 channels in N=39 subjects. The y-
axis shows the log10 value of the mean variance. The raw EEG (Blue) had 
substantially larger variance values compared to the EEG signal after AT 
(Red).  
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Fig. 3.  Shows the spectral energy in delta (Top), theta (2nd Top), alpha (2nd 
bottom) and beta (bottom) bands over 32 channels in N=39 subjects. Blue 
line= raw EEG; Red line= AT.  

IV. DISCUSSION 
This paper presented an AT used to remove various 

artifact from the EEG signal. Individually, techniques such 
as ICA, SOBI and CCA have been shown to be effective in 
removing EEG artifact [1,2,5,6], however, they often require 
a high level of expertise in EEG signals by the user. By 
automating the artifact removal procedure, the technique 
applied has been shown to become faster, easier to use, and 
more objective and valid in the manner in which artifact 
components are chosen. To evaluate the efficacy of the AT, 
we compared the artifact components chosen by the AT 
against a VT whereby components were chosen by an 
experienced EEG technician. The results show that 
components chosen by both techniques overlapped well. As 
only SOBI was used to choose components the overlap was 
seen in mostly ocular artifact and artifact arising from one 

electrode site. To test the two techniques further, a method 
measuring the variance amongst the electrodes and spectral 
analyses were used. The results show both AT and VT had 
decreased variance compared to the raw preprocessed EEG. 
AT and VT variances were similar to each other as the plots 
overlap. Spectral analyses showed reduction from the raw 
EEG in low frequencies such as delta and theta activity 
indicating possible removal of ocular artifacts and reduction 
in beta activity indicating possible removal of muscular 
artifact.  
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