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ABSTRACT 7 

Purpose: This study aimed to improve the prediction accuracy of Age at Peak Height 8 

Velocity (APHV) from anthropometric assessment using non-linear models and a maturity 9 

ratio rather than a maturity offset.  10 

Methods: The dataset used to develop the original prediction equations was used to test a new 11 

prediction model, utilising the maturity ratio and a polynomial prediction equation. This 12 

model was then applied to a sample of male youth academy soccer players (n = 1330) to 13 

validate the new model in youth athletes.  14 

Results: A new equation was developed to estimate APHV more accurately than the original 15 

model (new model; Akaike Information Criterion: -6062.1, R2 = 90.82%; original model: 16 

Akaike Information Criterion = 3048.7, R2 = 88.88%) within a general population of boys, 17 

particularly with relatively high/low APHVs. This study has also highlighted the successful 18 

application of the new model to estimate APHV using anthropometric variables within youth 19 

athletes, thereby supporting the use of this model in sports talent identification and 20 

development.  21 

Conclusion: This study argues that this newly developed equation becomes standard practice 22 

for the estimation of maturity from anthropometric variables in boys from both a general and 23 

athletic population.  24 
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INTRODUCTION 30 

Youth athletes are often grouped by their chronological age (CA) for training and 31 

competition purposes (1). However, large inter-individual discrepancies between the CA = 32 

years from birth) and biological age (BA = years from a maturation milestone) of individuals 33 

exist. During the period surrounding the adolescent growth spurt (±12 years in girls, ±14 34 

years in boys) individuals’ BA can differ by as much as four years (31). These differences are 35 

particularly apparent around the Age at Peak Height Velocity (APHV) and reflect the large 36 

variations in the timing and tempo of growth between individuals (15).  37 

It is well known that physical dimensions influence motor performance (12) and play an 38 

important role in the success of individuals in sport (3, 34). This is particularly prevalent 39 

during adolescence where biological maturation has been shown to affect physical 40 

performance in a range of sports. In such sports, early maturing individuals mostly 41 

outperform their later maturing counterparts; except in sports where the body dimensions 42 

associated with early maturation could be a disadvantage such as figure skating, gymnastics, 43 

and dancing (13, 15). This confounding influence of biological maturation on performance in 44 

youth sports is of particular interest in talent identification (21). Consequently, Vaeyens and 45 

colleagues (34) reported that failing to control for maturation significantly confounds the 46 

identification of talented athletes, especially in sports where anthropometrical and physical 47 

fitness variables are strongly correlated with successful performance outcomes.  48 

 49 

There are numerous ways to assess an individual’s biological maturation. The traditional 50 

clinical methods consist of assessing skeletal age through X-ray of the wrist or the 51 

assessment of secondary sex characteristics (15). When assessing skeletal age using X-ray 52 

techniques, an X-ray image from the left wrist is used to compare an individual’s bone and 53 

grades of skeletal maturity indicators are combined to estimate skeletal age that are then 54 
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compared with reference data (4, 10, 30). The assessment of sexual maturation uses the onset 55 

and development of secondary sex characteristics (breasts, genitals and pubic hair) compared 56 

to reference images. Both of these methods have been used extensively in youth populations 57 

to classify individuals according to their maturity status. However, these techniques involve 58 

considerable exposure to radiation or may be considered invasive in some cultures. 59 

Therefore, more recently, Dual-energy X-ray Absorptiometry (DXA) has been used as an 60 

alternative to the X-ray method (25) as it only exposes participants to one-tenth of the 61 

radiation dose (9) or about 0.001 millisievert (mSv), which is less than natural background 62 

radiation or equivalent to the amount of radiation experienced during a three-hour session of 63 

television viewing according to the US Department of Energy (32). Furthermore, a self-64 

observation technique has been used as an alternative to the assessment of sexual maturation 65 

by a physician (7, 28). Hence, it is clear that researchers have attempted to overcome some of 66 

the ethical, medical and logistical limitations of traditional methods of assessing biological 67 

maturation. 68 

 69 

One increasingly commonly used method for assessing biological maturity is a non-invasive 70 

calculation of BA using anthropometric measures that incorporates the known proportionality 71 

in differences in leg and trunk length growth (19). The rationale behind this method is the 72 

known difference in timing between height, sitting height and leg length. Therefore, these 73 

authors (19) argued that the changing relationship between these variables over time provides 74 

a good base for the prediction of APHV. This equation predicts the years from APHV and 75 

terms this BA as a ‘maturity offset’ (years from APHV) using measures of stature, body 76 

mass, leg length, sitting height and CA to predict a maturity offset. Using this predicted BA 77 

and the CA at time of measurement the APHV can be estimated. In the aforementioned study 78 

(19), sex-specific prediction equations were developed using a Canadian sample of 228 79 
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children (113 boys, 115 girls) between four years prior and three years post APHV and cross-80 

validated using Canadian and Belgian reference samples. The researchers emphasize that the 81 

accuracy of the prediction equation involves an error of one year 95% of the time. However, 82 

they suggest that the prediction of this maturity offset is only applicable in a sample of youths 83 

between 10-18 years. Malina and Koziel (16) attempted to validate this non-invasive method 84 

of predicting APHV in an external sample of Polish boys between 8 and 18 years but showed 85 

that there was a systematic discrepancy between predicted and observed APHV; where this 86 

value was underestimated at younger ages and overestimated in the older age groups within 87 

the study. These findings were consistent with the limitations of the equation discussed in the 88 

original publication (19) and show a potential problematic application of the prediction 89 

equation in boys younger than 11 and older than 16 years. Furthermore, even when used 90 

within these age brackets, the prediction of APHV lacks validity as demonstrated by Mills 91 

and colleagues (18) who concluded that equation-based methods appear to overestimate the 92 

timing of PHV when they are applied in the year or stage immediately preceding PHV.  93 

Therefore, the original prediction equation by Mirwald and colleagues has considerable 94 

limitations, especially for individuals further removed from their APHV (16, 19, 20) and 95 

therefore warrant the cautious use of these prediction equations. 96 

 97 

Despite these clear limitations, the use of the APHV prediction equation has been widespread 98 

in talent identification and talent development research within youth sports (5, 17, 34). This is 99 

not surprising as a practical, non-invasive and relatively accurate estimation of an athlete’s 100 

maturity is of particular interest to talent identification and development as these processes 101 

require large numbers of youth athletes to be assessed in limited periods of time. However, 102 

the potential erroneous prediction of APHV embedded in the original prediction equation 103 

limits its usability and warrants an enhancement of the original equation. Indeed, Moore et al. 104 
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(20) developed new equations based on the original dataset (19) that would account for the 105 

overfitting (i.e. the inclusion of artificially large coefficients or when co-variance in the data 106 

is based on spurious associations (20)) generated by the original equations and validated them 107 

in external sample of British and Canadian children. The authors succeeded in simplifying 108 

the original equations by removing predictors and argued that these new equations should 109 

theoretically produce better fits across a range of external samples. However, they stated that 110 

the prediction error from these equations likely still increases to a greater degree the further a 111 

child is away from their actual APHV. Although commendable, these new equations do not 112 

produce more valid estimations for children who are further removed from their APHV. This 113 

increase in error in the tails of the distribution is potentially due to the linear estimation of an 114 

inherently non-linear biological process, such as somatic growth during the adolescent 115 

growth spurt (24). Therefore, this study developed a new equation for the prediction of 116 

APHV from anthropometric variables in boys by fitting a non-linear relationship between 117 

anthropometric predictors and a maturity ratio (CA/APHV) to the original data from the 118 

Mirwald et al. (2002) publication. Using a maturity ratio as a response variable might prove 119 

to be useful as adolescents move into adulthood, and the rate of growth decreases. It was 120 

therefore hypothesized that this new model would yield similar prediction accuracy overall, 121 

but a more valid prediction in the tails of the original data (boys relatively far removed from 122 

APHV). Moreover, it was expected that this new equation could be validated in an external 123 

sample of youth soccer players, thereby consolidating the use of the new prediction equation 124 

in a population of youth male athletes.  125 

 126 

 127 

METHODS 128 

Participants 129 
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Data set one (Mirwald Baxter-Jones: MBJ): developing a new equation using the original 130 

dataset (2)  131 

The University of Saskatchewan’s Pediatric Bone Mineral Accrual Study (PBMAS) (1991 to 132 

present) used a mixed longitudinal study design. Between 1991 and 1993, 251 Canadian boys 133 

(n=115) and girls (n=136) were recruited from two elementary schools in Saskatoon, 134 

Saskatchewan, Canada (2). The study by Baxter-Jones and colleagues was designed to assess 135 

factors associated with bone acquisition in growing children. Participants were between 8.0 136 

and 15.0 years of age at baseline; ages ranged between 8.0 and 21.0 years across the initial 7-137 

years of the study. 98% of participants were Caucasian. All children were healthy with no 138 

conditions known to affect growth. Growth parameters were measured semi-annually. 139 

Written informed consent was obtained from parents of participating children between 1991 140 

and 1993. The University of Saskatchewan’s Research Ethics Board approved all procedures. 141 

 142 

Data set two (Belgian Soccer Players: BSP): validating the new equation using a new dataset 143 

of Belgian soccer players 144 

This study involved 1330 high level male youth soccer players who were recruited from 145 

Belgian soccer academies. Athletes were aged between 8.0-17.0 years and from various 146 

ethnic backgrounds, with the majority of players of Caucasian descent. Due to the large 147 

number of participants however, their ethnicity was not established. The data were collected 148 

longitudinally - testing was conducted during the same month each year across a period of six 149 

years, resulting in a total of 4829 observations, with each player having between 1-19 150 

observations. The research was approved by the appropriate local University Hospital ethical 151 

review panel and written informed consent was received from all participants and their 152 

parent(s) or guardian(s) prior to inclusion in the study. 153 

 154 
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Procedures 155 

Dataset one: MBJ 156 

Anthropometric measures included stature and body mass, following the anthropometric 157 

standards outlined by Ross and Marfell-Jones (26). Stature was recorded without shoes to the 158 

nearest 0.1 cm against a wall mounted stadiometer (Holtain; United Kingdom). Body mass 159 

was measured on a calibrated digital scale to the nearest 0.5 kg (Model 1631, Tanita, Japan). 160 

A decimal chronologic age (CA, years) was determined by identifying the numbers of days 161 

between an individual’s date of birth and the date at the assessment occasion. A measure of 162 

somatic maturation was defined by identifying the CA of attainment of peak linear growth 163 

during adolescence (peak height velocity [PHV]). To determine the CA at PHV, whole year 164 

height velocities were calculated for each participant. A cubic spline fitting procedure was 165 

applied to each individual’s whole year velocity values and the CA at the highest point was 166 

estimated (GraphPad Prism 5, GraphPad Software, San Diego, CA, USA). A biological age 167 

(BA) was then calculated by subtracting the CA at PHV from the CA at time of measurement 168 

for each individual. For the present paper only male data was used. 169 

 170 

Dataset two: BSP 171 

Stature (Harpenden portable stadiometer; Holtain, United Kingdom) and sitting height 172 

(Harpenden sitting table; Holtain, United Kingdom) were measured for all participants to the 173 

nearest 0.1cm, with leg length calculated by subtracting sitting height from stature. Body 174 

mass was assessed to the nearest 0.1 kg (model BC-420SMA, Tanita, Japan) and from body 175 

mass, the body mass to stature ratio was derived. All assessments were conducted according 176 

to the anthropometric standards outlined by Ross and Marfell-Jones (26). A decimal CA was 177 

obtained by calculating the number of days between an individual’s date of birth and the date 178 

at the assessment occasion. 179 
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     180 

 181 

 182 

Statistical Analysis 183 

The first phase of the analyses was to fit a variety of different models to the data used to 184 

develop the original equation (MBJ). The goal of these models was to predict the maturity 185 

offset, defined as the difference between the player’s CA and their APHV. The second phase 186 

of this analysis was to refit each of these models to predict APHV in a data set consisting of 187 

Belgian high level soccer players (BSP, 6). In the second phase of these analyses, the same 188 

fitting procedures were used to predict a maturity ratio (maturity ratio = CA/APHV) rather 189 

than a maturity offset (maturity offset = CA - APHV) 190 

 191 

Phase one: predicting a maturity offset 192 

In reanalysing the data from Mirwald et al. (19), several theoretically appropriate models 193 

were compared to identify the model with the most appropriate fit, assessed by how well the 194 

predicted values of the model match the observed data values. First, the linear model 195 

developed by these authors was evaluated, which includes interactions between leg length 196 

and sitting height, between CA and leg length, and between CA and sitting height, as well as 197 

the body mass to stature ratio. Afterwards, a second model was implemented including these 198 

variables, as well as the main effects for leg length, sitting height and age. However, as some 199 

non-linearity was apparent in the data, polynomial terms were added to account for this. 200 

Given the presence of some non-linearity in the residual analysis, Generalised Additive 201 

Models (GAMs) were also considered (11). These involve fitting smooth relationships 202 

between the predictive and response variable. Due to the complexity of these relationships, 203 
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only the main effects of each factor were considered. Cubic splines were used as the 204 

smoothing function.   205 

 206 

Phase two: predicting a maturity ratio 207 

In the final model, the maturity ratio rather than the maturity offset was used as the outcome 208 

variable. Using a maturity ratio as the response variable is particularly useful as adolescents 209 

move into adulthood, and the rate of growth decreases. Similar to the procedure used in phase 210 

one, both linear, polynomial and general additive models were fitted to the maturity ratio 211 

response. 212 

 213 

All models were compared using the coefficient of determination (R-squared) as a 214 

measure of how much of the variation in the offset could be explained by the anthropometric 215 

variables. Analysis of the residuals was also conducted to determine how well each of the 216 

models fit, especially for the youngest and oldest players in the data set. All models were 217 

fitted in version 3.2.3 of the R statistical software system (R Core Team, (23)), with plots 218 

constructed using the ggplot2 package (36), and linear mixed models fitted using the MASS 219 

package (35). 220 

 221 

 222 

RESULTS 223 

Dataset one: MBJ 224 

Phase one: predicting a maturity offset 225 

Figure 1 shows the relationship between CA, stature, body mass and leg length with BA 226 

(years from PHV) for the data in Mirwald et al. (19). The range for the maturity offset 227 

measurements range from four years before APHV (BA = -4) and three years after APHV 228 
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(BA = +3). The relationships between these variables and the BA were identified to be 229 

generally positive, but in some cases non-linear. This supports the further examination of the 230 

data using non-linear models. Table 1 provides the model parameters for: a) the original 231 

model; b) the model with main effects and interactions; c) the main effects only model; d) the 232 

polynomial model; e) the generalised additive model when the maturity ration is estimated. 233 

The Akaike Information Criterion (AIC, Sakamoto et al. (27)) and the adjusted R2 values for 234 

each of the models are also included in table 1. Both of these measures indicate that the 235 

polynomial model with interaction terms yields the best fit when predicting the offset. This is 236 

indicated by the smaller AIC and the larger adjusted R2.  237 

 238 

** INSERT FIGURE 1 HERE ** 239 

 240 

** INSERT TABLE 1 HERE ** 241 

 242 

Phase two: predicting a maturity ratio 243 

One of the issues with all of these models is that there is a small but systematic relationship 244 

between the model residuals and the fitted offsets. This relationship indicates that as the 245 

offset becomes larger in absolute value, the fit of the model to the data becomes poorer. The 246 

residual plots for each of these models are provided (see Figure, SDC 1, Residuals versus 247 

fitted values scatterplots for the different models used to predict a maturity offset in the MBJ 248 

data set). However, when using the maturity ratio as the outcome variable, an improved 249 

model fit was evident (see Figure, SDC 2, Residuals versus fitted values scatterplots for the 250 

different models used to predict a maturity ratio in the MBJ data set). The model parameters, 251 

AIC and R2 for the same set of models as Table 1 but with a ratio response, are given in 252 

Table 2. The main-effects-only model was omitted as there are significant interactions. Like 253 
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the maturity offset model, the best fitting model appeared to be the polynomial model. Table 254 

2 provides a thorough description of all models fitted and the various comparative measures 255 

related to goodness of fit. When performing a residual analysis on the models using the 256 

maturity ratio, the systematic pattern in the residuals observed in the prediction of the 257 

maturity offset is diminished. This is particularly true for the polynomial and GAM models 258 

and, to a lesser degree, with the main effects and interaction model.  This suggests that a ratio 259 

response fit provides a better fit when the difference between the APHV and the observed CA 260 

is large. The polynomial prediction equation that yielded the best model fit for the estimation 261 

of a maturity ratio can be found below: 262 

 263 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜264 

=  6.986547255416 + (0.115802846632 ∗ 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐴𝑔𝑒)265 

+ (0.001450825199 ∗ 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐴𝑔𝑒2) + (0.004518400406266 

∗ 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠) − (0.000034086447 ∗ 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠2) − (0.151951447289267 

∗ 𝑆𝑡𝑎𝑡𝑢𝑟𝑒) + (0.000932836659 ∗ 𝑆𝑡𝑎𝑡𝑢𝑟𝑒2) − (0.000001656585268 

∗ 𝑆𝑡𝑎𝑡𝑢𝑟𝑒3) + (0.032198263733 ∗ 𝐿𝑒𝑔 𝐿𝑒𝑛𝑔𝑡ℎ) − (0.000269025264269 

∗ 𝐿𝑒𝑔 𝐿𝑒𝑛𝑔𝑡ℎ2) − (0.000760897942 ∗ (𝑆𝑡𝑎𝑡𝑢𝑟𝑒 ∗ 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐴𝑔𝑒)) 270 

 271 

** INSERT TABLE 2 HERE ** 272 

 273 

Dataset two: BSP 274 

 In contrast to the MBJ dataset, an assessment of APHV based on whole-year height 275 

velocities derived from longitudinal follow up was not provided in the BSP dataset, so the 276 

estimates from each model provided a best guess of maturity. When using the model from 277 

Mirwald et al. (18), the relationships between each of the variables and the maturity offset 278 
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estimates did not seem to be smooth (Figure 2). An improved fit is obtained when the 279 

maturity offset is defined as a ratio rather than a difference (Figure 3). In particular, the 280 

variation of the fitted values across different values of each of the factors was more uniform 281 

than when using maturity offset as the outcome variable (Figure 4), even for leg length which 282 

showed high variation for larger leg lengths.  283 

 284 

** INSERT FIGURE 2 HERE ** 285 

 286 

** INSERT FIGURE 3 HERE ** 287 

 288 

** INSERT FIGURE 4 HERE ** 289 

 290 

 291 

  292 
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DISCUSSION 293 

The aim of this study was to improve the accuracy of the maturity offset and APHV 294 

prediction previously proposed by Mirwald et al. (19). These sex-specific prediction 295 

equations have been critically reviewed, widely accepted and frequently applied by 296 

researchers (569 citations of the original study, Scopus on 01/06/20167). However, both the 297 

original publication and a subsequent validation study (16) identified that there is a 298 

systematic error when predicting APHV from anthropometric variables whereby the 299 

prediction of maturity offset was increasingly inaccurate at the upper and lower classification 300 

limits. In fact, both studies concluded that the equation for boys in particular could really 301 

only be used in individuals of an average maturity range between the ages of 12-16 years. 302 

Also, the most accurate predictions were found to occur around the APHV of the individual 303 

(13.8 ± 0.8 years in averagely maturing boys). These findings indicate that perhaps there is a 304 

viable alternative to the original equations that allows for a more accurate estimation of 305 

APHV throughout the 12-16 year age span. Although Moore et al. (20) proposed simplified 306 

versions of the original equations that do not require the assessment of sitting height, the 307 

same consistent errors seemed to be apparent when using these enhanced equations. The 308 

results of the present study however, have resulted in an updated equation that better accounts 309 

for the systematic prediction error as individuals are further removed from their APHV.  310 

 311 

Somatic growth is not a linear process. Research has frequently demonstrated growth peaks 312 

in early infancy and during the adolescent growth spurt (15). Therefore, this research 313 

modelled a non-linear relationship between anthropometric measures and a novel response 314 

variable. While the original prediction included only linear predictors, the use of a 315 

polynomial equation allows a more accurate representation of the non-linear relationship 316 

between the anthropometric variables and maturity offset (Figure 1). Furthermore, the use of 317 



15 
 

a maturity ratio (CA / APHV) rather than a maturity offset (CA - APHV) seems to yield a 318 

better model fit in both the general sample and the athletic sample, even when the difference 319 

between the APHV and the observed CA is large. Hence, the inclusion of polynomial terms 320 

and the prediction of a ratio rather than an offset resulted in a superior prediction of APHV 321 

over using linear models in both the MBJ and the BSP datasets. However, this is not novel 322 

information as the original manuscript (19) already concluded that as the maturity offset 323 

increased, the prediction error increased as well. This was later confirmed to be the original 324 

equation’s most significant limitation by Malina and Koziel (16). The new prediction 325 

equation has the same explained variance than the old equation, but there seems to be no 326 

systematic change in the prediction error as the predicted maturity ratio changes. This finding 327 

indicates that the current equation provides more reliable estimations of APHV than the 328 

original model (19), even when age is further removed from APHV. This increased accuracy 329 

of the new calculation will allow researchers and practitioners to determine APHV and 330 

maturity offset from anthropometric measures with greater confidence across a wide range of 331 

ages and maturity statuses. This presents researchers with the opportunity to reliably collect 332 

maturity data non-invasively and with minimal cost and time required when compared with 333 

more traditional longitudinal measurements or estimations (DXA, X-ray, etc.) of APHV. 334 

However, validating these new predictive models using longitudinal datasets should be the 335 

scope of future research. 336 

 337 

One of the major strengths of this study is the successful application of the prediction 338 

equation to an external sample of high level youth athletes. The validation of the new 339 

maturity ratio prediction in youth soccer players in this study is demonstrated by the fitted vs 340 

residual plots (SDC 1 and SDC 2). Ideally, a good model fit is indicated by residuals that 341 

‘bounce randomly’ around the 0 line, the residuals forming of a horizontal band around the 0 342 
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line and no clear outlying residuals. These criteria all seem to be met when a polynomial 343 

model is used to predict a maturity ratio. Furthermore, smaller AICs indicate a better model 344 

fit. As the AIC in the polynomial model yields ideal residual vs fitted plots and a low AIC, 345 

this model can be presumed to adequately fit the data. The validation of the newly developed 346 

prediction equation using ‘out-of-sample testing’ is particularly important as the original 347 

equation was frequently used in samples that were distinctly different that the original sample 348 

(5, 34). First of all, accurately determining maturation in youth athletes - both pre and post 349 

APHV - is of great importance as it allows researchers and coaches to account for the 350 

confounding effect an advanced or delayed maturation might have on performance. 351 

Furthermore, accurately monitoring maturation via relatively quick and non-invasive 352 

anthropometric measures, should aid in classifying youth athletes according to their 353 

biological maturity. This could ultimately result in a reduction in risk of physical injury (8), 354 

fairer match play, and decreased drop-out from team sports (14, 29). Finally, retrospective 355 

estimation of the APHV in athletes older than their predicted APHV might help map career 356 

progressions of successful athletes, a commonly used methodology in talent identification 357 

and development research. A second advantage of an accurate prediction of APHV in youth 358 

athletes is that training practice can be planned around the APHV of athletes. Philippaerts et 359 

al. (22) showed that peak growth in physical performance in young soccer players coincides 360 

with peak growth in height and weight and therefore differences in maturity status between 361 

players should be taken into account when planning individualized training interventions.  362 

 363 

Although this study has clearly identifiable strengths, there are also limitations to utilizing the 364 

prediction equations from this study in samples of general and athletic populations. First of 365 

all, it is important to note that despite the improvement in accuracy of the new maturity ratio 366 

estimation, longitudinal measurement of PHV provides much more accurate estimations of 367 
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APHV. However, they are rarely viable alternatives for non-elite sporting academies or 368 

smaller sporting organisations, largely due to budget and time constraints. In circumstances 369 

such as these, the estimation of maturity ratio from anthropometric variables developed in 370 

this study might offer the best alternative. However, future studies should investigate 371 

construct validity of these novel equations using DXA imaging, X-ray or sexual maturation 372 

assessments. A second limitation is this study’s inability to produce sex-specific prediction 373 

equations. Hence, the prediction equations derived from this study only refer to a male 374 

population. In the future, research should attempt to use similar models to describe the 375 

relationship between anthropometric variables and a maturity ratio in a sample of females.  376 

 377 

CONCLUSION 378 

In conclusion, this study overcomes some of the limitations of the prediction of APHV - as 379 

suggested by Mirwald et al. (19) - by modelling a non-linear relationship between 380 

anthropometric variables and a maturity ratio rather than a maturity offset. Furthermore, this 381 

study has established the practical validity of the novel equation in an external sample of high 382 

level soccer players. This has significantly improved the applicability of this prediction 383 

equation within a population of 11-16 year old boys. Hence, this newly developed method of 384 

estimating APHV should henceforth become standard practice for the non-invasive 385 

assessment of maturity from anthropometric variables. 386 
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Table 1: Fitted models for models with maturity offset defined as a difference (Actual Age – Age at Peak 531 
Velocity). For each variable, the regression coefficient (Estimate), standard error, test statistic and p-value are 532 
provided. 533 

Model Variable Estimate SE t value 

P-

value AIC R2 

(a) 

Original model  

Intercept -9.206 0.095 -97.066 0.000 3048.7 88.88% 

Body Mass/Stature Ratio 0.023 0.004 5.046 0.000 

Leg Length * Sitting Height 0.000 0.000 6.790 0.000 

Leg Length * Chronological 

Age -0.002 0.000 -4.935 0.000 

Sitting Height * Chronological 

Age 0.007 0.000 22.248 0.000 

(b) 

Main Effects 

and 

Interactions 

Intercept -21.290 1.962 -10.851 0.000 3000.1 89.22% 

Leg Length -0.052 0.070 -0.745 0.456 

Stature 0.127 0.039 3.286 0.001 

Chronological Age  0.597 0.168 3.555 0.000 

Body Mass/Stature Ratio 0.020 0.004 4.416 0.000 

Leg Length * Height 0.000 0.000 -0.776 0.438 

Leg Length * Chronological 

Age -0.004 0.005 -0.799 0.424 

Stature * Chronological Age 0.001 0.003 0.387 0.699 

(c) 

Main Effects 

Only 

Intercept -16.796 0.298 -56.399 0.000 3006.6 89.16% 

Leg Length -0.130 0.009 -14.961 0.000 

Stature 0.122 0.006 21.726 0.000 

Chronological Age 0.474 0.013 35.384 0.000 

Body Mass 0.011 0.003 4.132 0.000 

(d) 

Polynomial 

Model 

Intercept 82.63104 18.684 4.423 0.000 2923.6 89.72% 

Chronological Age 1.03482 0.181 5.711 0.000 

Chronological Age2 0.04002 0.008 4.709 0.000 

Body Mass -0.04496 0.039 -1.143 0.253 

Body Mass2 -0.00101 0.000 -5.255 0.000 

Stature -2.05143 0.364 -5.633 0.000 

Stature2 0.01329 0.002 5.898 0.000 

Stature3 -0.00003 0.000 -5.44 0.000 

Leg Length 0.39035 0.110 3.56 0.000 

Leg Length2 -0.00404 0.001 -5.092 0.000 

Leg Length * Chronological 

Age -0.01043 0.002 -4.836 0.000 

Body Mass * Leg Length 0.00215 0.001 3.106 0.002 

(e) 

Generalised 

Additive 

Model 

Intercept -3.700 0.189 -19.531 0.000 2930.7 89.71% 

Chronological Age (1) 1.542 0.176 8.750 0.000 

Chronological Age (2) 1.962 0.204 9.608 0.000 

Chronological Age (3) 2.646 0.142 18.698 0.000 

Chronological Age (4) 3.668 0.404 9.090 0.000 

Chronological Age (5) 3.950 0.201 19.700 0.000 

Leg Length (1) -2.124 0.226 -9.382 0.000 

Leg Length (2) -4.743 0.528 -8.989 0.000 

Leg Length (3) -4.091 0.262 -15.590 0.000 

Body Mass (1) 13.286 0.701 18.948 0.000 

Body Mass (2) 26.359 1.508 17.482 0.000 

Body Mass (3) 21.294 0.912 23.349 0.000 

Body Mass/Stature Ratio (1) -6.161 0.591 -10.424 0.000 

Body Mass/Stature Ratio (2) -10.385 0.617 -16.833 0.000 

Body Mass/Stature Ratio (3) -18.780 1.169 -16.064 0.000 

Body Mass/Stature Ratio (4) -17.526 0.862 -20.339 0.000 

 534 
Note: For each model the Akaike information criterion (AIC) value (smaller is better) and adjusted R2 (larger is 535 
better) are provided. (a) Model reported in Mirwald et. al. (2002) (b) Model including effects of height, age, leg 536 
length, height/weight ratio and interactions (c) Main effects model containing height, weight, age and leg length 537 
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(d) Linear model including interactions and polynomial terms – (1) indicates a linear term, (2) a quadratic term 538 
and (3) a cubic term (d) Generalised additive model with cubic splines. Knots were equally spaced across the 539 
range of the predictive variable and AIC was used to determine the number of knots.   540 
 541 
  542 
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Table 2: Fitted models for models with maturity offset defined as a ratio (Actual Age / Age at Peak Velocity). 543 
For each variable, the regression coefficient (Estimate), standard error, test statistic and p-value are provided. 544 
 545 
Model Variable Estimate SE t value P-value AIC R2 

(a) 

Original 

model  

Intercept 0.332 0.007 50.103 0.000 -5888.4 89.72% 

Body Mass/Stature Ratio 0.001 0.000 4.778 0.000 

Leg Length * Sitting Height 0.000 0.000 6.450 0.000 

Leg Length * Chronological Age 0.000 0.000 -4.807 0.000 

Sitting Height * Chronological Age 0.001 0.000 23.385 0.000 

(b) 

Main Effects 

and 

Interactions 

Intercept -0.333 0.051 -6.539 0.000 -5964.9 90.19% 

Chronological Age * Stature 0.035 0.001 36.735 0.000 

Body Mass 0.003 0.001 2.933 0.003 

Stature 0.006 0.001 4.650 0.000 

Leg Length -0.002 0.003 -0.901 0.368 

Body Mass * Stature 0.000 0.000 2.082 0.038 

Body Mass * Leg Length 0.000 0.000 -2.922 0.004 

(c) 

Polynomial 

Model 

Intercept 6.98655 1.287 5.431 0.000 -6062.1 90.82% 

Chronological Age 0.11580 0.012 9.273 0.000 

Chronological Age2 0.00145 0.001 2.477 0.013 

Body Mass 0.00452 0.001 5.027 0.000 

Body Mass2 -0.00003 0.000 -4.272 0.000 

Stature -0.15195 0.025 -6.05 0.000 

Stature2 0.00093 0.000 6.004 0.000 

Stature3 0.00000 0.000 -5.191 0.000 

Leg Length 0.03220 0.007 4.449 0.000 

Leg Length2 -0.00027 0.000 -5.852 0.000 

Stature * Chronological Age -0.00076 0.000 -5.114 0.000 

(d) 

Generalised 

Additive 

Model 

Intercept 1.493 0.037 40.000 0.000 -6038.6 90.64% 

Chronological Age (1) 0.467 0.017 28.270 0.000 

Chronological Age (2) 0.252 0.008 30.870 0.000 

Leg Length (1) -0.156 0.015 -10.280 0.000 

Leg Length (2) -0.201 0.015 -13.270 0.000 

Leg Length (3) -0.406 0.032 -12.780 0.000 

Leg Length (4) -0.314 0.019 -16.390 0.000 

Body Mass (1) 0.986 0.038 26.260 0.000 

Body Mass (2) 1.997 0.081 24.780 0.000 

Body Mass (3) 1.580 0.062 25.410 0.000 

Body Mass/Stature Ratio  -0.045 0.002 -23.190 0.000 

 546 
Note: For each model the Akaike information criterion (AIC) value (smaller is better) and adjusted R2 (larger is 547 
better) are provided. (a) Model reported in Mirwald et. al. (2002) (b) Model including effects of height, age, leg 548 
length, height/weight ratio and interactions (c) Main effects model containing height, weight, age and leg length 549 
(d) Linear model including interactions and polynomial terms – (1) indicates a linear term, (2) a quadratic term 550 
and (3) a cubic term (d) Generalised additive model with cubic splines. Knots were equally spaced across the 551 
range of the predictive variable and AIC was used to determine the number of knots.   552 
  553 
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• Figure 2: Scatterplots of predicted maturity offsets against (a) Chronological Age, (b) 558 
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when the model in Mirwald et. al. (2002) is used. 560 
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• Figure 3: Scatterplots of predicted maturity offsets against (a) Chronological Age, (b) 562 

Stature, (c) Leg Length, and (d) Body Mass, for the Belgian Soccer Player dataset 563 

when a polynomial model is used and the maturity offset is defined as a difference 564 

between age and age at peak velocity. 565 
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• Figure 4: Scatterplots of predicted maturity ratios against (a) Chronological Age, (b) 567 

Stature, (c) Leg Length, and (d) Body Mass, for the Belgian Soccer Players dataset 568 

when a polynomial model is used and the maturity offset is defined as the ratio 569 

between age and age at peak velocity. 570 
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