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Abstract: 

This paper proposes an efficient improved hybrid Jaya algorithm based on Time-

Varying Acceleration Coefficients (TVAC) and learning phase introduced in Teaching-

Learning-Based Optimization (TLBO), named LJaya-TVAC algorithm, for solving various 

types of nonlinear mixed-integer Reliability–Redundancy Allocation Problems (RRAPs) and 

standard real-parameter test functions. RRAPs include series, series–parallel, complex 

(bridge) and overspeed protection systems. The search power of proposed LJaya-TVAC 

algorithm for finding the optimal solutions is firstly tested on the standard real-parameter uni-

modal and multi-model functions with dimension of 30 to 100, and then tested on various 

types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya 

algorithm and best results reported in the recent literature. The obtained optimal results of 

proposed LJaya-TVAC algorithm provide evidence for the better and acceptable optimization 

performance compared to the original Jaya algorithm and other reported optimal results. 
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Nomenclature: 

C upper limit on the cost of the system Rs reliability of the system 

f(.,.) objective function of reliability of the system rd (d=1:m) reliability of every component 

available for the dth subsystem  

 

g(.,.) set of constraint functions T operating time of problem 4 

m number of subsystems in the system V upper limit on the sum of the 

subsystems’ products of volume  

nd 

(d=1:m) 

number of components in the dth subsystem V1 to V4 control valves of problem 4 

P1 problem 1 or series test system vd volume of each component in the dth 

subsystem 

P2 problem 2 or series–parallel test system W upper limit on the weight of the 

system 

P3 problem 3 or complex test system wd weight of each component in the dth 

subsystem 

P4 problem 4 or overspeed protection test 

system 

Z 
 set of positive integers in the discrete 

space 

P5 problem 5 or large-scale test system 
d and 

d  physical characteristics of the system 

components 

qd 

(d=1:m) 

failure probability of each component in the 

dth subsystem  

dR

(d=1:m) 

reliability of the dth subsystem 

 



1. Introduction 

 The main goal of maximizing the Reliability–Redundancy Allocation Problems (RRAPs) 

includes a selection of the levels and redundancy of the components to maximize and 

improve the system reliability and performance. The RRAPs are beneficial for the design of 

the systems that are brought together on a large scale and produced in a large-scale industrial 

operation using off-the-shelf components. These days, as a consequence of increasing system 

complications and unpredictable behaviors, evaluating the reliability of the systems and the 

requirement for improving the reliability of the systems have become very interesting and 

significant (Zhang et al. 2013).  

Various optimization programming and evolutionary techniques have been employed 

to optimize various types of RRAPs, such as: Genetic Algorithm (GA) (Hsieh, Chen, and 

Bricker 1998; He et al. 2013), Particle Swarm Optimization (PSO) (Wu et al. 2011; Zhang et 

al. 2013; Tan, Tan, and Deng 2013), Simulated Annealing (SA) (Dohi et al. 2006; Suman 

2003), Harmony Search (HS) (Zou et al. 2010; Zou et al. 2011; dos Santos Coelho, Diego, 

and Mariani 2011), Tabu Search (TS) (Jang and Kim 2011; Liu and Qin 2014), a cold-

standby redundancy strategy (Ardakan and Hamadani 2014a), a combination search 

algorithm based on Hooke–Jeeves pattern search and dynamic programming (Liu 2006), the 

RRAP of parking facilities in the real system using a hybrid GA (Hamadani et al. 2013), Ant 

Colony Optimizer (ACO) (Liang and Smith 2004), Cuckoo Search (CS) (Valian and Valian 

2013; Valian et al. 2013), Memetic Algorithm (MA) (Pourdarvish and Ramezani 2013), 

Imperialist Competitive Algorithm (ICA) (Afonso, Mariani, and dos Santos Coelho 2013), 

Artificial Bee Colony (ABC) (Yeh and Hsieh 2011), a hybrid algorithm of space partitioning 

and tabu-genetic (SP/TG) (Ouzineb, Nourelfath, and Gendreau 2011) for non-homogeneous 

RRAP, Honey Bee Mating Optimization (HBMO) (Sadjadi and Soltani 2012), a new mixed 



strategy which uses cold-standby and active strategies with a proposed GA for reliability 

optimization of series–parallel systems (Ardakan and Hamadani 2014b), compromise 

programming (Soltani, Sadjadi, and Tavakkoli-Moghaddam 2015), binary equivalent models 

and Mixed Integer Nonlinear Programming (MINLP) for the cold standby RRAP (Feizollahi, 

Soltani, and Feyzollahi 2015), Immune Algorithm (IA) (Chen and You 2005; Chen 2006), a 

multi-objective multi-stage reliability growth planning strategy (Li, Mobin, and Keyser 2016) 

using a modified non-dominated sorting GA (NSGA-II) in the early product-development 

stage and also multi-objective reliability optimization using GA proposed by (Ardakan, 

Hamadani, and Alinaghian 2015), Improved Bat Algorithm (IBA) (Liu 2016), neighbourhood 

search heuristic method with nonlinear programming (Chatwattanasiri, Coit, and 

Wattanapongsakorn 2016), and a Penalty Guided Stochastic Fractal Search (PSFS) (Mellal 

and Zio 2016), a new interpretation and formulation of the RRAP (Ardakan Abouei et al. 

2016) using the mixed new strategy and a modified version of the GA (MVGA), showing 

distinct advantages compared to traditional methods, and etc. A state of the art survey of 

optimization techniques for various types of RRAP to 2014 is presented in (Soltani 2014). 

Jaya algorithm (Rao 2016) is a new simple and efficient algorithm. Similar to the 

other algorithms, it only has the common parameters that will be determined by the user like 

population number and iterations of algorithm without need of any specific control 

parameters that would be determined by the user. This algorithm is based on the best and the 

worst candidate solutions in the iterations (Rao 2016). It has good feasibility and performance 

in solving different engineering optimization problems such as complex constrained design 

optimization (Venkata Rao and Waghmare 2016), dimensional optimization of a micro-

channel heat sink (Rao et al. 2016), and surface grinding process optimization (Rao, Rai, and 

Balic 2016). To the authors’ best knowledge, this is the first time that the Jaya algorithm is 



used for RRAPs in this study.It can be shown that the results obtained by Jaya algorithm for 

RRAPs are suitable and good. 

 RRAPs are an important requirement of various systems. In many systems, balance 

in weights, number of components in subsystems and/or low cost are desired. In various 

cases, the methods and optimization algorithms described provide solutions very close to 

optimality for RRAPs of various systems. In this study, an improved new optimization 

algorithm has been presented to meet these requirements to solve various RRAPs. This paper 

proposes a hybrid enhanced Jaya algorithm based on the learning phase of Teaching-

Learning-Based Optimization (TLBO) algorithm introduced in (Rao, Savsani, and Vakharia 

2011; Rao 2015; Rao and Patel 2012) with its applications (Rao 2015; Ghasemi 2014, 2015), 

and a new Time-Varying Acceleration Coefficients (TVAC) proposed by (Ratnaweera, 

Halgamuge, and Watson 2004) for solving various types of nonlinear mixed-integer RRAPs. 

In the first phase of proposed Jaya-TVAC algorithm, a TVAC is added to the Jaya algorithm, 

and then in the second phase, a learning phase of the TLBO algorithm (Rao, Savsani, and 

Vakharia 2011; Rao 2015; Rao and Patel 2012) is added to the Jaya-TVAC algorithm (LJaya-

TVAC algorithm) for finding the better final solutions with higher convergence rate 

compared with the original algorithm. The two new time-varying acceleration coefficients 

added to the Jaya algorithm increase the search power around the global optimal solution in 

the primary iterations for faster convergence. The added learning phase also increases the 

search power in the final iterations for finding the better final solutions with higher 

convergence rate through the increased local search of Jaya. 

This study is arranged as follows: Section 2 provides a formulation and description of 

the RRAPs for test systems such as series, series–parallel, complex and overspeed protection 

system. In Sections 3 and 4, the Jaya and hybrid enhanced Jaya algorithms using TVAC and 

learning phase are presented. Section 5 shows performance of the proposed optimization 



algorithms in solving RRAPs for the various systems and also standard real-parameter test 

functions. We end this study with some conclusions for the hybrid enhanced Jaya algorithm 

in Section 6. 

2. Reliability-Redundancy Allocation Problems (RRAPs)  

The main purpose of optimization of the RRAPs is to enhance the reliability of these systems 

(maximization of the overall system reliability) by means of using component reliabilities 

allocation (r = (r1, r2, . . . , rm)) and redundancy allocation number (n= (n1, n2, . . . , nm)). The 

nonlinear mixed-integer programming model of these problems can be formulated by 

maximizing the reliability of the system as the objective function subject to multiple 

nonlinear constraints as the following equations: 

 Maximize , ,sR f r n      (1) 

 subject to ,

0 1, , 0 .d d

g r n l

r n Z d m



    
     (2) 

where Rs is the reliability of the system, f(.,.) and g(.,.) are the objective function and 

constraints of the RRAPs, respectively; g(.) is usually associated with the system cost, 

volume and weight limitations. r = (r1, r2, . . . , rm) and n= (n1, n2, . . . , nm) are the component 

reliabilities and redundancy allocation number vectors for m subsystems, and also, l is the 

system resource limitation. 

Four RRAPs including the series system (problem 1 (P1)), series–parallel system (problem 2 

(P2)), complex (bridge) system (problem 3 (P3)) and overspeed protection system of a gas 

turbine (problem 4 (P4)) are evaluated in this paper as follows. 

2.1. Series system (P1) 



The series system with m=5 subsystems (for d=1:m) for nonlinear mixed-integer RRAP was 

presented in (Chen 2006; Hsieh, Chen, and Bricker 1998). The block diagram of the series 

system with five subsystems is shown in Fig. 1 (Afonso, Mariani, and dos Santos Coelho 

2013). The RRAP of the series system can be formulated as follows (Chen 2006):  
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Fig. 1. Block diagram of the series system 

   1

1

Maximize ,

0 1, (positive integer in the discrete space).

m

d d

d

d d

f r n R n

r n Z







  

      (3) 

Here,
 

  1 dn

d d dR n q 
 
is the reliability of dth subsystem, qd = 1- rd is the failure probability of 

each component in dth subsystem, and nd is the number of components in the dth subsystem.  

The objection function is subject to the following constraints: 

1- The combination of weight, volume, and redundancy allocation number constraint

 1 ,g r n : 

  2 2

1

1

,
m

d d d

d

g r n w v n V


       (4) 

where, wd is the weight of each component in dth subsystem; vd is the volume of each 

component in dth subsystem, V is the upper limit on the sum of the subsystems’ products of 

volume. 

2- The system cost constraint  2 ,g r n : 

  0.25

2

1

1000
,

ln

d

d

m
n

d d

d d

g r n n e C
r






 
       

 
      (5) 



where, 
d and 

d are physical characteristics of the system components. Also, C is the upper 

limit on the cost of the system. 

3- The system weight constraint  3 ,g r n : 

  0.25

3

1

, d

m
n

d d

d

g r n w n e W


       (6) 

where, W is the upper limit on the weight of the system. The parameters of the series system 

(Chen 2006; Hsieh, Chen, and Bricker 1998) are given in Table A.1 in Appendix. 

2.2. Series–parallel system (P2) 

The series–parallel system (P2), with the same  1 ,g r n ,  2 ,g r n and  3 ,g r n constraints as 

those of P1, is shown in Fig. 2 (Chen 2006; Hsieh, Chen, and Bricker 1998). The input 

parameters of this test system (P2) (Chen 2006; Hsieh, Chen, and Bricker 1998) are given in 

Table A.2 in Appendix. 

The nonlinear mixed-integer RRAP of the series–parallel system can be formulated as 

follows (Dohi et al. 2006): 

        2 1 2 3 4 5Maximize , 1 1 1 1 1 1

0 1, (positive integer in the discrete space), 1 5.d d

f r n R R R R R

r n Z d

      

    
     (7) 

subject to  1 ,g r n ,  2 ,g r n and  3 ,g r n . 

21

5

3

4

 



Fig. 2. Block diagram of the series–parallel system. 

2.3. Complex (bridge) system (P3) 

The complex (bridge) system (P3) is shown in Fig. 3 which has the same non-linear 

constraints  1 ,g r n ,  2 ,g r n and  3 ,g r n  as those of the series and series–parallel systems 

optimization problems (Chen 2006). The input parameters of this test system (P3) (Chen 

2006; Hsieh, Chen, and Bricker 1998) are given in Table A.3 in Appendix. 

The nonlinear mixed-integer RRAP of the complex (bridge) system (P3) can be formulated as 

follows: 

 3 1 2 3 4 1 4 5 2 3 5 1 2 3 4 1 2 3 5

1 2 4 5 1 3 4 5 2 3 4 5 1 2 3 4 5

Maximize ,

2

0 1, , 1 5.d d

f r n R R R R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R R R

r n Z d

     

   

    

     (8) 

subject to  1 ,g r n ,  2 ,g r n and  3 ,g r n . 

21

4

5

3

 

Fig. 3. Block diagram of the complex (bridge) system. 

2.4. Overspeed protection system of a gas turbine (P4) 

The overspeed detection is constantly supplied by the mechanical and electrical systems. 

When an overspeed happens, it is essential to stop the fuel source by means of using control 

valves (V1 to V4). The overspeed protection system of a gas turbine for the fourth nonlinear 



mixed-integer RRAP is shown in Fig. 4. The input parameters of the overspeed protection 

system (Chen 2006) are given in Table A.4 in Appendix. 

This RRAP of the overspeed protection system a gas turbine can be formulated as follows: 

   

 

4

1

6

Maximize , 1 1 .

0.5 1 10 ,

1 10,  .

d

m
n

d

d

d

d d

f r n r

r
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


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 

  

  



     (9) 

This objective function is subject to the following constraints: 

1- The combination of weight, volume, and redundancy allocation number constraint

 1 ,g r n : 

  2 2

1

1

,
m

d d

d

g r n v n V


       (10) 

2- The system cost constraint  2 ,g r n : 
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where,  dC r is the cost of each component with reliability rd at the dth subsystem, and T is 

the operating time in which the component must not fail. 

3- The system weight constraint  3 ,g r n : 

  0.25

3

1

, d

m
n

d d

d

g r n w n e W


       (12) 
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Fig. 4. The diagram block for the overspeed protection system of a gas turbine. 

 

 

 

 

 

2.5. Large scale RRAP (P5): 

To clearly show the effectiveness of the proposed LJaya-TVAC algorithm for RRAP, a large 

scale system (Zhang et al. 2013) is used with the same non-linear constraints  1 ,g r n , 

 2 ,g r n and  3 ,g r n  as those of the overspeed protection test system (Mellal and Zio 2016).  

The formulation of this problem can be written as follows (Zhang et al. 2013): 

   

 

5

1

6

Maximize , 1 1 .

0.5 1 10 ,  20,

1 10,  .

d

m
n

d

d

d

d d

f r n r

r m

n n Z







   
 

   

  



     (13) 



The large-scale test system includes forty decisions variables (=m*2=40). The data and input 

parameters for the large-scale test system are given in (Zhang et al. 2013). 

3. Jaya algorithm 

Jaya algorithm (Rao 2016) is a recently proposed algorithm which is a powerful and simple 

optimizer for real-world optimization problems. The original flowchart of the optimization 

process for Jaya algorithm is shown in Fig. 5 (Rao 2016). In the Jaya algorithm, each member 

of all population (N), has its own location (solution) in the ith iteration (i = 1:imax) of the 

algorithm. 
i

kX (k =1: N) is defined by the optimization problem parameters in the d-

dimensional solution search space: 
1, 2, ,, ,...,i i i i

k k k d kX x x x    . The new location value 

1 1 1 1

1, 2, ,, ,...,i i i i

k k k d kX x x x        for the kth member  
i

kX  is achieved by updating the locations 

iteratively. If    1i i

k kf X f X  , the new location value (
1i

kX 
) replaces the old location 

value (
i

kX ) using the following equation (Rao 2016): 

   
1 2

1

best worstrand randi i i i i i i i

k k k kX X X X X X           (14) 

where, 
best 1,best 2,best ,best, ,...,i i i i

dX x x x     and 
worst 1,worst 2,worst ,worst, ,...,i i i i

dX x x x    are the best and 

worst solutions obtained until the ith iteration of the algorithm, respectively. 

1 1,1 1,2 1,rand rand , rand ,..., randi i i i

d
     andare two set of  

2 2,1 2,2 2,rand rand , rand ,..., randi i i i

d
     

random numbers in the range [0, 1] in the ith iteration of the algorithm. Also, i

kX is the 

absolute value of 
i

kX . 



Initialize the population with 

problem design variables

Calculate the objective function for each 

population with the selected best and worst 

solutions  

YesNo

Modify solution based on the best and worst solutions 

   1 rand rand worstbest1 2

i i i i i i i iX X X X X X
k k k k
     

Keep the previous

solution

Accept the new solution and

 replace the previous solution

Yes

No

   1if ?i i

k kf X f X 

   bestif ?i i

kf X f X

best

i i

kX X

No

maxif ?i i
Yes

Select the best solution and 

end the process.  

Fig. 5. The optimization process of the original Jaya algorithm. 

4. The hybrid enhanced Jaya algorithm 

In this section, the hybrid enhanced Jaya algorithms using TVAC and learning phase is 

presented. These algorithms increase the search power around the global optimal solution (

bestX ) in the primary iterations for faster convergence, and also increase the search power in 

the latest iterations.  

4.1. Jaya algorithm with time-varying acceleration coefficients (Jaya-TVAC) 

In the first phase, two new time-varying acceleration coefficients 1

ic and 2

ic are proposed 

based on the method by (Ratnaweera, Halgamuge, and Watson 2004) to improve the Jaya 

algorithm, which is called Jaya-TVAC algorithm. The new location value for  
i

kX   is then 

modified as follows: 



   
1 2

1

1 best 2 worstrand randi i i i i i i i i i

k k k kX X c X X c X X             (15) 

 max1 1

1 1 1 1

max

i ii i i i
c c c c

i

   
    

 

     (16) 

 max max 1 max
2 2 2 2

max

i i i ii i i i
c c c c

i

    
    

 

     (17) 

where, c1
i=1=c2

i=1=1 and max

1

i i
c


=0.5 and max

2

i i
c


=0 are obtained for the best values. 

4.2. Hybrid Jaya-TVAC algorithm with learning phase (LJaya-TVAC) based on TLBO 

algorithm 

In the second phase, a learning phase introduced in (Rao, Savsani, and Vakharia 2011; Rao 

2015; Rao and Patel 2012) is added to the proposed algorithm for finding the better final 

solutions with higher convergence rate through increased local search of Jaya. The flowchart 

of the optimization process for LJaya-TVAC algorithm is shown in Fig. 6. The new location 

value 
1i

kX 
 can be achieved using (18). Here two solution variables 

i

jX  (jth member of the 

population) and 
i

hX  (hth member of the population) are randomly selected as shown in (18). 

If the value of the objective function for the new location value 
1i

kX 
 is better than the old 

location value 
i

kX  (    1i i

k kf X f X  ), the new location value 
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kX 
will replace the old 

location value
i

kX .  
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     (18) 
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Fig. 6. The optimization process of LJaya-TVAC algorithm. 

 

5. Results and discussion 

5.1. LJaya-TVAC algorithm for real-parameter problems 

In the first phase of the study, in order to validate the performance of the LJaya-TVAC 

algorithm for the real-parameter test functions, various types of real-parameter test functions 

are chosen (Suganthan et al. 2005). The details of sixth typical unimodal and multi-modal 



real-parameter test functions (F) that are selected to evaluate the effectiveness of the 

proposed algorithms are summarized as follows: 

1) 
1F : Shifted Rotated High Conditioned Elliptic (uni-modal, non-separable and scalable 

test function), 
       

 

1

1
6 2

1 1 2

1

1 2

10 , , , ,..., ,

, ,..., :theshifted globaloptimumand, : orthogonalmatrix

j
d d

j d

j

d

F x z z x o M x x x x
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 with 

xj ϵ [-100, 100] and F(x) =0. 

2) 
2F : Shifted Schwefel’s Problem 1.2 with Noise in Fitness (uni-modal, non-separable and 

scalable test function), 
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 with xj ϵ [-100, 100] and F(x) =0. 

3) 
3F : Schwefel’s Problem 2.6 with Global Optimum on Bounds (uni-modal, non-separable 

and scalable test function), 
   3 max ,

isa matrix, is the th row of , .

j j

j j j

F x A x B

A d d A j A B A o
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  
  

with xj ϵ [-100, 100] and F(x) =0. 

4) 
4F : Shifted Rosenbrock’s (multi-modal, non-separable and scalable test function), 
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        with xj ϵ [-100, 100] and F(x) =0. 

5) 
5F : Shifted Rotated Ackley’s with Global Optimum on Bounds (multi-modal, non-

separable and scalable test function), 
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   with xj ϵ 

[-32.0, 32.0] and F(x) =0. 

6) 
6F : Shifted Rastrigin’s (multi-modal, separable and scalable test function), 
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The Mean (mean value of the best results) and Std (standard deviation of the best results) 

indexes for the proposed Jaya algorithms of each real-parameter problems over 30 runs for 

d=30 and d=100 with imax =d*1000, and the population sizes of N=50 are given in Table 1. 

Also Fig. 7 shows the convergence plots of the proposed Jaya algorithms for the real-parameter 



functions. The proposed LJaya-TVAC algorithm obtains better optimal results with faster 

convergence characteristics compared to the original Jaya and Jaya-TVAC algorithms. The 

results show that the proposed LJaya-TVAC method has been successfully implemented to 

the real-parameter optimization problems with different dimensions. 

Table 1. The best results (Mean±Std) obtained from the Jaya algorithms for real-parameter problems. 

F d Jaya Rank Jaya-TVAC Rank LJaya-TVAC Rank 

F1 

30 5.70e+07± 8.64e+06 3 2.91e+07±2.16e+06 2 1.93e+04±1.42e+04 1 

100 1.29e+09±1.57e+08 3 8.07e+08±1.13e+08 2 1.76e+06±6.78e+05 1 

F2 
30 1.26e+04±1.27e+03 3 6.07e+03±5.32e+03 2 9.98e+01± 7.56e+01 1 

100 3.68e+05± 2.31e+04 3 4.42e+04±2.87e+04 2 2.43e+04± 1.85e+04 1 

F3 
30 3.90e+03±2.45e+03 3 4.77e+02± 5.83e+02 2 1.82e+02± 1.90e+02 1 

100 3.86e+04±3.09e+03 3 1.07e+03±4.65e+03 2 9.30e+02± 2.24e+03 1 

F4 
30 8.19e+07±3.82e+07 3 2.52e+07± 8.14e+06 2 3.29e+00± 3.21e+00 1 

100 5.36e+09±1.03e+09 3 1.89e+09±7.36e+08 2 2.98e+00±1.25e+00 1 

F5 
30 20.871±0.083 3 20.818±0.044 2 20.72±0.061 1 

100 21.271±0.027 3 21.065±0.017 2 20.85±0.012 1 

F6 
30 200.50±7.166 3 180.59±12.42 2 72.41±5.45 1 

100 896.75±69.301 3 854.71±38.59 2 464.64±26.36 1 

 



(a):  

 

(b):  

Fig. 7. Convergence plots of the proposed Jaya algorithms for the real-parameter function with 

d=30: (a) F2 and (b): F6. 
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5.2. The optimization of RRAPs using LJaya-TVAC algorithm 

In the second study, the proposed LJaya-TVAC method is implemented for solving 

different RRAPs in various test systems. The optimization process of the proposed LJaya-

TVAC algorithm can be summarized as follows: 

Step 1: Set the initial parameters
min

dX and 
max

dX (the minimum and maximum limits 

of variables for d=1:2*m),  imax, N, 
1

1

ic 
=

1

2

ic 
=1, max

1

i i
c


=0.5 and max

2

i i
c


=0, and call out the 

needed information for intended test system, such as m, V, C, W, wd, vd, d and 
d ,for all 

subsystems (for d=1:m). 

Step 2: Produce the initial random population matrix (N×2*m) using the minimum and 

maximum limits of the variables. 

Step 3: Calculate the objective function  ,f r n  of RRAP by imposing the non-linear 

constraints  1 ,g r n ,  2 ,g r n and  3 ,g r n  for every available solution in the initial 

population of the LJaya-TVAC algorithm. 

Step 4: Produce the new population of LJaya-TVAC algorithm using (15) (the first 

phase). 

Step 5: Calculate the objective function  ,f r n  of RRAP by imposing the non-linear 

constraints  1 ,g r n ,  2 ,g r n and  3 ,g r n  for the generated population in Step 4. 

Step 6: Produce the new population of the LJaya-TVAC algorithm using (18) (the 

second phase). 

Step 7: Calculate the objective function  ,f r n  of RRAP by imposing the non-linear 

constraints  1 ,g r n ,  2 ,g r n and  3 ,g r n  for the generated population in Step 6. 



 Step 8: Repeat Steps 4-7 till (for i=1: imax) reaching the maximum number of 

iterations. 

The best results obtained from the proposed LJaya-TVAC algorithm compared with 

previously reported results for RRAPs for five test systems over 30 runs with imax =d*1000, 

and the population size of N=4*d, (d=2*m), are summarized in Tables 2-6. The best solution 

values are in bold including  ,f r n  (the obtained best value of the objective function), Mean 

(the mean value of the best results), Worst (the obtained worst value of the objective 

function), Std (the standard deviation of the best results) indexes and the maximum possible 

improvement (MPI) index (dos Santos Coelho 2009). The LJaya-TVAC algorithm is 

compared with previously reported best results (He et al. 2015). The MPI index is defined as 

follows (Valian et al. 2013):  
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
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

     (19) 

Also, slack (g) = l-g, for example slack (g1) = V-  1 ,g r n . 

The best result of the series test system by LJaya-TVAC algorithm shown in Table 2 is 

0.931682388 which is compared with previously reported results including PSSO (Huang 

2015), IA (Chen 2006), IPSO (Wu et al. 2011), a new IA (NIA)  (Hsieh and You 2011), AR-

ICA (Afonso, Mariani, and dos Santos Coelho 2013), and Improved Cuckoo Search ICS 

(Valian et al. 2013). The proposed LJaya-TVAC algorithm obtains the best solutions among 

all the solutions including  1 ,f r n , Mean, Worst and Std indexes as shown in Table 2, with 

the obtained results of 0.931682386, 0.9316823797 and 8.15e-22 respectively. It can be seen 

from Table 2 that, for PSSO (Huang 2015), IA (Chen 2006), IPSO (Wu et al. 2011), NIA 

(Hsieh and You 2011), AR-ICA (Afonso, Mariani, and dos Santos Coelho 2013), ICS (Valian 



et al. 2013), the corresponding improvements (MPI) made by the LJaya-TVAC algorithm are 

1.288e-4, 6.423e-3, 3.554e-3, 7.026e-5, 4.388e-2, and 1.464e-6, respectively. 

Table 2. Comparison of the best results obtained by LJaya-TVAC with some of the previously 

reported results for the series test system. 
Parameter PSSO  IA  IPSO  NIA  AR-ICA  ICS  LJaya-TVAC 

r1 0.77946645 0.779266 0.78037307 0.779462304 0.779874 0.779416938 0.779402388 

r2 0.87173278 0.872513 0.87178343 0.871883456 0.872057 0.871833278 0.871835465 

r3 0.90284951 0.902634 0.90240890 0.902800879 0.903426 0.902885082 0.902882077 

r4 0.71148780 0.710648 0.71147356 0.711350168 0.710960 0.711393868 0.711408035 

r5 0.78781644 0.788406 0.78738760 0.787861587 0.786902 0.787803712 0.787793007 

n1 3 3 3 3 3 3 3 

n2 2 2 2 2 2 2 2 

n3 2 2 2 2 2 2 2 

n4 3 3 3 3 3 3 3 

n5 3 3 3 3 3 3 3 

 1 ,f r n  0.93168230 0.931678 0.93167996 0.93168234 0.93167939 0.931682387 0.931682388 

Slack (g1) - 27 27 27 27 27 27 

Slack (g2) - 0.001559 0.000101 0.0000005284 0.000099 0.000000265 2.19e-08 

Slack (g3) - 7.518918 7.518918 7.518918 7.518918 7.518918241 7.51891824 

MPI (%) 1.288e-4 6.423e-3 3.554e-3 7.026e-5 4.388e-2 1.464e-6 - 

Mean 0.871793835 - 0.92847132 0.93168222 0.92182324 0.92987132 0.931682386 

Worst 0.64815102 - 0.91011333 - 0.82989353 0.92066034 0.9316823797 

Std 0.055331848 - 5.2382e−03 1.3e-14 0.01863188 1.99046e-03 8.15e-22 

 

The best results for the series–parallel test system by LJaya-TVAC algorithm compared with 

ICS (Valian et al. 2013), MPSO (Liu and Qin 2014), IPSO (Wu et al. 2011), NIA (Hsieh and 

You 2011), AR-ICA (Afonso, Mariani, and dos Santos Coelho 2013), NAFSA (He et al. 

2015) are shown in Table 3. The MPSO, NAFSA and proposed LJaya-TVAC obtain the 

better results than the other algorithms. The best values obtained by ICS, MPSO, IPSO, NIA, 

AR-ICA, NAFSA are 0.999976649, 0.9999766491, 0.99997664, 0.999976649, 0.99997661 



and0.9999766491 respectively. Also, LJaya-TVAC obtains the better indexes in terms of 

Mean, Worst and Std than all other algorithms, with the obtained results of 0.9999766491, 

0.99997664904 and 8.15e-25 respectively. 

Table 3. Comparison of the best results obtained by LJaya-TVAC with some of the previously 

reported results for the series–parallel test system. 
Paramete

r 

ICS  MPSO IPSO  NIA AR-ICA  NAFSA  LJaya-TVAC 

r1 0.819927087 0.8196547522 0.81918526 0.819591561 0.82201264 0.819737753 0.819659132 

r2 0.845267657 0.8449752789 0.84366421 0.844951068 0.84365640 0.844991099 0.844980808 

r3 0.895491554 0.8955087772 0.89472992 0.895428548 0.89129092 0.895529543 0.895506189 

r4 0.895440692 0.8955091117 0.89537628 0.895522339 0.89869886 0.895433687 0.895506537 

r5 0.868318775 0.8684491638 0.86912724 0.868490229 0.86824939 0.868434824 0.868447819 

n1 2 2 2 2 2 2 2 

n2 2 2 2 2 2 2 2 

n3 2 2 2 2 2 2 2 

n4 2 2 2 2 2 2 2 

n5 4 4 4 4 4 4 4 

 2 ,f r n

 
0.999976649 0.9999766491 0.99997664 0.999976649 0.99997661 0.9999766491 0.9999766491 

Slack (g1) 40 40 40 40 40 40 40 

Slack (g2) 0.0000161 8.4e-9 0.000561 0.0 0.000396 1.39152e-10 7.959e-010 

Slack (g3) 1.6092890 1.6092889667 1.609289 1.609289 1.609289 1.609288966 1.6092889667 

MPI (%) 4.282e-04 0 3.896e-02 4.282e-04 1.672e-01 0 - 

Mean 0.99997090 0.9999766174 0.99996974 0.999976649 0.99994991 0.9999766490 0.9999766491 

Worst 0.99994886 0.9999765280 0.99994106 - 0.99984762 - 0.99997664904 

Std 4.45e-06 3.87e-08 1.336e−05 3.0e-21 2.58e-06 3.18206e-10 8.15e-25 

 

Also, the best results for the complex (bridge) test system and overspeed protection system 

by different algorithms are summarized in Tables 4-5. The comparison of the best results 

shows that the proposed LJaya-TVAC obtains the better results than all the other algorithms. 

It can be seen from Table 4 for  complex (bridge) test system that, for IA (Chen 2006), EGHS 



(Zou et al. 2011), IPSO (Wu et al. 2011), AR-ICA (Afonso, Mariani, and dos Santos Coelho 

2013), PSFS (Mellal and Zio 2016), NAFSA (He et al. 2015), the corresponding 

improvements (MPI) made by the LJaya-TVAC algorithm are 3.858e-01, 3.398e-02, 6.815e-

03, 6.815e-03, 1.087e-05, and 1.370e-03, respectively. 

Also, it can be seen from Table 5 for the overspeed protection system test system that, for IA 

(Chen 2006), EGHS (Zou et al. 2011), PSSO (Huang 2015), AR-ICA (Afonso, Mariani, and 

dos Santos Coelho 2013), NAFSA (He et al. 2015), GA-PSO (Sheikhalishahi et al. 2013), the 

corresponding improvements (MPI) made by the LJaya-TVAC algorithm are 21.853, 9.847e-

02, 1.03e-02, 3.699e-03, 1.496e-05, and 1.03e-02, respectively. 

Table 4. Comparison of the best results obtained by LJaya-TVAC with some of the previously 

reported results for the complex (bridge) test system. 
Parameter IA  EGHS  IPSO AR-ICA PSFS  NAFSA  LJaya-TVAC 

r1 0.812485 0.82983999 0.82868361 0.82764257 0.82812141729 0.82832179189 0.828081997 

r2 0.867661 0.85798911 0.85802567 0.85747845 0.85781341076 0.85797450730 0.857823532 

r3 0.861221 0.91333926 0.91364616 0.91419677 0.91423927822 0.91422098825 0.914227868 

r4 0.713852 0.64674479 0.64803407 0.64927379 0.64807680660 0.64775717018 0.648117404 

r5 0.756699 0.70310972 0.70227595 0.70409200 0.70424641245 0.70300666185 0.70436276 

n1 3 3 3 3 3 3 3 

n2 3 3 3 3 3 3 3 

n3 3 2 2 2 2 2 2 

n4 3 4 4 4 4 4 4 

n5 1 1 1 1 1 1 1 

 3 ,f r n  0.99988921 0.99988960 0.99988963 0.99988963 0.99988963751 0.99988963601 0.999889637522 

Slack (g1) 19 5 5 5 5 5 5 

Slack (g2) 0.001494 0.00000594 0.00000359 0.00004428 2.85464e-6 1.5485e-5 2.960e-06 

Slack (g3) 4.264770 1.56046629 1.56046629 1.56046629 1.560466288 1.56046629  1.560466288 

MPI (%) 3.858e-01 3.398e-02 6.815e-03 6.815e-03 1.087e-05 1.370e-03 - 

Mean - 0.99988263 0.99988799 0.99979532 - 0.99987756441 0.99988963752 

Worst - 0.99982887 0.99970178 0.99939296 - - 0.999889637513 



Std - 1.6e-05 4.0163e-05 1.037e-04 3.7e-023 2.1017e-05 8.16e-020 

 

Table 5. Comparison of the best results obtained by LJaya-TVAC with some of the previously 

reported results for the overspeed protection system. 
Parameter IA  EGHS  PSSO  AR-ICA NAFSA GA-PSO LJaya-TVAC 

r1 0.903800 0.900925066 0.90166461 0.90148988 0.90160779120 0.901628 0.901614807 

r2 0.874992 0.851636929 0.88817296 0.85003526 0.84993077684 0.888230 0.849921181 

r3 0.919898 0.948079849 0.94821033 0.94812952 0.94814603278 0.948121 0.948141393 

r4 0.890609 0.887654500 0.84987084 0.88823833 0.88821809379 0.849921 0.888222817 

n1 5 5 5 5 5 5 5 

n2 5 6 5 5 6 5 6 

n3 5 4 4 4 4 4 4 

n4 5 5 6 5 6 6 5 

 4 ,f r n  0.999942 0.99995463 0.99995467 0.999954673 0.99995467467 0.99995467 0.999954674676782 

Slack (g1) 50 55 - 55 55 55 55 

Slack (g2) 0.002152 0.00000105 - 0.00213782 4.5195e-07 0.000006 1.614e-10 

Slack (g3) 28.803701 24.80188272 - 24.8018827 24.802 15.363463 24.8018827 

MPI (%) 21.853 9.847e-02 1.03e-02 3.699e-03 1.496e-05 1.03e-02 - 

Mean - 0.99993588 0.9999416669 0.99993804 0.99995075542 0.99995467 0.99995467467678 

Worst - 0.99985315 0.99986938 0.99982276 - 0.99995467 0.999954674676778 

Std - 2.2e-05 1.61e-5 0.00002204 4.43e-06 1.0e-16 4.86e-32 

 

Table 6 shows that the best solution for a large-scale test system is related to the proposed 

LJaya-TVAC which is compared with the solution reported by PSFS (Mellal and Zio 2016). 

The best results are 0.89051730902 and 0.891136424677689 by PSFS (Mellal and Zio 2016) 

and the proposed algorithm, respectively, and the result provided by the LJaya-TVAC is 

better than PSFS (Mellal and Zio 2016). The results show that the LJaya-TVAC algorithm is 

very reliable for the real large-scale optimization problems. In Table 6, for the best result 

obtain by the PSFS (Mellal and Zio 2016), the corresponding improvement (MPI) made by 

the LJaya-TVAC algorithm is 5.655e-01. 



Table 6. Comparison of the best results obtained by LJaya-TVAC with some of the previously 

reported results for the large-scale test system. 
Parameter PSFS  LJaya-TVAC Parameter PSFS LJaya-TVAC 

r1 0.920682125899 0.921084976 n1 2 2 

r2 0.952579760087 0.952404213 n2 2 2 

r3 0.840370879766 0.841155866 n3 3 3 

r4 0.934499487329 0.935072836 n4 2 2 

r5 0.806884188682 0.807515426 n5 3 3 

r6 0.895206390582 0.894297746 n6 2 2 

r7 0.811801524606 0.81181724 n7 3 3 

r8 0.814181963158 0.813453019 n8 3 3 

r9 0.836220223575 0.901645065 n9 3 2 

r10 0.827983638973 0.825833294 n10 3 3 

r11 0.814585208335 0.815100918 n11 3 3 

r12 0.837346324449 0.838160321 n12 3 3 

r13 0.841065088128 0.841043767 n13 3 3 

r14 0.821075460589 0.820672214 n14 3 3 

r15 0.850117124276 0.85096942 n15 3 3 

r16 0.838491056144 0.838425251 n16 3 3 

r17 0.823073269011 0.824306984 n17 3 3 

r18 0.809956458845 0.810315221 n18 3 3 

r19 0.807719250830 0.808690588 n19 3 3 

R20 0.897948276899 0.833344431 n20 2 3 

Slack (g1) 143 158  5 ,f r n  0.89051730902 0.891136424677689 

Slack (g2) 0.00275018 1.453186e-04 Mean - 0.888020914198434 

Slack (g3) 2.1970797 2.197079756 Std 3.5e-08 7.15e-12 

Worst - 0.886359901275289 MPI (%) 5.655e-01 - 

 

It is obvious from Tables 1-6 that the proposed LJaya-TVAC algorithm can be useful and 

effective for optimization problems of engineering systems in comparison with the original 

Jaya algorithm and the best results reported in the recent literature by other algorithms. 



6. Conclusion 

In this paper, a hybrid enhanced Jaya algorithm based on TVAC and learning phase, called 

LJaya-TVAC has been proposed to efficiently solve various types of nonlinear mixed-integer 

RRAPs. The series, series–parallel, complex (bridge) and overspeed protection systems have 

been considered as RRAPs. The effectiveness of proposed LJaya-TVAC algorithm to achieve 

the optimal solutions of the standard real-parameter uni-modal and multi-model benchmark, 

as well as various RRAPs, was tested and compared with original Jaya algorithm and other 

optimal solutions reported in the recent literature.  

In RRAPs, in addition to the reliability objective function, some other objective functions can 

be considered such as the overall cost (Ardakan, Hamadani, and Alinaghian 2015). The 

obtained optimal results of the paper have provided evidence for better and effective 

optimization performance of the proposed LJaya-TVAC algorithm in comparison with 

optimal solutions reported in the recent literature. Note that although the proposed algorithm 

is very reliable for the large-scale optimization problems in practice which is successfully 

tested for different systems in the paper, it adds some complexity to the simple Java 

algorithm. Addressing this problem is beyond the scope of this paper and would be the focus 

of our future work. Also in the future work, the proposed LJaya-TVAC algorithm can be 

considered for multi-objective optimization problems and compared with other algorithms 

such as NSGA-II and so on in the literature. 
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 Appendix. Data of the test systems. 

Table A.1. Data of the series system (P1). 

Stage 105× d  d  2

d dw v  dw  V C W 

1 1.0 1.5 1 6 250 400 500 

2 2.3 1.5 2 6 

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 

 

Table A.2. Data of the series–parallel system (P2). 

Stage 105× d  d  2

d dw v  dw  V C W 

1 2.500 1.5 2 3.5 180 175 100 

2 1.450 1.5 4 4.0 

3 0.541 1.5 5 4.0 

4 0.541 1.5 8 3.5 

5 2.100 1.5 4 4.5 

 



Table A.3. Data of the complex (bridge) system (P3). 

Stage 105× d  d  2

d dw v  dw  V C W 

1 2.330 1.5 1 7 180 175 200 

2 1.450 1.5 2 8 

3 0.541 1.5 3 8 

4 8.050 1.5 4 6 

5 1.950 1.5 2 9 

Table A.4. Data of the fourth test system (P4). 

Stage 105× d  d  2

d dw v  dw  V C W T 

1 1.0 1.5 1 6 250 400 500 1000 h 

2 2.3 1.5 2 6 

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 

 


