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Abstract 
Dynamic systems are quite often non-linear and 

require a complex mathematical model. For their 
optimal control, it has been always a requirement to tune 
the controller parameters to achieve the best 
performance. Parameter tuning in complex systems is 
predominantly a time-consuming task, even with high 
performance computers. This paper provides an 
overview of metamodeling and demonstrates how it can 
be applied to efficiently tune the control parameters of a 
typically nonlinear and unstable process, the ball and 
beam system. Here, the metamodel is realized with a 
radial basis function (RBF) neural network to derive the 
PID parameters subject to an optimal criterion. The 
proposed approach is benchmarked with a commonly-
used tuning technique. 
 
1. Introduction 

In the control design for dynamic systems, one has 
often a complicated mathematical model, obtained from 
fundamental laws of physics, chemistry, or economics, 
for instance, that govern dynamics of the concerning 
system. To achieve the control objective, it is normally 
desired to find the optimal parameters for a controller 
that would give a highest performance index to the 
system outputs. 

The optimisation algorithms might be too 
computationally expensive owing to the complexity of 
the actual model.  The computational time required to 
simulate and use the actual model for further processing 
might be very long and thus it becomes impractical to 
rely exclusively on time-consuming simulation results 
for a too complicated model. Thus there is a need for 
metamodeling, that is, for the determination of simpler 
models that involve less computation but represent 
adequately a good approximation for the system 
dynamical behaviour. 

In this work, a neural network-based metamodel is 
applied to optimise the controller parameters for a 
typically nonlinear and unstable process, the ball and 
beam system. The remainder of this paper is organised as 
follows. Section 2 gives an overview of the current 
metamodeling techniques. A rationale for tuning the PID 
gains using the metamodeling approach is provided in 

Section 3. The proposed technique, featuring a radial 
basis function with a target data set obtained from 
minimization of an integral performance index, is 
described in Section 4. The ball and beam system control 
using the approach is discussed in Section 5. Section 6 
shows the simulation results, followed by a comparison 
analysis. Finally, a conclusion is drawn in Section 7. 

 
2. Metamodeling overview 

Metamodeling, considered generally as an explicit 
description of how a domain-specific model is built for a 
complex system, has been successfully used in many 
fields where complicated computer models of an actual 
system exist but they may require a considerable amount 
of running time. Models involving finite element and 
fluid dynamics analysis or multi-objective optimisation 
algorithms with many parameters are some typical 
examples.  

Metamodeling evolves from the classical Design of 
Experiments (DOE) theory, in which polynomial 
functions are used as response surfaces, or metamodels. 
Nowadays there exist a number of metamodeling 
techniques, such as neural networks [1], Kriging [2], 
Radial Basis Functions (RBF) [3], Multivariate Adaptive 
Regression Splines (MARS) [4], Least Interpolating 
Polynomials [5] etc.  Nevertheless, there is no conclusion 
about which model is definitely superior to the others. 
However, insights have been gained through a number of 
recent studies, whereby Kriging models, Gaussian and 
RBF processes are intensively investigated [6-8].  

In general the Kriging model is more accurate for 
nonlinear problems and also flexible in either 
interpolating the sample points or filtering noisy data. 
However, it is difficult to obtain and use because a 
global optimization process is applied to identify the 
maximum likelihood estimators. On the contrary, a 
polynomial model is easy to construct, clear on 
parameter sensitivity, and cheap to work with but is less 
accurate than the Kriging model [7].  

The RBF model, especially the multi-quadric RBF, 
can interpolate sample points and at the same time is 
easy to construct. It thus seems to reach a trade-off 
between Kriging and polynomials. Recently, a new 
model called Support Vector Regression (SVR) was used 



and tested [8]. SVR achieved high accuracy over all 
other Metamodeling techniques including Kriging, 
polynomial, MARS, and RBF over a large number of test 
problems. It is still unclear, however, what are the 
fundamental reasons for the SVR outperformance over 
others.  

 
3. PID tuning and cascade control 

The PID algorithm has been the most popular 
feedback controller used within process control over the 
years. It is a well understood algorithm that can provide 
excellent control performance despite the varied dynamic 
characteristics of process plant.  Even though PID 
controllers are commonly used, they are not always used 
in the best way because the controller may not be well 
adjusted. It is difficult to tune three parameters by trial 
and error, especially when several PID controllers exist 
in the loop in a multi-input multi-output (MIMO) system. 

There are many tuning techniques for PID control. 
They methods can be classified as: i) empirical methods 
such as the Ziegler-Nichols (ZN) method and the Internal 
Model Control (IMC) [9], ii) analytical methods such as 
root locus based techniques [9], iii) methods based on 
optimisation such as the iterative feedback tuning (IFT) 
[10] and genetic algorithm tuning technique [11]. The 
automatic tuning software for PID is also being studied 
recently. For example, a key method for auto-tuning was 
introduced by Aström and Hagglund [12] using the relay 
feedback concept. As the relay experiment gives the 
ultimate period Tu and ultimate gain Ku, a reasonable PID 
controller based on this point may then be calculated. In 
general, these techniques work well for a basic control 
feedback configuration, but they are not optimal for 
systems with multiple controllers and with nonlinear 
characteristics.  

In this paper a metamodeling technique utilising the 
radial basis functions is proposed as an alternative to 
tune the PID gains subject to an optimal criterion. Unlike 
the above mentioned techniques, this method can handle 
the tuning task for multiple controllers, regardless of the 
complexity, the order and nonlinear characteristics of the 
system. In addition, with the availability of a simpler 
model, several design issues such as what-if analysis, 
prediction of a system output, optimisation and 
verification and validation of simulation models can be 
done in a computationally-efficient way since computing 
the output of an optimised metamodel (say a neural 
network for example) will be just in a matter of minutes. 
For comparison example, a finite element simulation 
program solving a microwave passive/active circuit 
problem took about 8 hours execution time on a Pentium 
PC, as reported by Tsai et al. [13].  

In this investigation, a cascaded PID control 
configuration will be used to yield better dynamic 
performance. Using cascade control, there are two PID 
controllers arranged with the outer loop PID providing 
the set point of the inner loop. The outer loop controller 

controls the primary physical variable while the inner 
loop, which reads the output of outer loop controller as 
its set point, usually controls a more rapid changing 
variable corresponding to the smallest time-constant 
uncompensated dynamics. A cascade sliding mode-PID 
control scheme was proposed in [14], where the main 
concern is suppressing overshoot. In this work, the same 
principle is applied using a metamodel subject to an 
optimal criterion. 
 
4. Radial Basis Function model 

In this work, a Radial Basis Function Neural Network 
(RBFNN) is used as the proposed metamodel to 
approximate the mapping of the controller gains and an 
optimal performance index function. 

The radial basis functions were first used to design 
Artificial Neural Networks in 1988 by Broomhead and 
Lowe [15]. The network consists of three layers: an input 
layer, a hidden layer and an output layer.  Here, R 
denotes the number of inputs while Q the number of 
outputs. The output of the RBF NN, e.g. for Q = 1, is 
calculated as 
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where 1×ℜ∈ Rx  is an input vector, ( )⋅φ  is a basis 

function, 
2

⋅
 
denotes the Euclidean norm, w1k are the 

weights in the output layer, S1 is the number of neurons 
(and centres) in the hidden layer and 1×ℜ∈ R

kc  are the 
RBF centres in the input vector space.  Equation (1) can 
also be written as,
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The output of the neuron in a hidden layer is a nonlinear 
function of the distance given by: 
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where β is the spread parameter of the RBF.  For 
training, the least squares formula was used to find the 
second layer weights while the centers are set using the 
available data samples. 

The radial basis function neural network offers 
several advantages compared to the Multilayer 
Perceptrons.  RBFNNs have also been successfully used 
in engineering design, see e.g. [16], and manufacturing, 
see e.g. [17].  These advantages include the ability to 
effectively generate multidimensional interpolative 
approximations, to yield robustness and reliability in a 
computationally-aided design. 



To incorporate the cascade control principle, here the 
radial basis function metamodel is used to obtain 
minimum of the RBFNN output, which is the 
approximation of an optimal performance index, the 
integral of time multiplied by the absolute value of error 
(ITAE) given by: 

 ( ) ,-ITAE
0

dty(t)(t)yt d∫
∞

=  
(6) 

where yd is the desired output (set point) while y is the 
actual output of the control system. This criterion is 
chosen as it will produce smaller overshoots and 
oscillations than the others criteria such as integral of 
absolute magnitude of error (IAE) and integral of the 
square of error (ISE). The input vector contains the set 
of PID controller parameters Kp1, Ki1 and Kd1 for the 
outer loop (displacement controller) and Kp2, Ki2 and Kd2 
for the inner loop (motor gear angle controller). The 
target class vector is obtained from the computed 
performance index (6) for the cascade control closed-
loop system.  The following algorithm is proposed: 
 

1. Define the input design space, D, which consists of 
a set of initial values of the controller parameters. 

2. Obtain the ITAE for the control outer loop. Create 
the target data set, T, which consists of the 
normalized ITAE.  

3. Fit the RBFNN using D and T. 
4. Evaluate the RBFNN on a denser input space, D’. 
5. Find the minimum of the RBFNN output 

(estimated E ). The corresponding controller gains 
that minimized the RBF output will be the gains to 
be verified in actual model simulation. 

6. Repeat step 1 to 6 until reach the goal, i.e., the 
mean squared error of RBFNN smaller than a 
prescribed threshold.  

 
5. Case study: A Ball and Beam system 

The ball and beam system is a nonlinear and unstable 
system, thus providing a challenge to the control 
engineers or researchers. Basically, there are two types 
of configuration. The first configuration normally called 
‘Ball and Beam Balancer’, which the beam is supported 
in the middle, and rotates against its central axis. Most 
ball and beam systems use this type of configuration, see, 
e.g., Rosales et al. (2004) [18]. The ball and beam 
balancer is easy to build and its mathematical model is 
relatively simple. In the second configuration called 
‘Ball and Beam Module’, the beam is supported on the 
both sides by two level arms. One of level arms acts as 
the pivot and the other is coupled to motor output gear. 
Although having a more complicated mathematical 
model, the ball and beam module system has an 
advantage in that relatively small motors can be used in 
couple with a gear box [19]. This type of configuration 
will be used in our work. 

Here, the aim is to control the rolling ball at the 
desired position through its acceleration. Thus, it will 
imply the presence of two integrators in series with the 
dynamics of the beam, which result in an open-loop 
unstable and non-linear system [20]. For this a number of 
controllers have been proposed, including nonlinear 
control [21]. A linearised feedback technique can be 
applied, see e.g., [22], from which the stability analysis 
can be obtained, based on linear state-space model or 
transfer function.   

As shown in Fig. 1, a ball is placed on a beam where 
it is free to roll at horizontal axis along the length of the 
beam. A lever arm is attached to the beam at one end and 
a servo gear at the other. The servo gear turns by an 
angleθ , and the lever changes the angle of the beam 
byα . The force that accelerates the ball as it rolls on the 
beam come from the component of gravity that acts 
parallel to the beam. The ball actually accelerates along 
the beam by rolling, but we can simplify the derivation 
by assuming that the ball is sliding without friction along 
the beam. The mathematical modeling of ball and beam 
system consists of the ball on the beam dynamics, alpha-
theta relation and DC servomotor model. 

By using the Lagrange method or the free body for 
the acting forces shown in Fig. 1, the ball and beam 
dynamics can be obtained as in [23]. The beam angle 
(α ) can be related with motor gear angle (θ ) by 
approximate linear equation dL θα = , where d is the 
lever arm offset and L is the beam length. The transfer 
function from the input voltage (V) to angle θ  for the 
electromechanical system with a negligible armature 
inductance ( 0≅aL ) can be obtained as: 
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 is 

the total moment of inertia, and Lmg BBKB += 2  is the 

total damping. The linearised state-space equations for 
the open-loop system can be obtained as:  

 
Figure 1. Force acting on the ball and beam system 
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representing a marginally-stable system that will be 
stabilised using the two PID controlled loops 
respectively for the ball displacement and for the beam 
angle, as shown in the block diagram of Fig. 2. In 
equation (8), bJ  is the moment inertia of the ball, R  is 

radius of the solid ball, r&&  is its acceleration, m  is its 
mass, g is gravitational constant, α  is the beam angle, 
and α&  is its angular velocity. 
 
6. Simulation and discussion 

The following numerical parameters are used: 
2 -4

1 10×7.35 kgmJ = , radNmsB /106.1 3−×= , 75=gK , 

Ω= 9aR , 0=aL , and ANmK m /0075.0= . Moment of 
inertia of the solid ball given by 22 5/2 kgmmRJ b = , 
where kgm 110.0=  and mR 015.0= . 

The data sets D and D’ are given in Table 1. The 
RBFNN used to fit the data set D is designed with 16 
radial basis centres. These centres are added one by one 
until the RBFNN reaches a prescribed error goal, set at 
0.01. In our design, the width of an area in the input 
space to which each neuron responds is determined by 
the spread β, which is selected as 150, sufficiently large 
to cover overlapping regions of the input space. 
 

Table 1.  Controller parameters used for simulation 
Initial and Large Data Sets 

Initial Data Set 
D 

Kp1 {1, 4, …, 10} 

Ki1 {0, 0.04,.., 0.1} 

Kd1 {0, 4,…, 10} 

Kp2 {10, 80, …, 200} 

Ki2 {0, 0.04, …, 0.1} 

Kd2 {0, 0.08,.., 0.2} 

Total number of data 
configurations. 729 

Large Data Set 
D’ 

Kp1 {1, 2, …, 10} 

Ki1 {0, 0.02,.., 0.1} 

Kd1 {0, 2,…, 10} 

Kp2 {10, 40, …, 200} 

Ki2 {0, 0.02, …, 0.1} 

Kd2 {0, 0.04,.., 0.2} 

Total number of data 
configurations. 32400 

Using MATLAB® on an INTEL® CoreTM 2 Duo PC, 
it takes exactly 0.98 minutes to complete steps 1-6 as 
explained in the previous section.  The best gain that 
minimizes E  is given in Table 2. 

To verify the radial basis function metamodel, a 
SIMULINK block diagram was constructed as a target 
and evaluated for all the 32400 cases in D’ using the 
same PC and the error, E  was also computed. The 
simulation took 39.01 minutes to complete, giving the 
gain that minimizes E  as tabulated (see Table 2). The 
response of the ball displacement based on these PID 
controller parameters are as plotted in Figure 3. The 
output load disturbance is also applied in the entire 
process for the proposed metamodel method as well as 
the target model as illustrated in Fig. 1, and the load 
disturbance response is depicted in Fig.3. As can be seen 
from Fig. 3, with the PID controller parameters, a good 
transient response is obtained at the output of the ball 
and beam system. The response follows the changes of 
the desired input either in positive or negative direction. 
When a disturbance input affects the ball position (e.g. 
user touches the ball), the feedback control is still able to 
stabilise the oscillation within a reasonable range. 

Table 3 shows a comparison of the results obtained. 
From the results (Table 2 and 3), it can be observed that 
the metamodel managed to approximate the global 
minimum of the error curve fairly well. Although the 
minimum of the normalized error for the metamodel and 
the actual model is slightly different (0.017 vs 0.0162), 
the actual ball displacement error Ed, obtained by using 
the optimal parameters from the ITAE criterion (6) for 
the metamodel and the system block in diagram Figure 2, 
remains the same (see Table 3).  

Given the quick computational time for the proposed 
radial basis function metamodel, about 1 minute, 
compared to the time required for simulating the process 
with all values in D’ (about 40 minutes), the results 
obtained indicate clearly an improvement. This will 
become more significant for a larger input space D or for 
a more complicated problem. Hence, metamodeling 
provides the designer with a quick estimate for a set of 
good parameters to begin with.  

To evaluate the performance of the proposed method, 
a comparison study is included here with results obtained 
from a PID auto tuning technique based on relay 
feedback. For tuning PID controller parameters, a 
number of approaches have been in use, similarly to the 
Ziegler-Nichols rules. Initiated by Aström and Hagglund 
[12], commercial automatic tuning PID controllers are 
nowadays available from most hardware manufacturers 
for the industrial usage.  

In this analysis, the more advanced configuration for 
the relay feedback proposed in [23] will be used as a 
benchmark, where the tuning of the cascade controllers 
should be performed with the inner loop first and then 
the outer loop.  



 
Figure 2.  A Ball and Beam System as implemented in MATLAB® SIMULINK® 

 
 

Table 2.  Ball and Beam controller parameters used for 
simulation 

 
Table 3.    Global minimum for the metamodel and               

the actual model 
 Metamodel Actual 

min( E ) 0.0170 0.0162 

Actual  Ed at argmin( E ) 0.4139 0.4139 
 

Table 4.  PID parameters with metamodel and relay 
feedback auto-tuning 

Controller 
Parameter 

RBFNN 
metamodel Relay Auto-tuning 

Kp1 9 25 

Ki1 0 3 

Kd1 6 26 

Kp2 90 0.93 

Ki2 0.1 0.95 

Kd2 0.2 0.23 

 
Table 5.  Step response characteristics 

Method OS 
(%) 

Tp 
(s) 

 Tr 
(s) 

Ts 
(s) 

ess 
(%) 

Metamodel (small space) 10 2 1.0 4 0 

Metamodel (larger space) 0 NA 1.5 3 0 

Relay auto tuning 50 2.5 1.0  11 0.01 
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Figure 3.  Displacement responses with disturbance. 

 
The PID parameters for the proposed radial basis 

network metamodel and the relay feedback auto-tuning 
technique using Ziegler-Nichols rules are summarised in 
Table 4. From the table, we can observe that the PID 
parameters using the RBFNN metamodel method and 
relay feedback auto-tuning method are different although 
both methods are able to stabilise the unstable ball and 
beam system. For the outer loop, the proposed approach 
yields a PD controller instead of PID, implying that the 
integral action have to be minimized or omitted as possible. 
On the other hand, the relay auto-tuning method gives 
higher values of integral gain are obtained for both loops. 
As a consequence, the oscillatory response of the internal 
loop affects the tuning of PID parameters in the outer 

Controller 
Parameter 

RBFNN 
metamodel 

Actual 
evaluation 

Kp1 9 9 

Ki1 0 0 

Kd1 6 8 

Kp2 90 170 

Ki2 0.1 0.1 

Kd2 0.2 0 



loop. The step responses obtained from using the 
metamodel and relay auto-tuning method are depicted in 
Figure 4, while performance indices such as peak time 
(Tp), rising time (Tr), settling time (Ts), and steady state 
error (ess) are listed in Table 5. 

It can be seen that in general the metamodel method 
has better performance than the relay auto-tuning method 
if based on a conventional tuning basis.  
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Figure 4.  Performance comparison  

 
7. Conclusion 

This paper has presented the radial basis function 
metamodel method for cascade control of a complicated 
system involving multiple control loops. The 
effectiveness of the proposed approach is illustrated in 
tuning the PID parameters subject to an optimal integral 
criterion for a two-loop nonlinear unstable system, the 
ball and beam system. Comparing with PID tuning 
methods such as the commonly-used relay feedback 
auto-tuning, the proposed metamodel method gives good 
control performance. As to the computational efficiency, 
the computing time required to obtain a best fit set of the 
controller parameters is significantly fast compared to 
the time required for processing all possible values of the 
input space. Notably, this method is not only used for 
tuning control parameters, but also useful to approximate 
any complex relationships in systems with a large input 
space. For further improvement, it is envisaged that a 
more strategic data location will allow the creation of a 
more accurate metamodel using less data, and therefore, 
less time required to estimate the best parameter set.  
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