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Abstract—To explore the latent information of Human Knowl-
edge, the analysis for Knowledge Bases (KBs) (e.g. WordNet,
Freebase) is essential. Some previous KB element embedding
frameworks are used for KBs structure analysis and completion.
These embedding frameworks use low-dimensional vector space
representation for large scale of entities and relations in KB.
Based on that, the vector space representation of entities and
relations which are not contained by KB can be measured.
The embedding idea is reasonable, while the current embed-
ding methods have some issues to get proper embeddings for
KB elements. The embedding methods use entity-relation-entity
triplet, contained by most of current KB, as training data to
output the embedding representation of entities and relations.
To measure the truth of one triplet (The knowledge represented
by triplet is true or false), some current embedding methods
such as Structured Embedding (SE) project entity vectors into
subspace, the meaning of such subspace is not clear for knowledge
reasoning. Some other embedding methods such as TransE use
simple linear vector transform to represent relation (such as
vector add or minus), which can’t deal with the multiple relations
match or multiple entities match problem. For example, there
are multiple relations between two entities, or there are multiple
entities have same relation with one entity.

Insipred by previous KB element structured embedding meth-
ods, we propose a new method, Bipartite Graph Network Struc-
tured Embedding (BGNSE). BGNSE combines the current KB
embedding methods with bipartite graph network model, which
is widely used in many fields including image data compression,
collaborative filtering. BGNSE embeds each entity-relation-entity
KB triplet into a bipartite graph network structure model,
represents each entity by one bipartite graph layer, represents
relation by link weights matrix of bipartite graph network. Based
on bipartite graph model, our proposed method has following
advantages. BGNSE model uses one matrix for each relation, the
relation transform between two entities can be done directly by
forward and backward propagation of bipartite graph network,
no need for subspace projection. Because of using bipartite graph
network, the relation transforms between entities are nonlinear
(network layer propagation), the multiple relations match or
multiple entities match problems can be dealt. The learnt entity
and relation embeddings can be used for problems such as
knowledge base completions.

I. INTRODUCTION

Exploring the nature of knowledge is always an important
task and an interesting challenge of Al area. Finding the useful
knowledge representation is especially one of the most familiar
concepts in Al [1]. Some recent developments build some large
web-based Knowledge Bases (KBs), including some structured
and multi-relational knowledge databases. Because of some

Knowledge Base projects’ long-term effort for knowledge data
collection and management, a lot of useful KBs are available
now, including Freebase, Wordnet, DBPedia, etc.

These KBs are valuable resources for learning latent in-
formation and computable representation of KBs. Most KBs
consist of or contain great number of entity-relation-entity
triplets, the elements of each triplet represent two entities
and one relation between them. For example, in the triplet
(”Abraham Lincoln”, ”Was a President of”, ”United States”),
”Abraham Lincoln” and “United States” are entities, “Was
a President of” is the relation from ”Abraham Lincoln” to
“United States”. With all the entities as nodes and all the
relations as edges, the triplets of KBs construct a huge
knowledge graph. By mining the latent structure pattern in the
knowledge graph, some useful representation of entities and
relations can be discovered, such as knowledge base elements
embedding.

Although some previous works offer good solutions for
structured embedding, some issues exist. In these methods,
Structured Embedding (SE) [2] and TranE [3] are both ex-
plainable and effective methods. Using entity-relation-entity
triplets as input, these methods output the representations of
entities and relations in different ways. The score function
is designed to measure the existence of triplets based on such
representations. In particular, TransE gives one vector for each
entity and each relation, it uses simple vector transform, such
as vector ”+/-” operation, to represent relation transforms. For
example, it assumes that vector of ”Abraham Lincoln” add
vector of "Was a President of” is close to vector of “United
States”. The meaning of TransE model is clear, the structure of
model is easy to understand, while the key limitation of TransE
is that it can not handle the complex relation problems in KBs
(e.g. the multiple relations match or multiple entities match).
For Example, Abraham Lincoln was a president of United
States, Abraham Lincoln was also a citizen of United States,
this means the triplets ("Abraham Lincoln”, Was a President
of”’, ”United States”) and (”Abraham Lincoln”, ”Was a citizen
of”, ”United States”) both exist. Another example is "Robert
Todd Lincoln” and ”Thomas ’Tad’ Lincoln III”” are both son of
”Abraham Lincoln”, the triplets ("Robert Todd Lincoln”, ~Is
son of”’, ”Abraham Lincoln”) and ("Thomas *Tad’ Lincoln III”,
”Is son of”’, ” Abraham Lincoln”) both exist. In these examples,
TransE model isn’t able to give different representations for



either different relations ("Was a President of”’, ”Was a citizen
of”) or different entities ("Robert Todd Lincoln”, “Thomas
’Tad’ Lincoln III”).

Differently, SE represent each entity with one vector. SE
gives every relation two matrices, to project left and right
entity vector into subspace vector respectively. SE assumes
that the subspace projections of two entities are close to each
other if the triplet is true, the projections are far from each
other if the triplet is false. SE tries to project the entity into
a common subspace by two direction of relation transform.
This projection transform makes SE be able to handle some
complex relation in KBs. The relation transform of SE is
nonlinear, complex relations in KBs can be dealt, while the
meaning of projection subspace is unclear.

Inspired by some graphical models [4], [5], especially Re-
stricted Boltzmann Machine [6], we proposed using a graph-
based model for translating embeddings for multi-relational
knowledge, which is simple, universal, and efficient. In par-
ticualr, our model, namely Bipartite Graph Network Structure
Embedding (BGNSE), uses one complete bipartite graph to
represent each triplet in KB. In one triplet, each entity is
mapped into one layer of bipartite graph, and links between
layers represent relation. The forward and backward relation
transforms are performed by forward and backward propaga-
tion of bipartite graph network, which share the same bipartite
graph transition matrix. The Bipartite Graph Network can use
only one matrix (link weight matrix of Bipartite Graph Net-
work) for each relation representation instead of two matices
used by SE. In BGNSE, the relation transform between entities
are direct, the representation of an entity is transformed by
relation matrix into another entity representation, no subspace
projection is needed. On the other hand, TransE model is
simpler and uses one vector for each relation transform, but
it can not distinguish complex relation problems (e.g. the
multiple relations match or multiple entities match). Because
the BGNSE uses nonlinear relation transform, i.e., the network
propagation, the complex relations in KBs can be accordingly
handled and derived.

This paper is organized as follows. First, we introduce
and summarize some related works. Then we introduce and
explain the model framework of our method. The training steps
and some training details of our method are also mentioned.
The experiment results are listed and analyzed after that.
Eventually, we conclude our method and discuss the extension
and future.

II. RELATED WORK
A. Structured Embedding (SE) and TransE

As mentioned above, SE and TransE model are both effec-
tive solution for KB embedding problem. Although there are
some issues with these two models, the framework and score
function are well designed.

SE [2] is a classic model for Multi-relational data embed-
ding. Given a triplet (h,r,t) of KB, it use a vector to represent
each entity, vector h for entity h, vector ¢ for entity t. SE
use two matrices for one relation r, R;,s and R, to project

entity h and t into a subspace. The score function used in the
model is defined as

score(h,r,t) = HthSﬁ — Ryt €))

The model assumes that if the triplet (h,r,t) is true according
to KB, the score function value of triplet, score(h,r,t), should
be low. The model offers a good framework for solving
KBs Structure Embedding problem, while the meaning of
projection subspace is unclear.

TransE [3] is another effective embedding model. With the
similar framework, the author give a different definition of
score function. Using vectors h and ¥ for entities h and t,
using another vector 7 for each relation r. Using the score
function

score(h,r,t) = |h + 7 — |3, )

TransE uses simple and understandable relation transform, but
has a new problem. TransE can’t handle complex KB relation
problems, such as multiple relations match or multiple entities
match.

B. Other Models

Unstructured Model (UM) UM [7] is a model which is
close to TransE, but with a simpler score function

score(h,r) = ||h — 2. 3)

The UM model can’t identify the difference between relations,
it can only output the relation of two entities is close or not.

TransH TransH [8] is also a simple and effective model, it
addresses some issues of TransE. TransH uses a hyperplane
w;- to represent relation r and vector i and vector ¢ for entities
h and t. h and ¢ are projected to hyperplane w,., B, and t].
Then the score funtion is defined as

score(h,r,t) = |hy +7—t1||2. 4)

The prOJectlon operatlons are defined as h, = h — wTth
and tL—t—w th

Neural Tensor Network (NTN) NTN [9] defines the score
function as follows,

score(h,r,t) = u?Ttanh(ETRf+ Rih+ Rot'+b,), (5)

where v, is a relation-specific linear layer, R is a 3-way tensor,
R; and R, are weight matrices for entities h and r. The model
is considered too complex for applying in knowledge base
efficiently. [10]

TransR and CTransR TransR and CTransR [10] is another
approach attempting to solve the issues of above models. It
assumes that the entities and relations are not in the same
semantic space. TransR uses matrix M, for projecting entities
from entity space to relation space by h = hM and ¢,
tM,., where h and  are entity embeddings. The score functlon
is

score(h,r,t) = ||h_; + 7 —t,]3. (6)



III. OUR METHOD

To get an reasonable and computable representation of enti-
ties and relations in knowledge bases, we offer a structured
embedding framework to define the abstract score function
and learning framework for our embedding solution. We also
propose a new method, Bipartite Graph Network Structured
Embedding (BGNSE). BGNSE method embeds entities and
relation of KB triplet into bipartite graph and uses propagation
between bipartite graph network layers to represent the relation
transform between entities.

A. Structured Embedding Framework

Because of the issues of other methods, we intend to build
a structured embedding framework which includes following
features.

Directly transform entities to each other. The score
function of each triplet is used for determining the triplet is
true or not. We use a score function inspired by score functions
of previous works, but we do some modification to transform
entities to each other directly based on the relation between
them. For each triplet (ep, 7, e;) in the knowledge base, the
score function of a give entity-relation triplet is defined as:

S(en,r,e) = HR(h) - t”p + HRTev(t) - th» (N

where h and ¢ mean the d dimensional representation vectors
of entities e, and e;. R is forward relation transform function
of relation r, and R,., is backward relation transfrom function
of relation . R projects left entity vector h to a predict right
entity vector R(h) which should be approximate to real right
entity vector ¢, R, projects right entity vector ¢ to a predict
left entity vector R,.,(t) which should be approximate to
real left entity vector h. We use p-norm to determine the
approximation between predict entity vectors and real entity
vectors.

Forward and backward relation transforms should be
related. The relations of KB are directed. For example, if A
”is_part_of” B, B can not have “is_part_of” relation to A. But
the two direction of relation transform should be related, the
relation from B to A is obviously not “is_part_to”, may be
“contain” or “include”, but it should be strongly related to
”is_part_to” relation. In that case, the R transform function
and R,., reverse transform function in equation (7) should be
extremely relevant, and R and R,., can be tranformed into
each other by specific operation. We introduce our method in
section “"Bipartite Graph Network Architecture” that using one
Bipartite Graph Network to represent both R transform and
R,¢, transfrom, R transform and R,., transform share the
link weight matrix of same bipartite graph.

Can be used to represent the complex knowledge rela-
tions. Knowledge bases contain some complex relations, such
as multiple relations match or multiple entities match. For
example, there are more than one relation between two entities,
or there are more than one entity have same relation to same
entity. Some previous methods, such as TransE, have issues
with complex knowledge relations. This is because TransE use
simple entity vector transform. Our method can distinguish

the difference of two relation between the same entity pair by
using Bipartite Graph Network. The detail method introduction
is in section “Bipartite Graph Network Architecture”.

The results contain latent information of knowledge.
Some latent information hidden in human knowledge base
can be used to discover the nature of human knowledge. By
structure embedding operations, the latent information can
be extracted by deep analyzing the relation structure of big
knowledge bases. The results of our method will extract the
latent features of original knowledge base into a compressed
low dimensional representation.

B. Bipartite Graph Network Architecture

Graphical Network has been widely used in many cases
including some classic machine learning model. Bayesian
Network [11] and Boltzmann Machine [12] are both widely
used graphical models. Restricted Boltzmann Machine (RBM)
[6] put units in two layers and only remain the links between
layers, the units in same layer are unlinked. This method make
the model effective and can be used in some application [13].
The success of RBM gives us hints to use bipartite graph
network in our model.

Our new structured embedding method, Bipartite Graph
Network Structured Embedding (BGNSE), uses entity-
relation-entity triplet contained in knowledge bases as input,
and it outputs the structured embeddings representation for
entities and relation. The output represent a triplet by using one
entity vectors for each entity and one matrix for relation in one
triplet. BGNSE uses one complete Bipartite Graph Network to
represent the transform operations of one triplet. Each entity
vector is put into each layer of bipartite graph, use cells of
vector for units of layer. The relation matrix is used as the
weights of links between two layers of the bipartite graph.
Then our structured embedding framework can use bipartite
graph network architecture (shown in figure 1) to define the
front and reverse relation transform functions used in score
function, R and R,., in equation (7).

Given triplet (ep,r,e;), using d-dimensional vector h to
represent the entity vector of entity e, using d-dimensional
vector ¢ to represent the entity vector of entity e;. The 74, cells
of vector h is h;, and the jy, cells of vector ¢ is ¢;. Put vector
h into left layer of bipartite graph and put vector ¢ into right
layer of bipartite graph as figure 1. Using links between two
layers to represent the relation between two entities, the link
weight between h; cells and ¢; cells is w; ;. Equation (8) and
(9) can be gotten.

The values of right entity vector ¢, ¢; (j€[1, d]), are approx-
imate to predict right entity vector values computed by weight
sum of values in left entity vector h as figure 2, the weights
are the bipartite graph link weights between cell ¢; and all
cells of vector h.

Reversely, the values of left entity vector h, h; (i€[1,d)),
are approximate to predict left entity vector values computed
by weight sum of values in right entity vector ¢ as figure 3,
the weights are the bipartite graph link weights between cell
h; and all cells of vector ¢.
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Obviously, relation r can be represented by link weight
matrix of bipartite graph W (the link weight between h; cell
and t; cell is w; j, the 44, Tow ji, column value of matrix
W). The front transform function R and reverse transform
function R,., of relation r in equation (7) can be represented

(n)
o

Fig. 2. The process of getting one unit value of predict right entity vector
by using weight sum of all units in left entity vector, all the units in predict
right entity vector are computed as the process described in figure.

Fig. 3. The process of getting one unit value of predict left entity vector by
using weight sum of all units in right entity vector, all the units in predict left
entity vector are computed as the process described in figure.

by R(h) = hW and R,.,(t) = tWT. The equation (7) turns
into following definition.

S(en,rer) = [|[RW —t||, + [tWT —hll,,  (10)

The front transform function R and reverse transform func-
tion R,., are strongly related. R uses dot result of left entity
vector h and bipartite graph link weight matrix W to get the
predict right entity vector. R,., uses dot result of right entity
vector ¢ and transpose of matrix W to get the predict left entity
vector. Our method BGNSE uses only one bipartite graph link
weight matrix to represent one relation. Because BGNSE use
dot operation between entity vector and link weight matrix to
get the predict result, it is obviously that BGNSE can solve
the complex relation problems in KBs.

C. Training

In our model, the following parameters should be trained,
entity vectors (h and t) and bipartite graph network link weight
matrix (W). We choose p = 1 for our score function to
simplify the training process. The final score function for
training is defined as follows.

S(en,rrer) = [|[AW =ty + [tWT = hll1, (11

Given the knowledge base triplet dataset X, true triplet
(en,r,e1)€X. We pick up false triplets as negative training
sample, (ep,r,e)¢X and (e,r,e;)¢X. The purpose of our
training is to get the result that

S(en,r,e:) < Sen,re),V: (en,r,e)¢gX (12)

and

S(en,ryer) < S(e,rye),V:(e,re)¢X. (13)

We want the score function result of true triplet is smaller than
false triplet, as shown in equation (12) and (13).



We use stochastic gradient descent (SGD) for the parameters
training of our method. We build an objective function

O:{m+S_Sneg+P %fm_FS_SnegZO; (14)
0 if m+4 85— Speq <0,
where S means the score function of triplet in KB (true triplet),
Sneg means the score function of negative triplet not in KB
(false triplet). We use P = A||W/||; in objective function as
sparse penalty function to keep the relation transform matrix
W sparse and avoid the model from overfit. We use L1
regularization penalty function here, the same penalty function
is also used in Sparse Coding method [14]. The detail of using
L1 regularization can be found in [15]. max(a, b) function gets
the max value from a and b. We add a limitation to objective
function that no optimization is applied if m + 5 — Speq < 0.
m+ S — Speg < 0 means that the margin between the score
function results of true triplet and false triplet is large than m.
If the optimization is still applied when m + S — Sy < 0,
the objective function value of some pairs of true and false
triplet will be overfit, but the others won’t fit well. In this
case, we add limitation for training to minimize the objective
function for most number of training set. Parameter m is the
margin between score function results of true and false triplet.
m can be set depends on the detail need of result. The larger
m is set, the difference between score function results of true
and false triplet is more evident. While the value of m should
be tuned carefully, too large value for m can lead to local
optimization problem (only results for several specific triplets
are correct, others are incorrect), the global effectiveness of
training results can be comprimised.

By minimize the objective function, the structured embed-
dings can be gotten. The detail train algorithm of our model
is defined as in algorithm 1.

Algorithm 1 SGD for BGNSE
for Fix number of iterations do
Select a triplet (ep,r,e;) from X at random.
Select an entity e from entities at random.
if (en,r,e) ¢ KB triplets then
if m+ S(ep,r,er) — S(ep,r,e) > 0 then
minimize{m + S(ep,r,e;) — S(en,r,€) + P}.
end if
end if
if (e,r,e:) ¢ KB triplets then
if m+ S(ep,r,e;) — S(e,r,e;) > 0 then
minimize{0,m + S(en,r,e:) — S(e,r,er) + P}.
end if
end if
end for

We also make a constriant after each iteration, the L2-
Regularization of each entity vector should be regularized to
1, to avoid vectors of entities become to close to zero, the
zero-close value entity vectors can also lead to a small result
value for objective function.

D. Latent Information

The meaning of using Bipartite Graph Network for struc-
tured embedding is not only get a representation embedding
for each relation. The process of training Bipartite Graph
Network also allows our model to learning some abstract
latent information from the structure of whole knowledge base.
The biapartite graph network link weight matrix represent-
ing relation transform have to be trained for fitting all the
triplets containing this relation, abstract features of relation
are extracted into relation biapartite graph network link weight
matrix during the training process.

If we use simple sparse representation for knowledge
entities and relations embedding, such as one-hot vectors
for entities and sparse matrices for relations, the result can
represent the relations already contained in KB, but the latent
information of knowledge can not be represented. The hidden
or missed relation of knowledge base can not be found by
sparse representation, because the pattern of relations are not
learnt.

The original KB stores the entities and the relations between
them with sparse representation, high dimensional sparse
vectors and matrices will be used if we represent KB enti-
ties and relaitons directly. The structure embedding methods
embedding the KB data into an low dimensional compressed
representation containing latent information for knowledge
completion and analytics such as missed knowledge relation
found and relation similarity prediction. BGNSE takes the
advantage of Bipartite Graph Network, the result of BGNSE is
a highly compressed and abstract representation of knowledge,
the latent information contained by BGNSE result can be used
for knowledge nature discovery.

The relation matrices used in BGNSE model can fit the
dataset during the training. The relation matrices are low
dimensional compressed matrices. The result relation matrices
have to fit most of data in KB, the result relation matrices
has to contain the abstract pattern of knowledge relation. The
accuracy of knowledge abstract representation will increase by
using larger size of KB datasets.

IV. EXPERIMENTS AND ANALYSIS

A. Data Sets

We choose a famous knowledge base dataset for our ex-
periments, Freebase. This dataset is widely used in previous
works. We test our methods on few subsets of FB15k dataset
[16]. FB15k is a large scale dataset. FB15k contains 14,951
entities, 1,345 relations and 483,142 triplets in training dataset.

We get the top 200 and top 500 entities from FB15k dataset
by entity frequency. We extracted triplets, which contains these
top frequency ranked entities, from FB15k to build datasets for
our experiment, FB200 and FB500. FB200 consists of triplets
containing the FB15k top 200 entities, and FB500 consists of
the triplets containing the FB15k top 500 entities. The details
of FB200 and FB500 are contained in Table 1.



TABLE I
SIZES OF EXTRACTED DATASETS

entities  relations  train data triplets
FB200 146 121 2,238
FB500 485 314 11,649
TABLE II

RANKING RESULTS ON FB200 (146 ENTITIES)
test data (left / right)

train data (left / right)

TransE 16.00 / 24.45 21.07 / 30.80
SE 15.55/ 18.26 21.69 / 23.85
BGNSE 10.60 / 8.18 13.32 / 16.31

B. Link Prediction and Ranking Evaluation

The link prediction is an evaluation method for multi-
relational data structured embedding results. This evaluation
method has been used in some previous works [2], [3], [10].
Link prediction aims to find the missing left or right entity of a
given triplet. Link prediction can solve the problems as “What
is the job title of Alan Turing”. The triplet (Alan Turing, Job
title, ?7) misses its right entity, which might be found out by
Structured Embedding methods.

We utilize link prediction to evaluate our model in translat-
ing embeddings in multi-relational KBs, which aims to find
the missing left or right entity of a given triplet.

Given test triplet (h,r,t), we replace the left/right entity by all
entities in entity list. We get the rank of entites by descending
order of scores given by equation (7). We use the average rank
of true entities, which appears in test triplets, to measure the
effectiveness of our method. The smaller the rank, the better
performance is.

C. Experiment Result

TransE and SE are two classic multi-relational embedding
methods. The model of TransE method is understandable, the
efficiency of TransE is high enough for most of embedding
problems. SE methods can handle complex relation in re-
lational triplet sets, while TransE can not handle complex
relation problem. The datasets we used in our experiments
contain high proportion of complex relations. We use TransE,
SE and our method to compare the differences between our
method and two type of classic embedding methods.

For these reasons, we conduct experiments using TransE
and SE as baselines on two datasets extracted from Freebase
dataset. The results of experiment are tubalated in Table 1 and
2, respectively. Because the complicated nature of relations
contained in our datasets, the TransE perfoms worse due to
its intrinsic weakness as described above. SE and BGNSE
perform closely, the average rank result of BGNSE is slight
better than SE.

V. CONCLUSION AND FUTURE WORK

We proposed BGNSE, an approach for multi-relational data
structured embedding. In our method, due to the advantage of
Bipartite Graph Network, our method only needs to learn one

TABLE III
RANKING RESULTS ON FB500 (485 ENTITIES)

train data (left / right)

test data (left / right)

TransE 86.20 / 104.46 94.23 / 111.13
SE 29.73 / 26.76 35.68 / 34.99
BGNSE 29.61 / 25.07 32.68 / 33.31

matrix to model structured embeddings and handle the com-
plex KB relations without the need of subspace projection. The
forward transform and backward transforms of one relation are
strongly related. Forward and backward transform matrix can
turns into each other by transpose of itself, because the relation
transform is represented by bipartite graph network link weight
matrix. The experiments have justfied the effectiveness of our
approach.

Furthermore, we believe this is a knowledge relation rep-
resentation method which is more natural and reasonable,
because relation transform matrix can learn abstract latent
informations of relation during the learning steps of bipartite
graph network model.

The future works include how to extend better score func-
tion to improve the embedding effectiveness and how to
extract and use the latent information derived from relation
matrix obtained by BGNSE. Firstly, using the Bipartite Graph
Network is not the only choice for building backward relation
transform, R,., function used in equation (7). In that case,
we give the abstract score function of our method in equation
(7), the R,., function could be replaced by other reverse
relation transform which is related to R function based on
other theories. Furthermore, the learning process of BGNSE
let the result entity vectors and relation matrices contain latent
information of whole KB. We believe some latent information
can be extracted from the embedding result of BGNSE when
we use bigger KB datasets.
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