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Abstract—Fatigue is a negative symptom of many illnesses 

and also has major implications for road safety. This paper 
presents results using a method called microstate segmentation 
(MSS). It was used to distinguish changes from an alert to a 
fatigue state. The results show a significant increase in MSS 
instantaneous amplitude during the fatigue state. Plotting the 
linear gradient of the nonlinear part of the phase data from the 
MSS also showed a significant difference (P<0.01) in the 
gradients of the alert state compared to the fatigue state. The 
results suggest that MSS can be used in analyzing spontaneous 
EEG signals to detect changes in physiological states. The 
results have implications for countermeasures used in detecting 
fatigue. 

I. INTRODUCTION 

Fatigue is a symptom of many acute and chronic illnesses 
as well as being associated with the “wear and tear” of 
normal everyday healthy functioning [1]. It can be defined 
as a state that involves psychological/mental and physical 
tiredness or exhaustion with a vast range of symptoms 
including tired eyes, yawning, increased blinking, poor 
concentration, and low motivation. Fatigue also has major 
implications for road safety as it has been identified as a 
major cause of road accidents worldwide and is believed to 
account for up to 40% of road crashes [2].  Fatigue related 
driving accidents are thought to be a result of a decrement in 
performance of the driver caused by the reduction in his/her 
level of arousal [3]. To understand this phenomenon there 
have been studies that have investigated the association 
between brain electrical activity using 
electroencephalography (EEG), and the onset of fatigue 
symptoms. In the EEG, an increased level of alpha activity is 
often associated with decreased cortical arousal and an 
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increase in beta activity has been associated with increased 
cortical arousal [4]. Thus the majority of studies that have 
investigated changes in spectral activity during fatigue, have 
found, for instance, an increase of low frequency EEG 
waves such as delta (0.5-3.5), theta (4-7.5Hz) and alpha (8-
13Hz), while higher frequency waves such as beta rhythms 
(14-32Hz) will decrease [5].  

A novel approach to understanding how brain function 
changes as a result of decreased arousal levels during fatigue 
states is to study the microstate segmentations of brain 
activity. The algorithm used in this paper is based on the 
technique of microstate segmentation of brain activity [6, 7], 
defined as a functional or physiological brain state during 
which specific neural computations are performed. It is 
characterised by fixed spatial distributions of active neuronal 
generators with time varying intensities [6].  

In this paper we analyzed the temporal properties of 
spontaneous brain activity during two different arousal or 
physiological states (alert versus fatigue). The EEG 
recordings consisted of time varying measurements of scalp 
electric potential field and reflect the dynamics of the 
functional state of the brain. It was hypothesized that the 
topographic time course of the scalp electric field can be 
segmented into stable scalp maps called microstates. The 
observation is thus expressed by a finite set of microstates, 
where each time t corresponds to a microstate k with an 
associated coefficient kta . This coefficient reflects the 
polarity and strength of the neuronal generators which gives 
rise to this microstate. It is referred [6,7]  to as the microstate 
intensity.  The main feature of this paper was the 
examination of the use of microstate intensity in EEG 
analysis. Instead of dealing with multi-channel data, we have 
a one dimensional time series of { kta }. The focus in 
segmentation analysis has been to classify the multi-channel 
observation to certain microstates [6]. In this paper however, 
the emphasis was on the use of one dimensional microstate 
intensity time series { kta } to obtain information about the 
observed EEG data. We examined one aspect of this series, 
which was the analysis of the instantaneous amplitude and 
phase of the envelope time series of { kta }.        

In EEG electric potential variations occur due to 
neuronal firing of the brain. Neurons generate small 
electrical variation which summed over a region provides 
the potential variation in that space. This is measured at the 
various scalp electrodes. In addition, this variation is also 
measured as a function of time. Instead of analyzing the 
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scalp electrode data in terms of wave shapes, the dynamics 
used in this analysis was based on microstates. Although this 
approach was originally designed for electrical activity 
performed on particular tasks called Event Related Potentials 
(ERP), it can also be applied to spontaneous EEG [6]. In 
ERP one expects microstates to be more stable during 
particular tasks, unlike that found in spontaneous EEG. 
Therefore, instead of examining the noisy structure of the 
microstate distribution, we focused on the analysis of the 
time series { kta }.The particular feature we study is the 
instantaneous amplitude and phase of the envelope time 
series of { kta }. This is carried out using the analytic signal 
of { kta } obtained via the Hilbert transform.   

II. METHODS 

A. Participants 
Fifty participants were randomly selected from a 

community population to participate in the study. Data from 
eleven participants could not be used due to impedance 
problems in one or more electrodes leading to loss of EEG 
data.  Only 39 participants remained and the mean age of 
this group was 31.1 years (S.D. = 12.3 years), ranging 
between 18 and 55 years. Subjects were stratified for sex in 
order to balance the number of males and female participants 
in the study. The final number of subjects consisted of 20 
females and 19 males. Participants were only admitted into 
the study if they were currently healthy (as determined by a 
structured interview before the study), held a current drivers 
license and reported no prior brain disease or injury. The 
study was approved by the institutional research ethics 
committee and participants were only entered into the study 
after informed consent.  

B. Experimental Procedure and EEG Analysis 
In order to create a change in arousal levels leading to 

fatigue, the experiment condition consisted of assessing 
vigilance using a cognitive-motor vigilance task called the 
Divided Attention Steering Simulator (DASS) (Stowood 
Scientific Instruments).  Throughout the task, physiological 
signals and participants’ faces were videoed while 
performing the simulated driving so that information on 
when subjects fatigued would be known. EEG signals were 
also simultaneously taken to measure the neurophysiological 
changes associated with fatigue.  

Participants were instructed to ‘drive’ in the centre of the 
road (shown on the computer screen) till they showed 
definite signs of fatigue. The task was considered 
monotonous because the participants were required to drive 
at slow speeds (around 40-60km/hr) for an extended period 
of time in a noise, stimulus and temperature controlled 
laboratory. At the same time as driving, vigilance and 
performance was measured from a reaction time task 
whereby they were required to respond to a target number 
that appeared in any of the four corners of the computer 
screen at random times. Participation in the task was 
terminated by the researcher when participants showed 
definite signs of fatigue such as (i) fatigue related facial 

symptoms such as nodding and prolonged eye closure or (ii) 
when they deviated off the road for more than 15 s. 

EEG within the first 5 minutes of starting the driving 
task was selected as “alert” EEG and another selection was 
taken within the 5 minute interval where participants were 
deemed as fatigued before the task was terminated. Thirty-
two channel EEG data from the 39 participants was analyzed 
using the microstate segmentation technique. The EEG data 
was preprocessed so that is was free of artifact. Artifact was 
removed using a program which employs second-order blind 
identification (SOBI) and canonical correlation. Two EEG 
segments, each of 20s duration, were taken from the alert 
and fatigue states and combined for the microsegmentation 
analysis to be carried out on the composite record. 

C. Microstate segmentation model (MSS) 
The electrical activity of the brain can be viewed as a 

sequence of non-overlapping states with variable duration 
and intensity. The scalp data in this picture is then 
represented in terms of a set of normalized vectors T, which 
are the different microstates. At each time t, the multi-
channel data is considered to belong to a microstate 

kT  with 
a particular intensity which is stored in a matrix A [6]. 

Suppose 
tV  is a 

sN x1vector consisting of measured scalp 
potential at the 

sN  scalp electrodes at time t (t=1, 2, …
TN ). 

Further, let 
kT  be the normalized 

sN x1 vector that represents 
the k th microstate and 

kta  be the intensity at time t. The 
microstate model for the average reference multi-channel 
data is then represented as: 

                         ∑
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                     ---- (1) 

where 
μN   is the number of microstates.  In order to allow 

for non-overlapping microstates at each time instant, all 
kta  

must be zero except one. Thus at each time instant, the 
summation in (1) reduces to one non-zero term, 
corresponding to a single active microstate.  

The parameters required to estimate the model are 
kta ,  

kT  
and  

μN  . The method adopted in this paper is the same basic 
N microstate algorithm described in [6]. For a given

μN , the 

process is started with  tL  t=1,…. TN , which are the 
microstate labels associated with each 

tV . We then compute:  
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The summation here includes only the time points 
where kLt = . The normalized microstate 

kT  is then obtained 
as the normalized eigenvector corresponding to the largest 
Eigen value. In equation (2), 

tV  is the transpose of
tV . The 

microstate 
kT  associated with the observation 

tV  is the value 
of 

kT  which minimizes  

                 2''2 )*(* ktttkt TVVVd −=          ---- (3) 



  

Thus, a new set of microstate labels are obtained.  We then 
evaluate the function 
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 The process is iterated till successive values of (4) differ 
negligibly. For example, in this paper we use 10(-4).  
 Once convergence is attained for a particular

μN , we 
calculate  

2122 )]1()1[( −− −−−= μμσσ NNN ss      ---- (5) 

μN  is then estimated by minimizing 2σ .  
Once 

μN  is estimated, the intensity 
kta  of the microstate 

kT  
which is associated with  

tV  for that 
μN  is obtained from 

                             ktkt TVa *'=                       ---- (6) 

D. Analysis of MSS Intensity{ kta  } 

The coefficient 
kta  of the microstate 

kT  is related to the 
intensity of the neuronal generators responsible for this 
microstate at time t.  For each time t we have a value of 

kta . 
In this section we examined the amplitude and phase of the 
envelope of the time series {

kta }.  This is explained in this 
section. Consider a real time series {x(t)}. The analytic 
signal  y(t) is defined by: 
                                  )()()( tihtxty +=    
  
where  h(t) is the Hilbert transform of x(t), 
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Here P is the Cauchy principal value. It can be shown [8], 
that if  
                                 ])([)( )(tietaRtx φ=  
where R is the real part, then  
                                 )()()( tietaty φ=   
The instantaneous amplitude and phase of the real time 
series {x(t)} is the amplitude and phase of the analytic 
signal. The phase of the analytic signal is made continuous 
using the Matlab routine unwrap, which unwraps the phase 
to make it continuous across theπ . 

III. RESULTS 
In this study we examined whether the amplitude and phase 
information from {

kta } of MSS is able to distinguish the two 
states “alert” and “fatigue”. Since the MSS was carried out 
on the composite record (alert (A) (at 0-20s), then fatigue (F) 
(at 21-40s)), the same type of microstate will represent both 
alert and fatigue states. However the number of each type of 
microstate present in alert and fatigue states will be 
different. The MSS analysis shows that the microstates 
necessary for proper representation of the composite EEG 
data varied from 3 to 5. The number of each these 
microstates in the alert and fatigue states varied. These 
numbers presented no obvious feature in the records 
analyzed, to discriminate A from F.    

The top left plot of Figure 1 shows the 
instantaneous amplitude (a(t)) of  {

kta } obtained from a 
composite EEG record.  The top right plot shows the average 
of a(t) (avg(t)), evaluated at each time t using the previous 4 
seconds of a(t). Thus avg(t)=mean (amp(t-4:t)), where the 
initial value of t =4. The result is shown for increments of t 
of 1 second, beyond t=4. The bottom left shows the phase 

)(tφ  of {
kta } obtained from EEG records. Although )(tφ  

appears to be linear, it has structure. This is seen in the 
bottom right plot where r(t) is drawn, which is the non linear 
part of )(tφ . It is given by: 

)()()( 10 tccttr +−= φ    
where 

0c , 1c  are the intercept and slope of the linear fit to 

)(tφ . 
The results of Figure 1 show that there is an 

increase in the amplitude after 20s, in the fatigue state. 
Further the non-linear of the phase (r(t))  shows a change in 
the direction of the gradient at t=21s. 
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Fig. 1.  MSS of spontaneous EEG during alert (0-20s) to fatigue (21-40s) 
states: The instantaneous amplitude a(t) (Top Left), avg(a(t)) (top right); 
phase )(tφ  (bottom left); r(t) (bottom right). All plots are drawn as a 
function of time. 
 

In order to investigate further whether the increase in 
amplitude in going from the alert to the fatigue state is 
significant, the mean amplitude in the alert state (0-20 s) and 
the mean amplitude in the fatigue state (21-40s) were 
evaluated. Figure 2 shows a plot of the mean amplitude of 
the different subjects in the alert state against the difference 
in the mean amplitude between alert and fatigue. 
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Fig. 2.  Plot of the difference in the mean amplitude of (Fatigue-Alert) for 
different mean amplitudes of alert state. F= Fatigue, A= Alert 
 

The results indicate that in the majority of cases there is 
an increase in the amplitude in going from alert to fatigue. 
Dependent t-test analysis revealed significant differences 
between states (t=5.68; p>0.01). 

Figure 3 examines the linear gradient of the nonlinear part 
of the phase (r(t)) in the alert and fatigue region. Plotted 
along the x axis is the gradient of the linear fit of r(t) in the 
A region(between  t =0 to 20s ). It is denoted by m(A).  The 
values along the y axis are the absolute difference between 
the gradients of the linear fit of r(t) in the F region m(F)  
(t=21 to 40s) and the A region m(A) (t=0 to 20s). It is 
denoted by |m(F)-m(A)|. The results indicate in general, that 
there is a difference in the gradient in r(t) in going from A to 
F. Dependent t-test analysis showed significant differences 
in the gradients of the two states (t=7.65; p>0.01). 
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Fig. 3.  Plot of the absolute difference in the gradient |m(F)-m(A)|  for 
different gradients of m(A). The gradients are obtained by r(t). F= Fatigue, 
A= Alert 

IV. CONCLUSION 
The paper examined the use of microstate intensity in 
analyzing spontaneous EEG data, where the data comprised 
of recordings of alert and fatigue state in 39 adult 

participants. The two EEG records were combined and MSS 
analysis was carried out on the composite record. The focus 
of this study was to investigate the use of the one 
dimensional microstate intensity data to analyze the 
composite record. We examined one aspect of this series, 
which was the analysis of the instantaneous amplitude and 
phase of the envelope time series of the microstate 
intensities. The results indicated that the amplitude and 
phase of the microstate intensity time series is able to 
discriminate the two records and provide information on the 
onset of fatigue in the composite record. The amplitude of 
the fatigue state was found to be significantly higher than 
alert. Another study has also examined microstate 
segmentation in different arousal states such as alert, 
drowsy, and REM sleep, however, in the alpha band only. 
They also found that it was drowsiness that showed the 
greatest amounts of differences in microstates compared to 
relaxed wakefulness and REM sleep [9]. This method could 
be implemented into fatigue countermeasures using EEG 
signals as the success rate of detecting the beginning of 
fatigue using the change in amplitude was 84%, and 74% 
with change in gradient using phase. It was also found that 
the recordings that detected fatigue from the gradient 
method were the ones that were difficult to identify when 
using the amplitude method, hence, the two methods 
complement each other.        

REFERENCES 
[1] J. Shen, J. Barbera and C.M. Shapiro, “Distinguishing sleepiness and 

fatigue: focus on definition and measurement,” Sleep Med. Rev. vol 
10, pp. 63–76. 2006 

[2] A. Fletcher, K. McCulloch, S.D. Baulk and D. Dawson, 
“Countermeasures to driver fatigue: a review of public awareness 
campaigns and legal approaches,” Aust. N. Z. J. Public Health vol 29, 
pp. 471–476. 2005  

[3] I. Brown, “Driver Fatigue,” Hum. Factors vol 36, pp. 298–314. 1994 
[4] Y. Tran, A. Craig and P. McIssac, “Extraversion/introversion and 8–

13 Hz wave in frontal cortical regions,” Pers. Individ. Differ. Vol 30, 
pp. 205–215. 2001 

[5] L. J. Trejo, R., Kochavi, K, Kubitz, L. D., Montgomery, R., Rosipal, 
R., and B. Matthews, “EEG-based estimation of cognitive fatigue.” 
Proceedings of SPIE, vol 5797, pp 105-115. 2005 

[6] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Segmentation 
of Brain Electrical Activity into Microstates: Model Estimation and 
Validation”, IEEE Transactions on Biomed. Engineering, vol. 7, pp 
658-665, 1995. 

[7] J. Freudiger “Brain states analysis for direct brain computer analysis” 
Semester project, Swiss Federal Institute of Technology, June 2003. 

[8] W. K. Melville, “Wave modulation and breakdown”, J. Fluid Mech 
(128) 489-506, 1983.   

[9] J. L. Cantero, M. Atienza, R. M. Salas, and C. M. Gomez, “ Brain 
spatial microstates of human spontaneous alpha activity in relaxed 
wakefulness, drowsiness period, and REM sleep,” Brain Topography, 
vol 11 pp257-263, 1999. 
 


