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Abstract—The paper proposes a systematic robust 

multivariable control strategy based on combination of 

systematic triangularization technique and robust control 

strategies. Two design stages are required. In the first design 

stage, multivariable control problem is reduced into a series of 

scalar control problems via triangularization technique. For 

each specific scalar system, two advanced control strategies are 

proposed and implemented in the second design stage. The first 

one is based on Model Predictive Control, which is an iterative, 

finite horizon optimization procedure. The second control 

strategy is known as Neuro-Sliding Mode Control, which 

integrates Sliding Mode Control (SMC) and Neural Network 

Design to achieve both chattering-free and system robustness. 

Real-time implementation on a powered wheelchair system 

confirms that robustness and desired performance of a 

multivariable system under model uncertainties and unknown 

external disturbances can indeed be achieved by the 

combination of triangularization technique and Neuro-Sliding 

Mode Control.     

I. INTRODUCTION 

S mobility aid, powered wheelchairs are frequently used 

to provide people with impairment mobility greater 

independence to access school, work and community 

environments. Safety control of conventional powered 

wheelchair, however, requires a significant level of skill, 

attention, judgment and appropriate behavior. The survey in 

[1] shows that nearly half of 200 participants were found 

unable to control a powered wheelchair. Furthermore, 

around 85000 serious wheelchair accidents are occurred, and 

the trend is expected to increase [2].  

 In order to accommodate powered wheelchair users with 

comfort and safety, a lot of progress has been conducted in 

the last decades. However, majority of works focuses on 

navigation strategies on the supervisory control level. Since 

dynamics of a powered wheelchair varies considerably due 

to environment uncertainties and external disturbances, the 

robustness of the overall system depends heavily on low 

level controller performance. Surprisingly, little research has 

been specifically devoted to low control level.  

  In term of low level control design, a powered wheelchair 

 
This work was supported in part by Australian Research Council under 

Discovery Grant DP0666942 and LIEF Grant LE0668541. 

Nghia Nguyen is with Faculty of Engineering, University of 

Technology, Sydney, Broadway, NSW 2007, Australia (phone: +612-9514-

2451; fax: +61 2 9514 2868; e-mail: tnnguyen@eng.uts.edu.au). 

Hung .T Nguyen is with Faculty of Engineering, University of 

Technology, Sydney, Broadway, NSW 2007, Australia (e-mail: 

Hung.Nguyen@uts.edu.au). 

Steven Su is with Faculty of Engineering, University of Technology, 

Sydney, Broadway, NSW 2007, Australia (e-mail: Steven.Su@uts.edu.au). 

can be regarded as a multivariable system with uncertainties 

and external disturbance [3]. There have been various 

multivariable control techniques, but decoupling control 

techniques provide the very effective solution to 

multivariable problem by reducing it to series of scalar 

problems. However, its researches on robustness under 

system uncertainties and external disturbances have been still 

spare. 

This paper aims at extending decoupling technique known 

as triangularization technique [4] introduced by Hung, an 

author of this paper, to provide a systematic robust 

multivariable control strategy for a class of multivariable 

system. First, a multivariable system is reduced to series of 

independent scalar systems by the triangilarization 

technique. Then a robust controller is designed for an 

independent scalar system. In the control design phase, two 

control schemes are proposed and compared. The first 

control scheme is Model Predictive Control (MPC), which is 

known as advanced control methodology and has been 

applied successfully in different application areas. The 

second control scheme is Neuro-Sliding Mode Control 

(NSMC), which integrates Sliding Mode Control theory and 

Neural Network Design to provide system robustness while 

eliminating chattering phenomenon and avoiding the 

calculation of the plant Jacobian. The effectiveness of the 

proposed strategy is proven via its application to a powered 

wheelchair system. 

The paper is organized as follows. In section II, Robust 

Multivariable Strategy is presented in detail. Its application 

to a powered wheelchair is described in Section III. Real-

time experimental results and discussions are shown in 

Section IV. Conclusion is given in the section V. 

II. ROBUST MULTIVARIABLE STRATEGY 

Two design stages are required in this strategy. First, 

nominal model of multivariable system is used to construct a 

pre-compensator so that the resulting system matrix is 

Triangular-Diagonal-Dominance (TDD), implying that 

multivariable control problem is reduced to series scalar 

control problems. Then two control strategies known as 

MPC and NSCM are proposed in the second design stage.  

 

2.1 Design stage 1: Triangularization with TDD property  

Consider a multivariable system which is given as proper 

square nxn )()(0 sGsG  . In order to use decoupling 

technique, nominal model of the plant (Go(s)) is used in this 

stage. Two steps are required to construct a desired 

compensator.  
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Figure 2.1: TDD compensator construction procedure 

Step1: Construct a uni-modular pre-compensator matrix 

D(s) over the principal ideal domain so that resulting transfer 

function matrix T(s) = G0(s).D(s) is triangular. As pointed 

out in [4], if Go(s) is stable D(is) can always be constructed. 

D(s) can be constructed in Figure 2.1. 

Step2: Check TDD property of T(s)by using Lemma 6 in 

[4]. If T(s) is TDD, its diagonal elements suffice to determine 

the stability properties of the system. In another word, this 

multivariable control problem is reduced to a series of scalar 

control problem via triangularization technique. 

 

2.2 Design stage 2: Control design 

Assume that after decoupling a diagonal element of 

multivariable is in the controllable form as follows: 
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where nRx , Ru , nxnRA , 1nxRB ; nxnRA and
xnRB 1 present bounded uncertainties; )(td is external 

disturbance and 1nxR . 

A. Model predictive control design  

Model predictive control predicts and optimizes the future 

behavior of the progress based on a dynamic model of the 

process. At each control interval, MPC algorithm calculates 

an open loop sequence of manipulated variables in such a 

way to optimize the future of the plant.  

Figure 2.2 presents MPC algorithm operating in two 

phases, prediction and optimization, to compute m moves 

11 ,,,  mkkk uuu   based on values of set points, measured 

disturbances and constraints specified over a finite of future 

sampling instants. The moves are solution of a constrained 

optimization problem:  
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Figure 2.2: Model predictive control algorithm description 

For details of formulations, see [5]  

B. Neuro-sliding mode control design 

The sliding surface is defined as:  

)( xxhs d
T                             (2.3) 

According to sliding mode theorem presented in [6], the 

control input is obtained as: 

)()()( tututu ceq                          (2.4)                                  

where )(tueq is the equivalent control, )(tuc is the corrective 

control given in [6] as: 
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Since uc(t) and ueq(t) can  not be directly calculated. Thus, 

these control signals are estimated by two neural networks: 

CNN and ENN  [6].  

The cost functions for two neural networks are as follows 

  22
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The weight adaptation laws for the ENN and CNN aimed 

at minimizing E and J are in following equations: 
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 Since h is adapted online, B  is assumed to be bounded 

so that K in (2.4) can be approximated as:  

  1
 BhK T                              (2.10)      

Two training schemes are required. First offline training 

scheme aims at finding the nominal weights of two neural 

controllers so that a desired system performance is attained. 

Two trained neural networks are then used in online training 

scheme to reject uncertainties and external disturbances.   

 For details of NSMC algorithms, see [6].  
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Figure 2.3: The NSCM control structure 

III. APPLICATION TO A POWERED WHEELCHAIR SYSEM 

In [3], the powered wheelchair model is obtained by 

experimental data method. This dynamics varies from lower-

bounded transfer function matrix G1(s) to upper-bounded 

transfer function matrix G2(s). The nominal model of 

wheelchair Go(s) is in simplified form as:  
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Design stage 1: Decoupling design  

The triangularization technique is used to construct the 

desired decoupler D(s).  Detail procedure can be seen in [3]. 

Obtained D(s) is in following form: 
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Thus, the decoupled transfer function matrix  

 




























)2)(5)(720(

)89.2(32.123

)5)(720(

10

0
)940)(45(

280

)()(00

sss

s

ss

ss
sDsGsP          (3.5)    

Since Po(s) is stable and proper, it has TDD property 

Design stage 2: Control design 

After being decoupled, the wheelchair is decomposed into 

two scalar systems, linear velocity loop and angular velocity 

loop. 

A. Model Predictive Control Design  

Two model predictive controllers, vMPC and wMPC, are 

required for two sub-systems. The control structure is 

presented in the Figure 3.1.  Both MPCs are turned so that 

the cost function defined in (2.2) is minimized. The inputs’ 

constraint of these optimizations is due to the saturation of 

motor input voltages within [-1;1]. 
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Figure 3.1: Multivariable Model Predictive Control Structure 
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Figure 3.2: Step responses of two velocity loops obtained by MMPC 

The outputs constraint of v is within [-1.4;1.4], while that 

of ω is within [-2.6;2.6]. The chosen weighting matrix is Wy 

=1; Wu =0.1. After extensive simulation and experiment, 

predictive horizon and control horizon is chosen as p=7; 

m=2 for both vMPC and wMPC. The Figure 3.2 shows the 

step responses of two subsystems with variations. 

B. Neuro-Sliding Mode Control Design 

Figure 3.3 shows the control structure which requires two 

NSMCs named as NSMC1 and NSMC2 respectively. By trial 

and error, optimal structure of the ENN and CNN of the 

NSMC1 are (4,3,1) and (2,1,1) while that of the NSMC2 are 

(6,3,1) and (3,1,1). Off-line training algorithm is first 

introduced to find the nominal weights, which can provide 

optimal performance of whole system. 

NSMC1’s parameters: 1;03.0;05.0;8.0  uK   

NSMC2’s parameters: 1;02.0;03.0;65.0  uK   

The integral gain used in online training scheme is chosen 

as KI1= 0.015 for NSMC1 and KI2 =0.02 for NSMC2. The 

Figure 3.4 shows the system outputs of two subsystems.  
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Figure 3.3: Multivariable Neuro-Sliding Mode Control Structure 
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Figure 3.4: Step responses of two velocity loops obtained by MNSMC 



  

IV. REALTIME EXPERIMENTAL RESULTS AND DISCUSSIONS 

The algorithms described in the previous sections are 

implemented in ANSI C LabWindow CVI 8.5 with 20 (ms) 

sampling time. Two real-time experiments are carried out to 

verify the design. The results obtained by Multivariable 

Neuro-Sliding Mode Control (MNSMC) are compared to that 

obtained by Multivariable Model Predictive Control 

(MMPC). 

Experiment 1: This experiment tests the effectiveness of 

the proposed strategy. By exciting input signal of one 

subsystem while keeping other subsystem input at zero, 

Figure 4.1 shows the system outputs obtained by MMPC and 

that obtained by MNSMC method. Clearly, compared to 

MMPC method elaborate performance is obtained by 

MNSMC. Moreover, interactions between two subsystems 

are eliminated by pre-compensator D(s).  

Experiment 2: This real-time experiment tests the 

robustness of the controlled system under system 

uncertainties and external disturbances in two sub-tasks: 

square tracking and line tracing. Each subtask experiment is 

conducted in different conditions.  
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Figure 4.1: System outputs obtained: MMPC (a), MNSMC (b)  
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Figure 4.2: Path-following control: square tracking (a), line tracking (b)  

 

In line tracing task a person weighted 46 kg seats on the 

wheelchair and it runs on wooden surface while in square 

tracking task 70 kg person seats on the wheelchair and it runs 

on cement surface. During experiment, a person seated on 

the wheelchair tries to move oneself in order to change the 

centre of gravity of the system. The results in this experiment 

in Figure 4.2 confirm that system performance is still 

guaranteed regardless different subtasks are conducted in 

different conditions, and better results are obtained by 

MNSMC compared to MMPC method. This is because two 

NSMCs are trained in the offline training scheme to attain 

optimal performance and are trained online to adapt to the 

change of external conditions so that they can reject any 

unwanted uncertainties and external disturbances.     

V. CONCLUSION 

In this paper, we have proposed a robust systematic 

multivariable strategy for a class of multivariable systems. 

Two design stages are required in this approach. First, the 

multivariable system is decoupled into series of scalar 

subsystems by using a pre-compensator. Then two advanced 

control strategies are presented and compared in the control 

design stage for each scalar system. One of these control 

strategies is MPC, which is successfully applied in linear 

systems. Other strategy is NSMC, which can provide system 

robustness by its online adaptation ability. Real-time 

experiments on a powered wheelchair system are conducted 

to compare system performance attained by two control 

strategies. The results show that it is possible to combine 

decoupling technique and advanced control strategy to 

provide robust strategy for a multivariable control problem. 

It also confirms that optimal performance and robustness of a 

class of multivariable systems under system uncertainties and 

external disturbances can indeed be achieved by the 

combination of triangularization technique and NSMC 

strategy, known as MNSMC.   
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