
ORIGINAL RESEARCH
published: 20 June 2017

doi: 10.3389/fnins.2017.00332

Frontiers in Neuroscience | www.frontiersin.org 1 June 2017 | Volume 11 | Article 332

Edited by:

Jianhua Zhang,

East China University of Science and

Technology, China

Reviewed by:

Hans-Eckhardt Schaefer,

University of Stuttgart, Germany

Amira J. Zaylaa,

Lebanese University, Lebanon

*Correspondence:

Chin-Teng Lin

chin-teng.lin@uts.edu.au

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 26 December 2016

Accepted: 26 May 2017

Published: 20 June 2017

Citation:

Liu Y-T, Pal NR, Marathe AR,

Wang Y-K and Lin C-T (2017) Fuzzy

Decision-Making Fuser (FDMF) for

Integrating Human-Machine

Autonomous (HMA) Systems with

Adaptive Evidence Sources.

Front. Neurosci. 11:332.

doi: 10.3389/fnins.2017.00332

Fuzzy Decision-Making Fuser (FDMF)
for Integrating Human-Machine
Autonomous (HMA) Systems with
Adaptive Evidence Sources
Yu-Ting Liu 1, Nikhil R. Pal 2, Amar R. Marathe 3, Yu-Kai Wang 1 and Chin-Teng Lin 1*

1 Faculty of Engineering and Information Technology, Center for Artificial Intelligence, University of Technology Sydney,

Sydney, NSW, Australia, 2 Electronics and Communication Sciences Unit, Indian Statistical Institute, Calcutta, India,
3United States Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States

A brain-computer interface (BCI) creates a direct communication pathway between the

human brain and an external device or system. In contrast to patient-oriented BCIs, which

are intended to restore inoperative or malfunctioning aspects of the nervous system, a

growing number of BCI studies focus on designing auxiliary systems that are intended

for everyday use. The goal of building these BCIs is to provide capabilities that augment

existing intact physical and mental capabilities. However, a key challenge to BCI research

is human variability; factors such as fatigue, inattention, and stress vary both across

different individuals and for the same individual over time. If these issues are addressed,

autonomous systems may provide additional benefits that enhance system performance

and prevent problems introduced by individual human variability. This study proposes

a human-machine autonomous (HMA) system that simultaneously aggregates human

and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP)

task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in

an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the

HMA system to provide a natural adaptive framework for evidence-based inference by

incorporating an integrated summary of the available evidence (i.e., human and machine

decisions) and associated uncertainty. Consequently, the HMA system dynamically

aggregates decisions involving uncertainties from both human and autonomous agents.

The collaborative decisions made by an HMA system can achieve and maintain superior

performance more efficiently than either the human or autonomous agents can achieve

independently. The experimental results shown in this study suggest that the proposed

HMA systemwith the FDMF can effectively fuse decisions from human brain activities and

the computer vision techniques to improve overall performance on the RSVP recognition

task. This conclusion demonstrates the potential benefits of integrating autonomous

systems with BCI systems.

Keywords: Human-Machine Autonomous (HMA) System, Brain-Computer Interface (BCI), Fuzzy Decision-Making

Fuser (FDMF), Dempster-Shafer Theory, Information Fusion
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INTRODUCTION

Human variability (due to fatigue, concentration lapses, or
disorientation) and environmental uncertainties (caused by
complexity, danger, or unexpected disturbances) pose serious
challenges to traditional brain-computer interface (BCI) systems
in real-life applications (Nijboer et al., 2010; Guger et al.,
2012). Human variability arises because cognitive states of
individuals continually change over time due to factors such as
fatigue, attention, and stress. Dynamic environments may lead to
significant changes in the performance of BCI systems because
individuals have different capacities to adapt to environmental
changes. One potential avenue for improving BCIs is by
integrating BCI technologies with autonomous or intelligent
systems to enhance the performances of joint human-autonomy
tasks (Kapoor et al., 2008; Pohlmeyer et al., 2011; McMullen
et al., 2014). Such enhancement requires automated decision
fusionmethods that canmitigate the enormous volume of human
or machine information that could otherwise overload human
analysts.

Decision making is crucial in a number of industrial
applications, including control, dynamic system identification,
spatiotemporal pattern recognition, forecasting, and
bioengineering, that involve many intricate factors (e.g.,
prior knowledge, data characteristics, and systematic variation).
To enhance the utility of each decision, a decision is often made
by considering all the alternatives. In many multiple-attribute
decision-making (MADM) problems (Hu et al., 2006; Deng and
Chan, 2011), decision makers are usually required to employ a
set of alternatives or options in which each option may depend
on a range of both quantitative and qualitative information.
Therefore, an effective framework for integrating such multi-
modal information is an important issue. A standard rationale
of decision making is to assess the probabilities with which
each consequence is reaped from the selection of individual
actions—it is an approach that provides a quantifiable evidence
to indicate the most desirable action. The selected action (i.e., the
final decision), is the one with the highest utility under the given
circumstances and the available information. However, since
each decision is associated with different levels of uncertainty, it
is essential to establish a reliable decision-support system with
a flexible framework that can represent both qualitative and
quantitative uncertainty for each possible evidence source.

Recently, many attempts have been made to integrate
techniques from machine learning and statistical fields to handle
uncertain information (Hu et al., 2006; Wu, 2009; Deng and
Chan, 2011; Luo and Lai, 2014; Yager and Alajlan, 2014). Because
of the flexibility with which uncertain information can be dealt
with, it is reasonable to process MADM problems using fuzzy
sets theory (Zadeh, 1965) and Dempster-Shafer (D–S) theory
(Dempster, 1967; Shafer, 1976). Hu et al. (2006) proposed
a general scheme for attribute aggregation in MADM under
uncertainty using an evidential reasoning approach based on the
D–S theory. In another study (Wu, 2009), Wu utilized gray-
related analysis and D–S theory to address fuzzy group decision-
making problems for supplier selection. Wu (2009) applied the
D–S combination rule to gather individual preferences into a

collective preference through group aggregation. A D–S belief
structure was developed by Casanovas andMerigó (2012) to solve
the decision-making problem when the available information is
in the form of fuzzy numbers.

Obviously, most real-world knowledge is fuzzy rather than
precise, and often, real-world decision-making problems that
can be handled easily by humans are too difficult for machines
to handle. The Dempster–Shafer theory (D–S theory) of
evidence enables us to integrate heterogeneous information from
multiple sources to obtain collaborative inferences for a given
problem.

One of the major advantages of D–S theory is that it provides
a straightforward, yet useful, way to quantify ignorance (non-
specificity) and conflict (randomness); therefore, it is a suitable
framework for handling incomplete uncertain information.

This study proposes an HMA system that simultaneously
aggregates human and machine knowledge to recognize targets
that appear in a rapid serial visual presentation (RSVP) task.
RSVP is one kind of oddball paradigm. P300 wave is an event-
related potential (ERP) that is generated as a response to the
infrequent target stimulus shown in RSVP sequences andmajorly
observed in the posterior area (Lin et al., 2015). Thus, detection
of reaction to a low-probability target in RSVP would trigger
P300 wave, which we extracted in this study. The HMA system
dynamically aggregates decisions that include uncertainties from
both human and autonomous agents. These uncertainties arise
because the characteristics of prediction models can severely
influence the reliability of different decisions made by both
agents. A primary goal of the HMA is to exploit the capabilities
of human and autonomous machines to achieve and maintain a
better performance more efficiently and robustly than either the
human or the autonomous agents can achieve independently.

To accomplish this, a fuzzy decision-making fuser (FDMF)
is proposed in this study that provides a natural adaptive
framework for evidence-based inference by incorporating an
integrated summary of the available evidence and associated
uncertainty. The kernel of the FDMF is based on amulti-attribute
(i.e., various human and machine information) evaluation
framework and Dempster’s rule of combination in the D–
S evidence theory. The HMA system involves two steps: (1)
detecting targets via human and autonomous systems and (2)
integrating decisions from different agents using the FDMF for
human-autonomy interaction.

HUMAN-MACHINE AUTONOMOUS
SYSTEM

Numerous approaches have been proposed to develop human-
machine integration systems (Marathe et al., 2014; Vogel et al.,
2015; Wang et al., 2015). Figure 1 depicts the infrastructure
of an envisioned HMA system that comprises a human and
a machine knowledge-based system. In this study, the specific
task exploited the RSVP paradigm. The human knowledge for
the experiments was collected via behavioral and physiological
observations from a recent RSVP study (Touryan et al., 2014),
and the machine knowledge-based system was established using
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FIGURE 1 | The proposed Human-Machine Autonomous System.

an established computer vision algorithm based on the semi-
automated Transductive Annotation by Graph (TAG) system
(Wang and Chang, 2008). Figure 2 shows a complete flowchart
of the HMA system. We will describe details of each block the
following sections.

Human Knowledge-Based System
BCIs can determine user intent from different
electrophysiological signals (such as EEG). For instance,
the user may control brain wave modulation (e.g., mu or beta
rhythms, Pfurtscheller et al., 2010; Wu et al., 2016) or the BCI
may exploit the natural automatic brain responses to external
stimuli (e.g., event-related potentials, Liu et al., 2016). The
human knowledge-based system proposed in this study is based
on BCI technology.

In this study, EEG recordings of brain activity were utilized
to measure each participant’s brain dynamics during the RSVP
task. The EEG signals were captured from 256 active electrode
sites. All the EEG electrodes were placed in accordance with the
standard 10–10 system of electrode placement. To reduce noise
in the measured EEG signals, the contact impedance between
the EEG electrodes and the cortex was calibrated to be <5
k� before recording. The EEG data were recorded using a
BioSemi ActiveTwo system (Amsterdam, Netherlands). During
the recording process, the subjects were instructed to press a
button as they discovered a target object in the RSVP stream. The
response time (RT) of each subject represented the time interval
between the appearance of the object and pressing of the button.

The participant’s response was calculated and recorded during
the experiment. EEG signals were recorded at a sampling rate of
1,024 Hz, in accordance with the hardware specifications. Using
the EEGLAB toolbox (Delorme and Makeig, 2004), the EEG
data were downsampled to 250 Hz, digitally band-pass filtered
between 0.5 and 50 Hz, and down-selected to the 64 channels
that most closely matched the standard 10–10 EEG electrode
arrangement. These preprocessed data from the 64 channels were
then segmented into epochs lasting from 500 ms before to 1,000
ms after the appearance of each image, and the epoched data
served as inputs for the neural classification algorithms.

Three existing neural classification algorithms were adopted
to recognize target from non-target images based on the neural
responses to each image. Note that, here neural classifier
does not refer to neural networks, but a classifier that uses
neural responses. The three classification algorithms were: (1)
hierarchical discriminant component analysis (HDCA; Gerson
et al., 2006), which consists of a two-layer ensemble method that
uses linear discriminant classifiers to differentiate targets from
non-targets based, first, on the spatial and then on the temporal
distribution of neural activities; (2) XDAWN, which uses an
unsupervised method to estimate spatial filters that enhance
the P300 evoked potential by maximizing the signal to signal
plus noise ratio (Rivet et al., 2009; Cecotti et al., 2011). It then
uses a Bayesian Linear Discriminant Analysis (XD+BLDA) as
the classifier; and (3) Common Spatial Patterns (CSP), which
is based on a spatial filtering method that identifies the linear
combinations of the neural signals which maximize the variance
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FIGURE 2 | Flowchart of the Human-Machine Autonomous System.

between the target and non-target responses (Ramoser et al.,
2000), which were then classified using BLDA. The behavioral
classifier (BTN) was constructed based on the RT between the
image onset and button press.

Machine Knowledge-Based System
The machine knowledge-based system used in this study was
based on a semi-automated TAG system (Wang and Chang,
2008), which estimates the posterior probability that a specific
image contains a target object based on a limited number of
labeled bounding boxes drawn around target and non-target
objects. Because each of the five object classes (further details are
available in Section Rapid Serial Visual Presentation Paradigm)
was designated as the target for at least one block of trials
during the RSVP task, one classifier was trained for each image
class (object class). The feature vectors consisted of dense scale-
invariant feature transform (SIFT) features (Lowe, 1999; Bosch
et al., 2006) extracted from each image and then clustered
and quantified using a codebook in a “bag-of-words” approach
(Csurka et al., 2004). Potential bounding boxes in the unlabeled
images were identified using “objectness” detectors, which found
25 boxes in each image with the greatest probability of containing
a well-defined object (Alexe et al., 2012), resulting in a target
probability for each bounding box in each image. The largest
target probability of any bounding box in a given image became
the computer vision (CV) score for that image.

Both human and machine knowledge systems yielded a
final score between 0 and 1 for each image. A score closer
to 1 indicated that the image was likely to contain a target
object, while a score closer to 0 indicated a non-target image.
Because the score was not a binary value, a threshold was used
to divide the continuous values into the two categories. To
identify an appropriate threshold for discriminating targets from

non-targets, output scores were generated for two independent
datasets. The training set was used to find the threshold value that
maximized the difference between true positive and false positive
rates using the Receiver Operating Characteristic (ROC) curve.
Then, the testing set used this threshold to make the final binary
decision.

Fuzzy Decision-Making Fuser
To efficiently integrate decisions/classifier outputs from different
human and machine agents, we propose to use an FDMF to
model and analyze the HMA system with multiple inputs and
outputs. The FDMF framework is shown in Figure 3. The FDMF
kernel is established based on D–S theory, which provides a
mechanism for representing and processing uncertain, imprecise
and incomplete information from human, and machine agents
(Liu et al., 2017). Furthermore, the final decision is made using
Dempster’s rule of combination (Dempster, 1967; Shafer, 1976)
to integrate the information/evidence from different sources.
The FDMF utilizes a novel compound model that combines
generative-type and discriminative-type approaches to determine
basic probability assignments (BPAs). Unlike most other
methods, the proposed method applies a plausible mathematical
structure to determine the weights of evidences. In addition,
an intuitionistic belief assignment is employed to capture
uncertainties between classes, which can directly represent
uncertainties and imprecision during the classification process.
Generative-type BPAs are often associated with probability
distributions, fuzzy membership or possibility functions to
address recognition problems. In the proposed method, the
generative-type BPA of an incoming datum to each class is
assigned based on a fuzzy Naïve Bayes approach (Tang et al.,
2002) using the degree of fuzzy membership to each category.
In contrast, discriminative-type BPAs are built on the concept of
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FIGURE 3 | Framework of the Fuzzy Decision-Making Fuser.

similarities of a training pattern to class-representative vectors or
vectors representing class boundaries. These similarities are often
referred to as distances, specificity, or consistency. The nearest
mean classification (NMC; Veenman and Reinders, 2005) rule
is employed to determine discriminative-type BPA in this study.
We utilized the distance of a test data point from the nearest class
mean to define the discriminative-type BPA.

First, we consider assignment of generative type BPA on
singletons. LetXi, i = 1. . .p be p independent variables (features),
and let each object, X, be represented by a p-dimensional feature
vector. Let Y be the class label associated with X; Y ∈ C =

{C1,C2, . . .,CN}. To determine a generative-type BPA, the fuzzy
c-means clustering algorithm is used to find a set of c clusters that
results in an appropriate fuzzy partition of the domain of each
variable. Consequently, the class conditional probability to class
Ci decided by the fuzzy Naïve Bayes approach (Tang et al., 2002)
is assigned as the basic probability that is used in the architecture
of D–S theory:

m (Ci) = µCi (x). (1)

We emphasize here that, although we are calling the assignment
in Equation (1) a BPA, the result may not be a valid BPA because
the sum of assignments might not be equal to 1 as demanded by
D–S theory. Later, we will use a normalization scheme to define a
valid BPA.

To assign the discriminative-type basic probability on
singletons, the centroid vectors of all classes can be calculated
and denoted by {v1, v2, . . . , vN}. An incoming sample may then
be classified according to the minimum Euclidean distance from
the class centroids.

The square of the Euclidean distance is computed by

d
(

xs,Vi

)

= (xs−Vi)
T(xs−Vi). (2)

In the D–S formalism, the mass function m(.) can be defined
using an exponential function over the Euclidean distance as
follows:

m (Ci) = e−d(xs ,Vi). (3)

However, in the present investigation, although we use the same
principle, we define BPAs using each attribute separately. We
do so because we want to exploit class-specific discriminative
properties of different attributes, which is lost if we use distance
between vectors to define BPAs.

Next, we consider the assignment of mass to compound
hypothesis that focuses on sets with cardinality more than one.
Let us denote 2 as the frame of discernment (Dempster, 1967;
Shafer, 1976):

2 =
{

Target,NonTarget
}

. (4)

The focal elements of the power set of the frame of discernment,
22, are denoted by

� =
{{

Target
}

,
{

NonTarget
}

,
{

Target,NonTarget
}

, (5)

where the compound element {Target, NonTarget} is an
uncertain hypothesis in the D–S formalism.

Unlike previous studies (Denoeux, 1995, 2000; Pal and Ghosh,
2001), which used the complementary concept to determine
BPAs for compound hypotheses, this study proposes a rational
way to define the center of the Region of Uncertainty (ROU)
based on the threshold value that maximizes the difference
between the true positive and false positive rates in each
classifier, and uses that threshold to assign mass to focal sets
with cardinality more than one. That is, clearly, the samples
that are closer to the center of the ROU will be difficult to
discriminate because they possess properties of two different
classes (e.g., Target and Non-Target) simultaneously. Specifically,
samples falling in the ROU are likely to result in classification
errors in the recognition task. Thus, it is natural to represent
the ROU by the compound hypothesis {Target, NonTarget}. The
threshold value that maximizes the difference between the true
positive and false positive rates in each classifier is exploited as
the centroid of the compound hypotheses {Target, NonTarget}.

For each decision agent, fuzzy membership functions
{µ{Target},µ{NonTarget}} are obtained to represent the degree of
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membership of each object to different classes when represented
by independent individual attributes. Given an incoming sample,
for feature x, the calculated membership-value using the Fuzzy
Naïve Bayes Approach (recalling Equation 1) is

m
g
x ({Ci}) = µ{Ci} (x) , (6)

where Ci ∈
{

Target, NonTarget
}

.
Because with a compound hypothesis, {Target, NonTarget},

an object may belong to either class Target or class NonTarget
(but it possesses properties of both Target and Non-Target),
a fuzzy AND operator is used to assign the mass associated
with {Target, NonTarget}. Thus, the generative basic probabilities
of different hypotheses calculated by the fuzzy Naïve Bayes
approach are defined as follows:

m
g
x ({Ci}) = µ{Ci} (x)

m
g
x

({

Target, NonTarget
}})

= µ{Target, NonTarget} (x)

= µ{Target} (x) ∧ µ{NonTarget} (x) .

(7)

Again, we note thatm
g
x as calculated by Equation (7) may not lead

to a valid BPA without proper normalization. In Equation (7),
one can use any t-norm for∧ (Dubois and Prade, 1985); however,
in this study, we use minimum as the t-norm.

Next, the component wise Euclidean distance between the
incoming sample and the centroid vector {v{Target}, v{NonTarget}}

of each class is utilized to determine the discriminative basic
probability according to the NMC rule. Then, we use the
ROU as the support for the compound hypothesis, and define
the crossover point v{Target, NonTarget} for each attribute as the

centroid to compute the mass for the compound hypothesis,
where v{Target, NonTarget} lies in the interval [v{Target}, v{NonTarget}]

—this crossover point has the maximum uncertainty.
One possible way to define the discriminative BPAs is to use

an exponential function of distances from the NMC as follows:

md
x ({Ci}) = k1e

−k2d(x,Vi); k1, k2 > 0

md
x

({

Target, NonTarget
})

= k1e
−k2d(x,v{Target, NonTarget}). (8)

Note that, Equation (8) defines the discriminative type BPA
for an attribute, and hence x is the value of an attribute (say
the kth attribute) and Vi is the kth component of the ith
centroid representing the ith class. For simplicity, in this study
we have used k1 = k2 = 1. Furthermore, we use a weighted
regulatory architecture to integrate discriminative and generative
types of evidence (Liu et al., 2016). The generative-type BPAs,
m

g
x ({·}), generated by the fuzzy Naïve Bayes approach and the

discriminative-type BPAs, md
x ({·}), calculated by the NMC rule

are then integrated as follows:

φx({·}) = m
g
x({·})

α
md

x({·})
β
, (9)

where 0 ≤ α, β ≤ 1 are regulatory parameters that adaptively
determine the importance of the two types of evidence. The

weighted regulatory mechanism enables us to use the training
data to search for the appropriate weights for different sources
of evidence. The optimal values of the regulatory parameters are
found using grid search by minimizing the training error. Note
that m

g
x and md

x are not BPAs per se because the sum of the basic
assignments may not be equal to one. However, in the combined
BPA mentioned below we enforce this condition.

The compound BPA for feature x,mx({·}) is defined as follows:

mx ({Ci}) =
φx ({Ci})

L
=

(µ{Ci}(x))
α · (e−d(x,v{Ci}))

β

L

mx

({

Target, NonTarget
})

=
φx

({

Target, NonTarget
})

L

=

(µ{Target, NonTarget}(x))
α·

(e−d(x,v{Target, NonTarget}))
β

L
(10)

where L is a normalizing factor to ensure that Equation (10) is a
valid BPA.

L =
∑N

i=1
φx ({Ci}) +

∑N

i=1

∑N

j>i
φx

({

Ci,Cj

})

(11)

In the present investigation, N = 2, and C1 = Target and C2 =

Non-Target. For each attribute (here each classifier/agent),
using Equations (9)–(11), we get one compound BPA.
These compound BPAs generated from the different decision
agents/classifiers (attributes) are then combined to get an overall
BPA using Dempster’s rule of combination (Shafer, 1976). Letm1

andm2 be two items of evidence introduced by two independent
sources. Dempster’s rule of combination (Dempster, 1967;
Shafer, 1976), which is denoted as m = m1 ⊕ m2 within the
framework of evidence theory, integrates the two BPAs, m1 and
m2, to yield a combined BPA as follows:

m1 ⊕m2(A) =
1

1− κ

∑

B∩C=A
m1(B)m2(C) (12)

κ =
∑

B∩C=φ
m1(B)m2(C), (13)

where allA,B and C ∈ Ω ,A 6= φ,m1⊕m2 (φ) = 0. Here, κ is the
degree of conflict, called the conflict coefficient, between m1 and
m2, and it is calculated by the sum of the products m1(B)m2(C)
for all focal elements B in m1 and C in m2 with B ∩ C = φ. The
larger the value of κ is, the more the two sources conflict. When
κ = 1, it implies that these two pieces of evidence are in complete
logical contradiction. Here κ also functions as a normalization
constant to let the joint BPA observe the property

∑

A∈� m (A) =

1 in D–S theory. Dempster’s rule of combination is associative
and commutative; hence, the overall BPA resulting from the
combination of all decision agents/classifiers is defined as

mtotal = m1 ⊕m2 ⊕ . . . ⊕mj, (14)
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where j is the total number of classifiers and mtotal aggregates
information from all the individual sources and represents the
aggregated mass function after the D–S fusion process.

After combining all the BPAs, the overall BPA is transformed
into pignistic probability that focuses on singletons to make a
decision.

ppig ({a}) =
∑

a∈B

m (B)

|B|
∀a ∈ � (15)

where |B| is the number of singleton elements in set B. The
hypothesis (the class) with the maximum pignistic probability is
chosen as the predicted class of the sample in the test data.

The proposed method quantifies evidence from each classifier
and assigns basic probabilities to both single and compound
hypotheses. Our approach uses the ROU to define a compound
hypothesis, which helps to avoid overestimation of uncertainty
compared to the complementary approach. In addition, to exploit
the characteristics associated with different sources, we employ a
weighted regulatory architecture to assign mass values to single
and compound hypotheses. We use a training mechanism to
find the appropriate weights (i.e., α and β) for different types
of evidences. To further strengthen the FDMF, we can use
different classification approaches to determine BPAs. However,
the appropriate selection of classification approaches is not the
main focus of this study.

EXPERIMENT

Myriad data can be acquired from many different sensors, and
each sensor has its own limitations and associated uncertainty.
Therefore, fused information from such sources/classifiers can
be expected to yield better decisions by reducing the overall
uncertainty. This study conducted an RSVP experiment to
demonstrate how the HMA system integrates an RSVP BCI with
computer vision in an image-labeling domain and to examine
how the FDMF can benefit joint human-autonomy performance.
Because different levels of uncertainty are embedded within
disparate human and machine knowledge, we expect that the
FDMF would be able to exploit these uncertainties to obtain
superior decisions.

Rapid Serial Visual Presentation Paradigm
During the RSVP triage task, participants were presented with
a continuous sequence of natural scenes. The RSVP paradigm
is shown in Figure 4. The RSVP task consisted of the serial
presentation, on a computer monitor, of 512 × 662-pixel
color photographs of indoor and outdoor scenes at a rate of
5 Hz. Therefore, the time interval between two consecutive
photographs is 200 ms. For each single photograph, the EEG
epoch was segmented lasting from 500 to 1,000 ms to extract
characteristics of the related brain activities. The entire sequence
of images was presented in six blocks of 3,000 images each; each
presentation block lasted 10 min. The scenes contained only
inanimate objects, and the images were manually cropped. Five
classes of objects could be designated as targets: stairs, containers,
posters, chairs, and doors. Some images contained designated
target objects; others did not. The order of images containing

target classes was randomly selected for each participant during
blocks 1–5. However, block 6 always used the same target object
as block 1. Moreover, because some images contained multiple
targets (e.g., chair and container) they were repeatedly presented
in subsequent blocks; however, these were considered as different
stimuli depending on the target context of the current block.
Because no blocks have multiple target classes, duplicate target
images were never shown together in the same block. Prior to the
presentation of each block of images, participants were informed
about objects class that comprised the targets. Participants were
required to press a button when they saw a target object in the
RSVP stream.

Participants
Seventeen healthy adults participated in the RSVP task,
in which they attempted to identify sparse target images
within a continuous stream of images presented at 5 Hz.
All the participants were recruited through an online
advertisement. According to self-reports, no subject had a
history of neurological, psychiatric or addictive disorders, and no
subject had taken anti-psychotic or other relevant psychoactive
drugs prior to participation. All the participants were required to
read and sign an informed consent form prior to participation,
and all experimental procedures were in compliance with federal
and Army regulations (U.S. Department of the Army, 1990; U.S.
Department of Defense Office of the Secretary of Defense, 1999).
The Army Research Laboratory Institutional Review Board,
Maryland, USA, approved the study. The investigators adhered
to Army policies for the protection of human subjects (U.S.
Department of the Army, 1990). A more detailed description
of the experimental protocols and the results are available in
Touryan et al. (2013, 2014). To ensure proper evaluations of
their performances, the participants attended a pre-test session
to verify that none were afflicted with any sickness caused by the
RSVP experiment.

Cross-Validation and Assessment
The empirical gains for this FDMF were established and cross-
validated using standard machine learning approaches described
below. The human responses included the RT of the button press
and the output of the three EEG classifiers. The CV responses
for each target were generated by the CV trained on that target.
For the simulations, all the classifiers were trained and tested on
independent data using a six-fold cross-validation scheme. The
data were separated into six equally sized blocks (corresponding
to the six blocks of RSVP presented to the participant), and these
blocks were used in six-fold cross-validation (i.e., five blocks of
the data are selected as training dataset, while the remaining
block serves as test data). This process was repeated six times,
and the average of the six runs was then used for comparisons.
Note that, although these particular simulations involved post-
hoc human-autonomy decision integration, all the methods were
amenable to real-time implementation.

Performance was quantified using the area (Az) under the
ROC curve, which characterizes the performance of a binary
classifier as a function of the ratio of the true positive rate to
the false positive rate. A one-way ANOVA showed a significant
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FIGURE 4 | The Rapid Serial Visual Presentation (RSVP) task.

TABLE 1 | Area (Az) under the receiver operating characteristic (ROC) curve of comparative models.

Human Machine Fusion method

HDCA XD+BLDA CSP+BLDA BTN TAG LR FI WAS FDMF

Mean 0.645 0.711 0.616 0.640 0.828 0.844 0.855 0.860 0.896

Std 0.050 0.045 0.049 0.066 0.020 0.020 0.015 0.020 0.024

StatisticalTest + + + + + + + + N/A

H, HDCA; X, XD+BLDA; C, CSP+BLDA.

The symbol + refers to a situation in which the average accuracy of the proposed FDMF is significantly different compared to a comparative model suggested by post-hoc comparisons

(Paired t-test, p < 0.05). Bold value indicates the best performance.

difference in the performance among different fusion models.
Subsequent paired t-tests, corrected for multiple comparisons
using the false discovery rate (FDR), indicated a significantly
improved performance of FDMF compared with the existing
fusion models that we have considered.

RESULTS

In this study, the efficacy of the proposed FDMF in human-
machine information fusion is demonstrated in an RSVP
paradigm, in which targets are recognized from a continuous
sequence of natural scenes. To establish multi-view estimation,
the simultaneously recorded EEG and behavioral signals are used
to build an ensemble of three neural classification algorithms
(i.e., HDCA, XD+BLDA, and CSP+BLDA) and a behavioral
classifier (i.e., BTN). Furthermore, the video streams are also
simultaneously analyzed using the CV technology (i.e., TAG)
for target detection. As shown in Figure 2, the proposed HMA
system in this study exploits a two-stage hierarchical mechanism
for information integration, including classifier fusion andmulti-
modality (human and machine) knowledge fusion. For each
modality collected in this study, different classifiers are designed,
and then, FDMF is used to aggregate the evidence from these

classifiers. The FDMF aims to leverage recent advances in human
sensing to dynamically integrate human and autonomous agents
based on their individual characteristics.

Table 1 depicts the classification results of different
comparative models obtained by six-fold cross-validation
across 17 subjects; the best performance is shown in bold
face. The average Azs of the three neural classifiers (HDCA,
XD+BLDA, and CSP+BLDA) using EEG signals alone are 0.645
± 0.050, 0.711 ± 0.045, and 0.616 ± 0.049, respectively, and
the average Az of the behavioral classifier (BTN) is 0.640 ±

0.066. In contrast, the classification performance of the TAG
classifier is 0.828 ± 0.020. Further, the results of different fusion
strategies using the FDMF are shown in Table 2. The average
performance from integrating all the neural classifiers is 0.729,
and the average performance of human decision based on the
neural and behavioral classifiers is 0.769. However, the overall
performance of the HMA system based on the human and
machine knowledge achieves 0.8872. This result demonstrates
that the HMA system achieves the highest Az compared with the
other single classifiers before the fusion stage (Table 2). The best
result achieved is an Az of 0.896 while using the combination
of the best neural classifier (XD+BLDA), behavioral classifier
(BTN), and CV algorithm (TAG) - this combination can improve
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TABLE 2 | Different fusion strategies using the fuzzy decision-making fuser

(FDMF).

Combination Az

Type 1 Human (H+X+C) 0.729

Type 2 Human (H+X+C) Behavior (BTN) 0.769

Type 3 Human (H+X+C) Machine (TAG) 0.859

Type 4 Behavior (BTN) Machine (TAG) 0.890

Type 5 Human (H+X+C) Behavior (BTN) Machine (TAG) 0.887

Type 6 1st Human (X) Behavior (BTN) Machine (TAG) 0.896

Type 7 2nd Human (H) Behavior (BTN) Machine (TAG) 0.889

Type 8 3rd Human (C) Behavior (BTN) Machine (TAG) 0.889

In column 2, H = HDCA, X = XD+BLDA, and C = CSP+BLDA. Bold value indicates the

best performance.

the performance of the HMA system. These results suggest that
the use of the proposed FDMF for integration of human and
machine knowledge can effectively enhance the performance of
HMA systems during RSVP tasks.

This study also compared the FDMF with existing multi-
modal information fusion approaches: linear regression (LR),
fuzzy integral (FI), and weighted averages (WAS). As shown
in Table 1, the FDMF outperforms these other methods. To
determine whether the improvement resulting from employing
FDMF was statistically significant, the experimental results were
subjected to analysis of variance (paired t-tests and FDR-adjusted
p < 0.05) for each comparative model. The results of the post-hoc
paired t-tests are shown in Table 1. The models marked by a plus
(“+”) sign showed significant differences from the performance
achieved by the FDMF. These results show that all the compared
models are significantly different (all p < 0.05), indicating that
FDMF is the best-performing fusion approach in this study.

CONCLUSION

Developing novel techniques to combine multi-modal
information to produce highly accurate classification is vital.
This study proposes an HMA system that can simultaneously
aggregate human and machine knowledge to identify target
objects in an RSVP task. To better integrate the human and
machine decisions and to deal with the uncertainty associated
with decisions by each agent, this study has used the FDMF,
which is based on D–S theory, to provide a natural adaptive
framework for evidence-based inference. The FDMF exploits a
novel compound model to determine BPA that combines both
generative-type and discriminative-type approaches. Unlike

most other methods, the proposed method applies a plausible
mathematical structure to determine evidence weights. In
addition, a novel belief assignment that can directly represent
uncertainties and imprecision during the classification process
is employed to capture uncertainties between classes. The
results of these experiments show that the proposed fusion
model produces reliable and robust decisions compared to
those produced by single agents, i.e., human or machine agents,
before the fusion stage. The major benefit gained from the

FDMF is that the system can furnish information of high quality
concerning, possibly, certain aspects of the environment that
cannot be sensed directly by any individual sensor operating
independently. The performance of the proposed HMA system
indicates that the FDMF model for integrating human and
machine knowledge is both reasonable and effective.

The main limitation of our system is that it is computationally
a bit more expensive than use of simple aggregation techniques
like voting or individual classifier. Moreover, in general, BPA
can (and sometimes need to) be assigned to focal elements
with cardinality more than two. But this will increase the
computational complexity significantly. Another weakness of our
study is that here we did not tune the parameters (mean and
spread) of the membership functions. The system performance
can further be improved if we tune them, although the associated
optimization model would not be simple. We keep this for our
future investigation.
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