CONSTRUCTIVE CONFUSION OR PARADIGM PROLIFERATION: COMPETING EXPLANATIONS FOR LOW CONSTRUCTION PRODUCTIVITY GROWTH

Gerard de Valence
University of Technology Sydney, Australia
g.devalence@uts.edu.au

The objective of this paper is to develop a system to categorise the explanations found in previous research and thus improve our understanding of the analysis of construction productivity. Despite the efforts made by governments, industry organisations and firms in many countries, the rate of growth in construction productivity as measured by national statistical agencies has consistently been low compared to many other industries. Research into explanations for low construction productivity growth has found a wide range of factors and possible causes that may be at work, and there is no agreement on the most important of these. Explanations include: the methodology of productivity analysis and measurement; regional and sectoral effects on industry productivity; the project-based nature of the industry and the role of project management; procurement and delivery systems and the effectiveness of construction industry policy and intervention; and the contribution of research and development and innovation to construction industry productivity growth. By categorising this research the differences, commonalities and linking factors can be identified and the various analytical paradigms evaluated. The competing explanations of the causes of low construction productivity growth are then assessed in terms of their completeness (whole of industry or part), applicability (time, place and circumstance) and generality (a data artefact or not).

KEYWORDS: construction productivity, explanatory categories, paradigms.

INTRODUCTION

The rate of growth of productivity in Australia, the UK, US and other major economies in the OECD become an issue in the late 1960s, when declining output per hour worked and output per person employed became the focus of a large research program that sought to interpret and analyse the causes of what became known as the productivity slowdown. At this time the construction industry's low productivity growth attracted attention. The rate of growth of productivity of the construction industry has been poor since the 1960s, even by comparison with a long-run overall industry average in the order of two to three percent a year.

Despite the efforts made by governments, industry organisations and firms over the past few decades, the rate of measured growth of construction productivity has remained low compared to many other industries. The answers typically offered in explanation of construction productivity cover a wide range of factors and possible causes that may be at work. The approach taken in this paper is to review previous research across five areas that have been suggested as important influences on construction productivity.
Industry, Projects and Institutions

The different aspects of construction productivity measurement and performance reviewed above apply at three distinct levels. Which of these three levels is the most appropriate for productivity analysis of construction will depend on the purpose of the analysis. At the industry level the focus is on the measurement of output within the national accounting framework, so the paper firstly looks at the measurement of rates of productivity growth. This is a large topic and incorporates a range of issues relevant to the topics that follow.

The second topic is the heterogeneous nature of construction products, both by type and location. At the project level, to a great extent each project in each of its categories is designed and built to serve a special need. Although specific design skills are needed over and over again, the outputs differ in size, configuration, location and complexity. Such uniqueness impacts substantially on construction productivity and the construction process. Thirdly, the site-based methods of project management used are discussed. As a subset of these factors the work sampling studies carried out on specific tasks, processes or teams should be included.

Finally, there is also another set of factors that can be called institutional, and these include procurement methods, R&D and innovation, technological progress, regulation and the legal framework. The paper collects the limited research on the effects of location and the project based nature of the industry. The last two topics addressed are procurement and delivery systems and construction industry policy, and R&D and innovation.

METHODOLOGY OF PRODUCTIVITY MEASUREMENT

The measured rate of construction productivity growth may be low because of the measurement of output as value added, the total value of goods and services produced after deducting the cost of goods and services used in the process of production, adjusted for movements in prices and changes in quality. The construction deflator may not fully take these movements into account, and therefore real output is underestimated. Also, the significant role of changes in the quality of construction has not, so far, been rigorously measured.

Output of the building and construction industry is estimated by deflating current price figures by input price indexes. A number of researchers have criticized the use of input price indexes for deflating construction expenditure, for being unrepresentative of the inputs priced and geographical coverage, and being based on inaccurate weights. The Stigler Report (1961: 29) recommended a significant increase in research on construction deflation, and suggested a residential deflator based on the price per square foot of a range of categories of new homes. This led to the adoption by the BEA in 1968 of a new, hedonic price index for housing.

A number of alternative deflator have been developed. Allen (1985) used a price per square foot index for deflating non-residential building, assuming that this is a good proxy for output. According to Allen’s (1985) estimates about half the decline in construction productivity during the 1960s and 1970s was due to the overdeflation of construction output. Cassimatis found that price indexes cannot provide adequate deflators for construction: "the feeling persists that construction productivity is greater than the measurements show ..."
largely due to the fact that there are no adequate price indexes that can be used as deflators of the gross product” (Cassimatis 1969: 79-80).

| Table 1. Representative Papers: Methodology of productivity analysis and measurement |
|---------------------------------|---|
| Stigler Report (1961) | Recommended a significant increase in research on construction deflation |
| Cassimatis (1969) | Argued that price indexes for construction based on unit numbers at market prices cannot provide adequate deflators for construction |
| Stokes (1981) | Found no conclusive evidence that real output was understated |
| Allen (1985) | Used a price per square foot index for deflating non-residential building |
| Bowlby and Schriver (1988) | Developed a hedonic price index for construction as an alternative to the existing US deflators |
| Pieper (1990) | Also argued that deflation by input price indexes does not produce suitable estimates of output at constant prices |
| Chau and Lai (1994) | Measured the relative labour productivity of construction from Hong Kong national accounts data |
| Lowe (1995) | Describes the estimation indexes of Statistics Canada |
| Allmon et al. (2000) | Means’s cost manuals were used to trace benchmark values for construction tasks |
| Goodrum, H aas, a nd Glover (2002) | Developed an alternative productivity measure based on individual work activities |
| Ive et al. (2004) | International comparison that addressed statistical data issues on definition and labour force numbers |
| Briscoe (2006) | Identifies a range of problems with reliable and accurate data collection and statistical analysis |
| Crawford a nd Vogel (2006) | Data constraints limit the ability to identify drivers of construction productivity |
| Yu and Ive (2008) | Finds that British indices measure the price of over-valued labour in traditional building trades but almost completely ignore mechanical and electrical services |

Pieper (1990) also argued that deflation by input price indexes does not produce suitable estimates of output at constant prices and, given the extensive use of input price indexes as deflators in estimating the constant price of output for the construction industry, productivity measurement for this industry is problematic, to say the least. Pieper concludes that, for the US, “evidence indicates an overdeflation of construction of at least 0.5% per year between 1963 and 1982.”

Chau and Lai (1994) developed a system for measuring the relative labour productivity of the Hong Kong construction industry. Their approach used a method of measuring the relative labour productivity of the industry, from national accounts data, and then derives the trend of construction labour productivity. This discussion of relative rates of growth of labour productivity uses an implicit price deflator for net output of the construction industry obtained through double deflation, but does not discuss the nature of the price indexes used or their applicability. The price indexes are based on a construction output price index and a material cost index using the methodology developed by Chau and Walker (1988).

Lowe (1995) describes the use of estimation indexes by Statistics Canada, using surveys sent to subcontractors. Around 100 different items are priced for five building types and each of
five elements has its own index. A recent analysis of British building price indices by Yu and Ive (2008) found that these indices measure the price movement of the traditional building trades but almost completely ignore mechanical and electrical services.

Cannon (1994) questioned the accuracy of contractor statistics and Briscoe (2006) asked “How useful and reliable are construction statistics?” These papers identify a range of problems with data collection and analysis, including defining the scope and coverage of the industry, measuring outputs across different types of activity; identifying construction firms; measuring capital formation and capital stock, and inconsistent employment statistics. Crawford and Vogel (2006) also draw attention to data limitations for productivity analysis.

REGIONAL AND SECTORAL EFFECTS ON IPRODUCTIVITY

Other hypotheses for the decline in construction productivity are a decline in the capital-labour ratio (Blake et al. 2004), changes in the age-sex composition of the labour force (Creameans 1981), a shift towards non-union construction (Allen 1984), an increase in government regulation (Tucker 1986) or cyclical and business cycle effects. Project characteristics such as the increased size and complexity of projects, resulting communication difficulties, and fast-tracking projects where design and construction phases overlap also affect coordination. There have been a few papers that address the effects of these on productivity.

Creameans (1981) discussed a number of hypotheses that had been proposed to explain the significant decline in construction industry labour productivity in the 1970's. Only one of the hypotheses, the increased proportion of younger, less experienced workers, was supported by the available data. Bowby and Schriver's (1986) analysis of US productivity data indicated seven compositional changes in building, and they suggested that these would account for much of the productivity slowdown.

<table>
<thead>
<tr>
<th>Creameans (1981)</th>
<th>Found younger, less experienced workers the main cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowby and Schriver (1986)</td>
<td>Identified seven compositional changes in building, and these account for much of the productivity slowdown</td>
</tr>
<tr>
<td>Tucker (1988)</td>
<td>The increased size and complexity of construction projects</td>
</tr>
<tr>
<td>Ivie et al. (2004)</td>
<td>The output structure of a country’s construction industry will influence average labour productivity</td>
</tr>
<tr>
<td>Blake et al. (2004)</td>
<td>UK construction has lower capital per worker than France, Germany, and the US</td>
</tr>
</tbody>
</table>

PROJECT-BASED NATURE OF THE INDUSTRY AND THE ROLE OF PROJECT MANAGEMENT

A large number of papers have recommended that construction productivity could be improved through the use of flexible organisation structures, favourable union attitudes, higher workmen motivation, and improved overtime and change order strategies. Most of these surveys found cost control, scheduling, design practices, labour training, and quality control are the functions that are consistently seen as having room for improvement. Often
the fragmented nature of the industry is seen a hindrance to improving productivity (Ganesan 1984). However, Chau and Lai (1994) suggest that productive efficiency is increased by the division of labour.

Borcherding (1976) identified the factors having an adverse effect on construction productivity as union attitudes, workman selection practices and motivation, inflexible bureaucratic organisation structures, overtime; and change orders. Using these factors, Herbsman and Ellis (1990) developed a statistical model of the quantitative relationships between influence factors and productivity rates.

Table 3. Representative Papers: Project-based nature of the industry and the role of project management

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borcherding and Oglesby (1974)</td>
<td>Concluded well organised construction jobs which permit workers to be productive lead directly to job satisfaction</td>
</tr>
<tr>
<td>Borcherding (1976)</td>
<td>Identified six factors having adverse effects on construction productivity</td>
</tr>
<tr>
<td>Kellog et al. (1981)</td>
<td>Argued that the fragmented nature of the industry impeded productivity growth</td>
</tr>
<tr>
<td>Ganesan (1984)</td>
<td>Also argued fragmentation affects productivity</td>
</tr>
<tr>
<td>Hague (1985)</td>
<td>Found financial incentives and any other method for encouraging productivity has had arguments for and against</td>
</tr>
<tr>
<td>Koehn and Caplan (1987)</td>
<td>Productivity improvement efforts should be concentrated on planning, scheduling, supervision, and labour</td>
</tr>
<tr>
<td>Briscoe (1988)</td>
<td>The quality of construction management is an important factor which helps to explain low productivity</td>
</tr>
<tr>
<td>McFllen and Maloney (1988)</td>
<td>Found contractors did little to encourage good performance, so workers reported little incentive to be highly productive</td>
</tr>
<tr>
<td>Herbsman and Ellis (1990)</td>
<td>Developed of a statistical model of quantitative relationships between influence factors and productivity rates</td>
</tr>
<tr>
<td>Chau and Lai (1994)</td>
<td>Argue the fragmented nature of the industry is often seen a hindrance to improving productivity</td>
</tr>
<tr>
<td>Dai, Goodrum, and Maloney (2007)</td>
<td>Foremen reported project management factors having more impact on their productivity, and craft workers reported factors related to construction materials having more impact</td>
</tr>
</tbody>
</table>

Koehn and Brown (1986) argued that construction productivity is affected by a wider range of variables which they divided into the six areas of management, labour, government, contracts, owner characteristics and financing. Koehn and Caplan (1987) but focused on small to medium size construction firms rather than large construction firms. The study concluded that productivity improvement efforts should be concentrated in planning, scheduling, site and labour management functions. Jenkins and Laufer (1982) also focus on the management issues, and discuss them in the context of motivation of workers. They suggested that while motivation does not directly influence the rate of working, motivation directly impacts upon the percentage of working time spent productively.

Arditi and Mochtar’s surveys of the top 400 US contractors in 1979, 1983 and 1993 identified areas with potential for productivity improvement. The functions needing more improvement in 1993 compared with the previous survey were prefabrication, new materials, value engineering, specifications, labour availability, labour training, and quality control, whereas those that were identified as needing less improvement were field inspection and labour contract agreements (Arditi and Mochtar 2000).
Allmon et al. (2000) presented an approach to long-term productivity trends in the US construction industry over the past 25–30 years. Means's cost manuals (the main US source of estimating data) were used to trace the values for these tasks, and changes in these values were taken as productivity trends. Unit labour costs in constant dollars and daily output factors were compared over decades for each task. Direct work rate data from 72 projects in Austin, Texas over the last 25 years were also examined. The combined data indicated that productivity had increased in the 1980s and 1990s. Depressed real wages and technological advances appear to be the two biggest reasons for this increase. Their data also indicated that management practices were not a leading contributor to construction productivity changes over time.

PROCUREMENT SYSTEMS AND THE EFFECTIVENESS OF CONSTRUCTION INDUSTRY POLICY AND INTERVENTION

Some researchers have and identified institutional factors responsible for construction productivity levels. Labour issues include organised labour, the competency of project participants, the tendency of site management to spend more time providing information and writing reports than actually managing the project, and the inadequacies of an educational system which produces graduates with excellent skills in analysis and design but with little knowledge of methods to turn designs into realities (Tucker 1986). Other institutional issues are the tendency of construction firms to become larger and more specialised, legal restrictions on the management of construction projects and the complex regulatory regimes the industry works under.

<table>
<thead>
<tr>
<th>Table 4. Representative Papers: Procurement and Delivery Systems and the Effectiveness of Construction Industry Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassimatis (1989)</td>
</tr>
<tr>
<td>Tucker (1986)</td>
</tr>
<tr>
<td>Sidwell (1987)</td>
</tr>
<tr>
<td>Cox and Townsend (1998)</td>
</tr>
<tr>
<td>Craig (2000)</td>
</tr>
</tbody>
</table>

The limitations of the traditional procurement method have contributed to the poor performance of the construction industry and have prompted the development of alternative procurement strategies designed to facilitate improvements in the way buildings and structures are delivered (Cox and Townsend 1998). Craig (2000) concludes that the traditional tendering process for building works does not encourage design innovation by tenderers, because tendering rules produce direct price competition for a specified product.
R&D, INNOVATION AND PRODUCTIVITY

The construction industry has not established an impressive track record in innovation or technical advancement. The main effort in industry development has been concentrated in procurement, planning, management and design improvements. Nevertheless, there have been some significant advances in construction technology over the last two decades in both the materials used and the application of new construction methods (Fairclough 2002).

Gann (2003: 554) cites Bowley (1960) as showing that construction is an adopter of innovations from other industries, rather than a source of innovation. Bowley’s work “shows that demand for new types of buildings is usually more important in stimulating radical technical and organizational innovation than the need to erect better and cheaper buildings to accommodate existing functions.” Cassimatis (1969) concluded his study with a chapter on institutional factors, because “once the contract is awarded, competitive forces do not always prevail” (Cassimatis 1969: 118). Institutional factors that affect the performance of the industry are its openness to innovation and capturing of economies of scale.

Koch and Meavenzadeh (1979) focused on the role of technology in highway construction, and found there had been substantial gains in both labour and capital productivity over the previous 50 years in the US. They concluded that future gains in efficiency can be expected to be less than the previous gains, so new means of accomplishing technological change in the construction industry are needed. Arditi (1985) conducted a study of large construction firms to determine potential areas for construction productivity improvement. One of the study’s conclusions was that more productive construction technology such as industrialised building processes are important in achieving higher levels of construction productivity.

Hobday (2000) and Gann and Salter (2000) argue that the construction industry can, and should be, more innovative. Many papers follow Tatum’s (1986) analysis of the industry in terms of advantages and constraints to innovation, and despite the Tatum model of construction innovation being two decades old it still captures many of the key features of the discussion raised by more recent efforts such as Reichstein et al. (2005), Fairclough (2002) or Slaughter (1998). Ivory (2005) suggested that client will not be prepared to pay for innovation.

Table 5. Representative Papers: Contribution of research and development and innovation

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosefield and Mills</td>
<td>Argue the rate of technological progress in the construction industry may be slow because buildings are heterogeneous.</td>
</tr>
<tr>
<td>Koch and Moavenzadeh</td>
<td>Focused on the role of technology in highway construction and concluded new means of accomplishing technological change are needed.</td>
</tr>
<tr>
<td>Arditi (1985)</td>
<td>Recommended areas that research should concentrate on.</td>
</tr>
<tr>
<td>Tatum (1986)</td>
<td>Construction has many features that favour innovation.</td>
</tr>
<tr>
<td>Gann (1997)</td>
<td>Discusses the role of government funded R&D.</td>
</tr>
<tr>
<td>Gann and Salter (2000)</td>
<td>Construction has the potential to be more innovative.</td>
</tr>
<tr>
<td>Hobday (2000)</td>
<td>Argues that the nature of construction projects and teams creates opportunities for innovation.</td>
</tr>
<tr>
<td>Ivory (2005)</td>
<td>Argued clients will avoid risk associated with innovation.</td>
</tr>
</tbody>
</table>
CONCLUSION

Construction productivity is an important topic, and an issue both for the industry and its clients. The rate of growth of productivity in the industry in OECD countries has lagged that of other industries for at least five decades, and the earliest studies that identified a problem date from the late 1960s in the US with Cassimatis’ (1969) analysis of labour productivity growth in construction between 1947 and 1967.

This paper has collected a wide range of previous research addressing a range of factors that could affect productivity. The bringing together of these different literatures on productivity analysis and measurement, project procurement and delivery systems, construction industry policy and intervention, and R&D and innovation allows a broader perspective on the construction industry’s productivity performance.

These competing explanations of the causes of low construction productivity growth can be assessed in three ways: their completeness (whole of industry or part); their applicability (time, place and circumstance); and their generality (a data artefact or not). Clearly, no single explanation is complete, because each one focuses on a specific issue. The diversity of products and fragmented nature of the production process makes this perhaps inevitable, however measurement issues are both prevalent and relevant across all sectors of the industry.

In terms of applicability, the breadth of management issues raised by researchers points to some possible serious problems with both the management of projects and management of workers. After several decades of development of project management techniques the average performance of projects does not appear to have improved greatly, with the more recent research finding similar problems as those found in the early work.

Lastly, it is possible that the R&D profile of the industry is as much an artefact of the data as a real problem. Construction is an industry that readily adopts research developments in other industries, the use of computers and the constant flow of new products from manufacturers supplying materials and equipment being good examples. R&D expenditure within the industry will not be very high in this case.

While this review of the construction productivity literature is not complete, because this is a very large field indeed, it has highlighted two key characteristics. The first is the importance of measurement and data to the research. More papers have been published on these issues than any other and they continue to be central to the discussion about the industry’s productivity performance. This belongs to a broader set of issues about the structure and use of price indexes in the national accounting framework, an area where construction economists might have an opportunity to make a contribution. Recently there has been a shift from the use of deflators and their effects on measured output (or more precisely the ratio of output to labour input) to concern over the boundaries of the production system and more accurate measurement of specific factors such as capital inputs adjusted for quality and employment adjusted for firm size.

The second is the diversity of other issues raised that are suggested as affecting productivity. Influences on productivity growth in the construction industry, apart from the nature of the product, can be traced to the nature of the methods used in delivering and managing the processes involved. Construction is a labour intensive industry in comparison with
manufacturing industries, but there has been a significant increase in the prefabricated component of construction, which could have been expected to lead to productivity growth. Also, construction methods have tended to become more capital intensive as the number of cranes and the variety of equipment and hand tools used has increased. However the productivity growth that one would expect to observe as a result of these trends has not occurred, according to measurements of productivity growth by the major national statistical agencies and reports like the UK studies by Iye et al. (2004) and Blake et al. (2004).

REFERENCES

CIB Joint International Symposium 2009

CONSTRUCTION FACING
WORLDWIDE CHALLENGES

Dubrovnik, September, 27-30
Introduction

This volume contains executive summaries of papers submitted to the CIB Joint International Symposium, Construction Facing Worldwide Challenges, held in Dubrovnik, Croatia, from September 27 to 29, 2009. The associated compact disk contains the full papers. This is the annual meeting of two CIB Commissions and one Task Group:

- W055 Building Economics
- W65 Organisation and management of construction
- TG65 Management of Small Construction Firms

The two commissions and the task group operate under the umbrella of International Council for Research and Innovation in Building and Construction (CIB). CIB was established in 1953 as an association whose objectives are to stimulate and facilitate international cooperation and information exchange between governmental research institutes in the building and construction sector, with an emphasis on those institutes engaged in technical fields of research. CIB has developed into a worldwide network of over 5000 experts from about 500 member organisations active in the research community, industry, and education, who cooperate and exchange information in over 50 CIB Commissions covering all fields in building and construction related research and innovation.

The symposium is organised by the Faculty of Civil Engineering at the University of Zagreb, and it is supported by several international associations: International Project Management Association (IPMA) and International Construction Project Management Association (ICPMA), Croatian Association for Construction Management (HUOG), and Croatian Association for Project Management (CAPM).

The volume contains twelve sections according to the themes covered at the symposium:

1. Education and Training
2. Construction Performance
3. Economic Aspects of Construction
4. Information and Knowledge Management
5. Human Resource Management and Culture
6. Sustainable Construction
7. Management of SMEs
8. Academic and Industrial Collaboration
9. Project Portfolio Management in Construction Sector
10. Management and Economics of Complex Projects
11. Project Management as a Facilitator of Business Success
12. Construction Project Management at All Levels

All the papers were reviewed by the International Scientific Committee and about 250 delegates attended the symposium.

We would like to thank all the authors for their contributions. Our deepest gratitude goes to the members of the Organising Committee, international members of the Scientific Committee, as well as supporting associations, sponsor companies, and the City Council of Dubrovnik who made this symposium possible.

Anita Cerić
Mladen Radujković
TABLE OF CONTENTS

CONSTRUCTION PERFORMANCE

CUSTOMER ATTRACTION IN A DESIGN-BUILD-FINANCE-MAINTAIN-OPERATE CONTRACT
Ruben Favió, Angela van Nordmennen, Hans Kleine and Ger Maas

EFFECTS OF PROCUREMENT ON PROJECT PERFORMANCE: SURVEY OF SWEDISH CONSTRUCTION CLIENTS
Per Erik Eriksson and Anders Vennstrom

SHAPING CONCEPTS, PRACTICES AND STRATEGIES: ARBITRATION AND EXPERT APPRAISALS ON DEFECTS
Kim Haugbølle and Marianne Forman

SIMULATION OF UNIQUE CONSTRUCTION PROCESSES - METHODS TO MODEL REALITY
Hans-Joachim Bargstaedt and Alliland, Karin

TOWER CRANE LOCATION ON SITE FOR BUILDING
Peter Makys

EVALUATION OF TURKISH CONSTRUCTION INDUSTRY THROUGH THE CHALLENGES AND GLOBALIZATION
Ilknur Akince and M. Emin Akince

IMPROVING PROCESSES DESIGN AND SELECTION FOR CONSTRUCTION OPERATIONS
Alfredo F. Serpell and Camila M. Tapia

MODELING THE INTERRELATIONSHIPS BETWEEN COMPETITIVENESS FACTORS AND INDEXES FOR CONSTRUCTION COMPANIES
Francisco Orozco and Alfredo Serpell

BALANCE SHEET ANALYSIS OF CONSOLIDATED BUILDING COMPANIES BEFORE THEIR INSOLVENCY
Cornelius Váth

FAILURES AND DEFECTS IN THE BUILDING PROCESS: APPLYING THE BOW – TIE APPROACH
Kirsten Jørgensen

A NEW FRAMEWORK FOR DETERMINING PRODUCTIVITY FACTORS IN CONSTRUCTION SITES
Shamil Naoum, Fereydoun Dejahang, Daniel Fong and David Jaggar

GLOBAL CRISIS: THE EFFECT IN THE MIDDLE EAST CONSTRUCTION SECTOR
Georges-Alexandre Demeoyer

DEVELOPING A MODEL TO EVALUATE PROJECT MANAGEMENT PERFORMANCE: CONTRACTOR COMPANY’S VIEWPOINT
Mohammad Ilbeigi and Gholamreza Heravi

DISCUSSION OF IC EFFICIENCY AND ORGANIZATIONAL PERFORMANCE IN CONSTRUCTION INDUSTRY
Josip Sertic and Ivica Zavrski

MODELING OF RISK FACTOR INFLUENCE ON CONSTRUCTION TIME OVERRUN BY APPLYING MULTIVARIANT REGRESSION ANALYSIS
Vahida Zujo and Dima Car-Pusic
RISK ASSESSMENT IN CONSTRUCTION INDUSTRY
Goran Cirovic and Simo Sudjic...158

OPTIMIZATION OF STEEL PLANE TRUSS MEMBERS CROSS SECTIONS WITH SIMULATED
ANNEALING METHOD
Snezana Mitrovic and Goran Cirovic..165

ORGANIZATION AND TECHNOLOGY DURING CONSTRUCTION OF CEMENT SILO
Dalibor Staba, Miroslav Blanda and Zlata Dolacek-Alduk..............................175

PROBLEMS IN LARGE SCALE PRECAST CONSTRUCTION PROJECTS
Vjeran Mlinaric and Zvonko Sigmund..182

ECONOMIC ASPECTS OF CONSTRUCTION

CONSTRUCTIVE CONFUSION OR PARADIGM PROLIFERATION; COMPETING
EXPLANATIONS FOR LOW CONSTRUCTION PRODUCTIVITY GROWTH
Gerard de Valence..189

GLOBALISATION IN CONSTRUCTION
Goran Runeson and Gerard de Valence..200

THE MECHANICS OF COLLUSION
Christian Brockmann...210

SOURCES OF CONSTRUCTION GROWTH IN SELECTED OECD COUNTRIES
Tullio Gregori and Roberto Pietroforte..221

COST ESTIMATE FOR THE CONSTRUCTION OF RESIDENTIAL-COMMERCIAL BUILDINGS
Neven Martinec, Nevena Hrnjak Ajdukovic and Stjepan Bezak.................233

STEEL CONSTRUCTION COSTS IN EARLY PROJECT PHASES, GERMANY VS, FRANCE
Christopher Hagmann and Christian Stoy..242

THE ACCURACY OF PRE-TENDER COST ESTIMATES OF CONSULTANT QUANTITY
SURVEYORS IN NIGERIA
Michael G. Oladokun, Adcyinka A. Oladokun and Isaac A. Odesola..................250

TRENDS IN THE IRISH HOUSEBUILDING SECTOR: IMPACT ON EMPLOYMENT LEVELS
Eamonn Maguire..260

A CRITIQUE OF INITIAL BUDGET ESTIMATING PRACTICE
Sidney Newton..271

CRISIS OR CHALLENGE?: THOUGHTS ABOUT INTERNATIONAL CONSTRUCTION-INDUSTRY
RECOVERY STRATEGIES
Wilco Tijhuis..281

RESULTS OF THE SURVEY ON IMPLEMENTATION OF MARKET STRATEGY IN BUSINESS
ACTIVITIES IN CROATIAN CONSTRUCTION COMPANIES
Lana Lovrencic and Mariza Katavic...286

SUSTAINABILITY APPROACH TO BUILDING APPRAISAL
Renata Schneiderova Heralova..296

HOW WOULD YOU LIKE IT: CHEAPER OR SHORTER?
Levente Mályusz and Miklós Hajdu..304
INFORMATION AND KNOWLEDGE MANAGEMENT

ABSORPTIVE CAPACITY MODELS AND CRISIS MANAGEMENT
Drzen Boskovic ... 313

AN INVESTIGATION OF IT IMPLEMENTATION IN TURKISH CONSTRUCTION FIRMS
Serkan Kivrak and Gokhan Arslan ... 323

APPLYING MANAGEMENT INFORMATION SYSTEM IN CONSTRUCTION INVESTMENT PROGRAMMES: A CASE STUDY FOR A PUBLIC SECTOR COMPANY
Stavros E. Stavrinoudakis ... 330

ARCHITECTURAL PROGRAMMING: PROVIDING ESSENTIAL KNOWLEDGE OF PROJECT PARTICIPANTS NEEDS IN THE PRE-DESIGN PHASE
Stefan Faatz ... 340

IMPROVING INFORMATION SHARING ACROSS CONSTRUCTION STAKEHOLDERS: AN ORGANIZATIONAL SEMIOTICS APPROACH
William H. Collinge, Chris Harty, Kecheng Liu and Yinshan Tang .. 348

INFORMATION AND KNOWLEDGE MANAGEMENT IN PLANNING PROCESS: DATABASE OF ATP-GROUP
Cornelia Prinz and Iva Kovacic ... 358

KNOWLEDGE MAPPING: A CONTINGENCY APPROACH
Gang Cheol Yun, Shuling Lu and Martin Sexton ... 368

AN EXAMINATION OF DECISION MAKING AND KNOWLEDGE MANAGEMENT PRACTICES IN POST DISASTER HOUSING RECONSTRUCTION PROJECTS
Carolyn Hayles .. 377

SELECTION OF CONSTRUCTION METHODS: A PRELIMINARY MODEL
Ximena Ferrada and Alfredo Serpell .. 386

IMPLEMENTING LEAN CONSTRUCTION PRINCIPLES IN PORTUGAL: ADAPTATION OF GOOD PRACTICES FROM A DANISH CASE STUDY
Pedro Henrique and Patrícia Silva ... 396

IMPLEMENTATION OF SMART TRANSPORT CONTROL SYSTEMS IN OSTRAVA
Miloslav Řezáč .. 406

SUSTAINABLE CONSTRUCTION

MAPPING SUSTAINABILITY ASSESSMENT IN RELATION TO A PPP PROJECT LIFECYCLE
Craig Thomson, Mohamed M. El-Haram and Rohinton Emmanuel ... 415

METHODS FOR SUSTAINABLE RECONSTRUCTION OF VIENNA UNIVERSITY OF TECHNOLOGY
Iva Kovacic .. 425

ENVIRONMENTAL CRITERIA IN PUBLIC PROCUREMENT OF CONSTRUCTION WORK IN PORTUGAL
Brígida Pires, José Cardoso Teixeira .. 436

RIJEKA’S TORPEDO LAUNCH PAD STATION PRESERVATION
Ivan Marovíc, Ivica Zavrski and Diana Car-Pusic .. 446

ENHANCING CAPACITIES FOR DISASTER MITIGATION AND RECONSTRUCTION IN THE BUILT ENVIRONMENT
Kanchana Ginige, Dilanthi Amaratunga, and Richard Haigh .. 454
WOMEN IN DECISION MAKING AND DISASTER REDUCTION IN THE BUILT ENVIRONMENT- A WAY TOWARDS SUSTAINABLE DEVELOPMENT
Kancheha Ginige, Dilanathi Amaratunga, and Richard Haigh...467

COMPARATIVE ANALYSIS OF THE WHOLE LIFE COST FOR REFURBISH OR RENEWAL ASBESTOS ROOFING
Mohamed A. El-Haram and R.M.W. Homer..475

SUSTAINABLE PROCUREMENT ISSUES IN THE GREEK CONSTRUCTION INDUSTRY
Odysseus Manoliadis..485

EDUCATION AND TRAINING

ASSESSMENT, REVIEW, AND EVALUATION OF THE PROJECT MANAGEMENT EDUCATION AND TRAINING PORTFOLIO
Constanta-Nicolta Bodca and Radu Mogoș..495

INSIGHT OF THE CURRENT STATE OF APPLICATION AND DEVELOPMENT OF IT IN THE CONSTRUCTION AND PROJECT MANAGEMENT FIELDS IN CROATIAN CONSTRUCTION AND CONSULTANT FIRMS
Caslav Dunovic, Boris Uremovic, Petar Adamovic and Vjeren Milnaric..505

THE MBA IN CONSTRUCTION SPECIALIST MASTER PROGRAM
Mariza Katavic, Tihomir Hunjak and Drazen Boskovic..513

DEVELOPMENT OF CURRICULA IN HIGHER EDUCATION FOR THE NEEDS OF CONSTRUCTION INDUSTRY
Aleksandra Kostic-Milanic and Goran Cirovic...522

WHAT DO WE KNOW ABOUT USE OF PROJECT EVALUATION METHODS IN CIVIL ENGINEERING?
Igor Psunder..531

LANGUAGE NEEDS OF CONSTRUCTION PROFESSIONALS
E. Oral, P.M. Rogerson-Revell, J.P. Panteuvasakis, M. Beechler, M. Oral, A. Khec, G. Mstukoğlu, E. Erdiş,
O. Mstukoğlu, S. Huskinson and A. Panas..538

LEARNING OUTCOMES IN CONSTRUCTION MANAGEMENT FIELD AT CIVIL ENGINEERING STUDIES AT FACULTY OF CIVIL ENGINEERING IN RIJEKA
Diana Car-Pušić and Aleksandra Doluko-Tibljas...546

HUMAN RESOURCE MANAGEMENT AND CULTURE

CSR TRAVELS ABROAD: NO BUSMAN’S HOLIDAY FOR UK CONSTRUCTION?
Mike Murray and Andrew Dainty..557

PRAGMATIC FAILURE CULTURE IN CONSTRUCTION PROCESSES
Casper Schultz Larsen..567

CHANGES IN QUALIFICATION STRUCTURE OF LABOUR IN CONSTRUCTION IN CROATIA (1978 – 2008)
Anita Ceric, Miljenko Antic and Maja Lazić..577

ORGANISATIONAL INTEGRATION OF BRANCH OFFICES FOR INFRASTRUCTURE BUSINESS DEVELOPMENT: THE CASE OF A MAJOR UK CONTRACTOR
Ioanna Keki and Hedley Smyth..583
LEADERSHIP STYLES OF WOMEN MANAGERS IN THE UK CONSTRUCTION INDUSTRY: KNOWLEDGE CAPTURE
Menaha Thayaparan, Dilanthi Amararatunga and Richard Haigh ... 593

CAREER BUILDING IN THE CONSTRUCTION SECTOR
Jan Jacob Rip .. 602

RISKS AND COSTS OF INJURY IN CONSTRUCTION COMPANY
Drzisлав Vidakovic, Petar Brana and Martina Španić .. 612

MANAGEMENT OF SMES

MUNICIPAL WATER CHALLENGES IN BIH
Ivana Domiljan and Ksenija Culø .. 622

UTILISING INTRANET TECHNOLOGIES IN CONSTRUCTION SECTOR SMES: BUILDING UP KNOWLEDGE BASES FOR EXTREME WEATHER EVENT RISK MANAGEMENT
Bingunath Ingirige and Gayan Weerawatta .. 632

MARKETING FOR SMALL REAL ESTATE PROMOTERS IN PORTUGAL
Luis Sammartho and José Cardoso Teixeira .. 643

SMALL AND LOCAL UNTIL IT HURTS? ARCHITECTS AND ENGINEERS DEVELOPMENT IN A PROFESSIONAL KNOWLEDGE INDUSTRY
Christian Koch and Martine Burser ... 651

CONSTRUCTION COMPANY OVERHEAD COSTS OPTIMIZATION STRATEGIES
Ala Siskina and Rasa Apanavičiute .. 662

A SURVEY OF SMALL CONTRACTORS’ INTERACTIONS IN SOUTH AFRICA
Ludwig Martin and David Root .. 672

CLUSTERING AS MEANS OF INCREASING INNOVATIVENESS AND BUSINESS PERFORMANCE OF CONSTRUCTION SMES
Jerneja Kolsek and Jana Selih .. 682

ACADEMIC AND INDUSTRIAL COLLABORATION

DEVELOPMENT OF INTERNATIONAL PROJECT MANAGEMENT IN CONSTRUCTION ENGINEERING AT THE TECHNICAL UNIVERSITY OF VIENNA
Mitra Arami, Renate Prantner and Christoph Achammer ... 689

DEVELOPING TECHNOLOGIES FOR STRUCTURE MONITORING
Andrej Strukelj, Mirko Pusender and Marjan Pipenbaher ... 695

PRIORITIZATION OF PRACTICAL IMPACTS OF ACADEMIC RESEARCH ON CONSTRUCTION MANAGEMENT
Juhani Kiiras .. 705

EXPLORING THE ‘HIDDEN’ IN ORGANISATIONS: METHODOLOGICAL CHALLENGES IN CONSTRUCTION MANAGEMENT RESEARCH
Paul W Chan and Michelle Littlemore ... 715

FOSTERING RESEARCH DEVELOPMENT AND INNOVATION IN CONSTRUCTION COMPANIES
José Cardoso Teixeira, Eugenio Pellicer, Paulo Pedro and Victor Yepes 725

ICPMA KNOWLEDGE MANAGEMENT CENTRE – SHARING KNOWLEDGE IN THE INTERNATIONAL CONSTRUCTION PROJECT MANAGEMENT COMMUNITY
Louis Gunnigan and Wilhelm Reismann ... 733
STANDARDIZATION OF PROCUREMENT: NATIONAL OR INTERNATIONAL?
Will Hughes and Sam Lartyea..742

PROJECT PORTFOLIO MANAGEMENT IN CONSTRUCTION SECTOR

PERCEPTION OF LEADING, LAGGING AND PERCEPTIVE PERFORMANCE MEASURES IN CONSTRUCTION
Mladen Vukomanovic, Mladen Radujkovic and Maja Marija Nahod..752

REDEVELOPMENT OF PORTFOLIO PROPERTIES: A DECISION MODEL FOR THE DETERMINATION OF OPTIMAL SOLUTIONS
Thorsten Huff and Veronika Deuser..763

DEVELOPMENT OF PROJECT MANAGEMENT SOFTWARE IN A CROATIAN CONSTRUCTION COMPANY
Retko Matotek and Robert Sostaric..771

CASE BASED REASONING AND INFRASTRUCTURE PROJECTS KNOWLEDGE BASE
Zoran Cekic..781

MANAGING COMPLEX INVESTMENT PORTFOLIO IN LARGE EXPANDING COMPANY -- ADRIS EXAMPLE
Damir Vajdjevic, Tomislav Rastovski and Davor Delic..791

UNDERSTANDING RESOURCES WASTE REDUCTION PRIORITIES IN SWEDISH CONSTRUCTION: A CONTRACTOR'S PERSPECTIVE
Per-Erik Josephson, Pim Polesie and Mikael Frödell..796

MANAGEMENT AND ECONOMICS OF COMPLEX PROJECTS

LEARNING FROM PROJECTS: MACEDONIAN EXPERIENCES FROM INTERNATIONAL
CONSTRUCTION PROJECTS
Valentina Zileska-Pancovska, Milorad Jovanovski and Meri Cvetkova...803

PPP IMPLEMENTATION THROUGHOUT THE WORLD: A GENERAL
SELECTION/IMPLEMENTATION SCHEME
Nicola Chiara, Nicola Costantino and Roberta Pellegrino...813

DECISION SUPPORT SYSTEM TO URBAN INFRASTRUCTURE MAINTENANCE
MANAGEMENT
Niksa Jajac, Knezic Sinijezana and Marovic Ivan...825

TOLLING TECHNOLOGIES FOR PPP FACILITIES. THE CASE OF THE AUTOSTRADA
CISPADANA
Fabio Sciancalepore, Roberta Pellegrino and Nicola Costantino..835

TRANSACTION COSTS FOR DESIGN-BUILD-FINANCE-MAINTAIN CONTRACTS
Ruben Favić, Wouter Beelen and Ger Maas..846

REAL ESTATE DEVELOPMENT STRATEGIES AND THEIR IMPACT ON THE RISK PROFILE OF
A PROJECT
Ellen Gehrner and Gert-Joost Peck..853

IN SEARCH OF HIGH VALUE CONSTRUCTION: ADDING VALUE THROUGH SERVICE-LED
PROJECTS
Roinc Leirnerg and Stuart D. Green..864
ZAGREB HOLDING WATER AND SEWER INVESTMENT PROJECT: OPERATING PROCEDURES
Maja Fekećić, Josip Majer and Marijan Mladenovski...875

PROJECT MANAGEMENT AS A FACILITATOR OF BUSINESS SUCCESS
A PROTOTYPE RISK MANAGEMENT DECISION SUPPORT TOOL FOR CONSTRUCTION PROJECTS
Arif Eidem Arikan, Irem Dikmen and Talat Birgonul..885

MANAGING BUSINESS CHANGES IN CONSTRUCTION COMPANIES
Natasa Suman and Marko Sorsak...896

INNOVATION IN CONSTRUCTION: A PROJECT LIFECYCLE APPROACH
Beliz Ozorhon, Carl Abbott and Ghassan Aouad...903

SOFTWARE PROPOSAL FOR SCHEDULING WITH BROWN - ŁOMNICKI ALGORITHM
Paweł Nowak and Maciej Nowak..913

FEASIBILITY STUDY OF CONSTRUCTION INVESTMENT PROJECTS' ASSESSMENT WITH REGARD TO RISK AND PROBABILITY OF NPV REACHING
Andrew Minasovizc...919

TRIANGLES, TRADEOFFS AND SUCCESS: A CRITICAL EXAMINATION OF SOME TRADITIONAL PROJECT MANAGEMENT PARADIGMS
Ramesh Vahidi and David Greenwood..927

AN APPROACH TO THE BUSINESS PROCESS IMPROVEMENT PROJECT IN CONSTRUCTION COMPANY
Mladen Bondić, Mirko Oreskovic and Jadranko Izetbegovic..937

PERFORMANCE INDICATORS OF CO-LOCATED FURTHER AND HIGHER EDUCATION PROJECTS
Alaa Abdulrahman, Derek Thomson and Ammar Kaka...945

FACTORS AFFECTING OUTPUT SPECIFICATION IN PPP PROJECTS
Danijel Kusljić, Josip Cengija and Sasa Marenjak...956

CONSTRUCTION PROJECT MANAGEMENT AT ALL LEVELS
MILITARY PRINCIPLES OF CHINESE ORIGIN TO IMPROVE COMPETITIVENESS
Li Shan, Florence Ling, Yean Yng, George Ofori and low Sui Pheng..........................966

COST OPTIMIZATION OF CONSTRUCTION PROJECT SCHEDULES
Uros Kluneš and Mirko Psunder..976

"FAULTY" STEPS IN CONSTRUCTION – "FAULTY" LEARNING FROM EXPERIENCE
Kristian Kreiner and Lise Damljær..983

CURRENT AND POTENTIAL FUTURE TRENDS IN CONSTRUCTION PROJECT MANAGEMENT (CPM) AND THEIR BENEFITS FOR CENTRAL AND SOUTH EASTERN EUROPEAN (CEE/SEE) COUNTRIES
Wilhelm Reissmann and Louis Gunnigan...993

BUILDABILITY AS TOOL FOR OPTIMISATION OF BUILDING EFFECTS
Jørgen Nielsen, Ernst Jan de Place Hansen and Niels-Jørgen Aagaard.......................1003

MANAGING AND ANALYSING SYSTEMS SUPPLIES FOR BUILDING CONSTRUCTION
Kalle Kähkönen..1013
RISK ALLOCATION IN JOINT VENTURES
Ruben Pavlić, Arif Kafa and Ger Meas...1023

LOGISTICS IN INDUSTRIALIZED DETACHED HOUSE CONSTRUCTION FROM ECONOMIC
AND ENVIRONMENTAL ASSESSMENT
Kenji Kimoto, Shuichi Matsumura, Atsushi Kawasaki, Zhichao Wu and Ai Komatsu..................1031

COMPARATIVE STUDY ON STATE OF ART AND PROBLEMS OF CONSTRUCTION EXPENSE
PAYMENT IN CHINA, JAPAN AND TAIWAN REGION
Tian Han, Shuzo Furusaka and Tsung-Chieh Tsai..1040

RISK MODEL FOR CONSTRUCTION PROJECTS RISK REGISTER SYSTEM
Ivana Burcar Dunovic and Mladen Rudjakovic...1050

ARCHITECTS' ROLES TAKEN IN DESIGN AND CONSTRUCTION STAGE: BUILDING
CONSTRUCTION PROJECTS IN JAPAN
Sayaka Nishino, Shin Takamatsu and Shuzo Furusaka...1060

PRIVATE AND PUBLIC REQUIREMENTS IN CONSTRUCTION: INFLUENCE ON PROJECT
MANAGEMENT
Lino Fucic and Zeljko Stomar..1068

EXPERIENCES CONCERNING THE INTEGRATED MANAGEMENT SYSTEM
IMPLEMENTATION IN CONSTRUCTION COMPANY AND BUILDING
Jozef Gasparík..1079

A WAY TO SUCCESS: CROATIAN MOTORWAYS Ltd.— A SPONSOR OR A MANAGER
Marijo Lovrinčević..1089

SMALL PUBLIC PRIVATE PARTNERSHIP:
THE ANSWER TO LOCAL PUBLIC AND PRIVATE NEEDS, YET AN UGLY DUCKLING?
Christian Koch and Jesper Ole Jensen...1098