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Abstract 

In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks is being 

proposed. The features of the proposed method, termed data-driven neural fuzzy system with collaborative fuzzy 

clustering mechanism (DDNFS-CFCM) are; (1) Fuzzy rules are generated facilely by fuzzy c-means (FCM) and 

then adapted by the preprocessed collaborative fuzzy clustering (PCFC) technique, and (2) Structure and parameter 

learning are performed simultaneously without selecting the initial parameters. The DDNFS-CFCM can be applied 

to deal with big data problems by the virtue of the PCFC technique, which is capable of dealing with immense 

datasets while preserving the privacy and security of datasets. Initially, the entire dataset is organized into two 

individual datasets for the PCFC procedure, where each of the dataset is clustered separately. The knowledge of 

prototype variables (cluster centers) and the matrix of just one halve of the dataset through collaborative technique 

are deployed. The DDNFS-CFCM is able to achieve consistency in the presence of collective knowledge of the 

PCFC and boost the system modeling process by parameter learning ability of the self-constructing neural fuzzy 

inference networks (SONFIN). The proposed method outperforms other existing methods for time series prediction 

problems. 

Keywords: Neural networks, Fuzzy system, Big-data, Privacy and security, Collaborative technique, On-line 

learning system, Time series prediction. 

1. INTRODUCTION 

Neural networks and fuzzy systems [1] are two important technologies which play a pivotal 

role towards realization of machine learning and artificial intelligence [2]. The integration of 

fuzzy inference systems (FISs) and artificial neural networks (ANNs) has been widely pursued 

by many researchers due to the requisite of adaptive intelligent systems for solving real-world 

problems. The integrated technology, called neural fuzzy technique, has been applied frequently 

in many disciplines related to engineering. Consequently, many researchers have focused on 

system modeling by using neural fuzzy techniques [3-5], because it possesses the advantages of 

both neural networks and fuzzy systems. Moreover, structure identification and parameter 

learning of neural fuzzy networks help prevailing over the incapability of fuzzy systems with 

parameter learning and neural networks unable to do interpretation of human-like intelligence. In 
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neural fuzzy systems, several data-driven strategies to generate appropriate numbers of fuzzy 

rules have been introduced [6-8]. 

Rong and Sundarajan [9] proposed a sequential adaptive fuzzy inference system (SAFIS) 

based on the functional equivalence between a radial basis function network and a fuzzy 

inference system (FIS). In this method, if there is no admission to the new fuzzy rule by input 

data, then only the parameters of the nearest rule are updated by using an extended Kalman filter 

(EKF) scheme. Dovzan and Skrjan [10] proposed an on-line TSK-type fuzzy model, which can 

be used for modeling control system or robotics by combination of a recursive fuzzy c-means 

and least squares. This method needs more computational cost than the SAFIS because of the 

fuzzy covariance matrix. However, the memory requirements are stationary due to the inelastic 

number of clusters. Wang and Lee [11] proposed a self-adaptive neuro-fuzzy inference system 

(SANFIS), which is adequate for self-adapting and self-organizing its domestic structure to 

obtain an economical rule base for illustrating the internal structure from input training dataset of 

the system. An online sliding-window-based self-organizing fuzzy neural network (SOFNN) was 

proposed by Leng and Prasad [12], which is suitable for machine learning and also it is 

applicable for cognitive reasoning in smart home environment. Er and Wu [13] proposed a 

learning algorithm for dynamic fuzzy neural networks (DFNN) based on extended radial basis 

function (RBF) neural networks. The features of DFNN approach evolve around free parameters 

that can be adjusted and structure learning mechanism associated with self-adaptive operation 

through a pruning technique. 

Wang [14] proposed a generalized-ellipsoidal-basis-function-based online self-constructing 

fuzzy neural network (GEBF-OSFNN), which enlarges the ellipsoidal basis function (EBF)-

based fuzzy neural networks (FNNs) by allowing the input variables to be modeled by 

dissymmetrical Gaussian functions (DGFs). Han [15] proposed a novel growing-and-pruning 

(GP) approach, which improves the formation of fuzzy neural networks (FNNs). The GP-FNN is 

based on RBFN, where neither the parameters nor the numbers of neurons in the hidden layer 

requires, all values are allocated during the learning process. Reinforcement evolutionary 

learning algorithm (REL) was proposed by Lin and Chen [16] for self-evolving neural fuzzy 

inference networks (SENFIN). The proposed REL consists of parameter learning and structure 

learning which are used to adjust the parameters of the SENFIN and determine the number of 

fuzzy rules. The merits of the SENFIN-REL technique include that it can dynamically design the 

structure of SENFIN and adjust free parameters of SENFIN whose consequent part is a nonlinear 

combination of input variables. Malek [17] proposed three new hybrid learning algorithms for 

Takagi-Sugeno-Kang fuzzy systems by using three kinds of manners, including the K-nearest 

neighbor, mean-shift procedure and space partitioning, which are more effective in terms of 

accuracy and requires fewer rules because of the simplicity of the algorithms with lower 

computational cost and approximate nonlinear functions. It has been shown that fixing the 

variance value for the Gaussian fuzzy sets reduces the number of parameters and there is no need 

for parameter tuning. 

The existing fuzzy neural networks (FNNs) have two factions. The first faction is fuzzy 

systems with self-tuning ability but it requires initialization of the number of fuzzy rules. The 

second faction of neural fuzzy networks is the capability to dynamically determine the fuzzy 

rules from the given dataset. However, most of the existing fuzzy neural systems confronted 

some problems such as a priori computation to determine the number of clusters, inconsistent 

rule-base and heuristically defined node operations. Taking all deficiencies into consideration, a 

novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks, 
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where transfer fuzzy rule is used as a substitute for the rule generation strategy of the SONFIN is 

proposed in this study. The proposed method not only promotes our learning process but also 

provides a stable and excellent performance. In order to demonstrate the feasibility and 

effectiveness of the proposed method, several examples, including the Mackey Glass time series 

prediction problem and a nonlinear dynamic system, are used to determine the network’s 

performance. Experimental results demonstrate that the proposed method outperforms other 

methods on given sets of benchmark data with comparatively fewer rules. 

The rest of the paper is organized as follows: Section 2 gives a brief introduction of SONFIN, 

FCM, CFC, PCFC and an overview on the proposed method and its architecture. Section 3 

shows the experimental results on two different time-series datasets and finally conclusions are 

drawn in Section 4. 

2. PROPOSED METHOD 

2.1 Self Constructing Neural Fuzzy Inference Networks 

A self-constructing neural fuzzy inference networks (SONFIN) [18] was proposed by Juang 

and Lin, which has been applied to various applications [19-24]. The SONFIN always brings an 

effective network structure and speeds up the learning process with well-defined modeling 

capability compared to common neural networks.  

The SONFIN consists of multiple layers, each of which has a finite fan-in of connections that 

are represented by weight values from other nodes and a fan-out of connections to other nodes. 

The function provides the net input for node is denoted as follows: 
( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2[ , ,......, ; , ,......, ]k k k k k k

n nnet input f u u u w w w                                  (1) 

where u1
(k)

, u2
(k)

, ….., un
(k)

 are inputs to this node and w1
(k)

, w2
(k)

, ….., wn
(k) 

are the associated link 

weights. The superscript (k) indicates the layer number. The output of each node is an activation 

function value of its net input given by: 
( ) ( ) ( )k

ioutput o a net input a f                                                 (2) 

where a(.) denotes tha activation function. The functions of the nodes in each of the five layers 

of the SONFIN structure are briefly described as follows: 

Layer 1: No computation is performed in this layer, the input values are directly transmited to 

the next layer. 
(1)

if u  and (1)a f                                                               (3) 

Layer 2: Using the Gaussian membership function the output of Layer 1 is calculated as follows: 
(2) 2

(2)

2

[ ]
[ ]

ij ij

ij

ij

u
f u






   and (2) fa e                                                (4) 

where μij is the mean and σij is the variance of the Gaussian membership function of the i
th

 input 

variable uij for the j
th

 partition. 

Layer 3: One fuzzy logic rule is represented by a node in this layer and it performs a 

precondition matching of a rule with an AND operation as follows: 

(3) (3)

1
[ ]

n

i i
i

f u u


   and (3)a f                                                   (5) 

where n is the number of layer 2 nodes participating in the IF part of the rule. 

Layer 4: Normalized firing strength is calculated in layer 3 and number of nodes in this layer is 

equal to that in Layer 3. 
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(4) (4)

1
[ ]

r

i i
i

f u u


   and  
(4)

(4) ( ) iu
a f

f
                                                 (6) 

where r is the number of rule nodes in Layer 3. 

Layer 5: The node integrates all the actions recommended in Layer 5 and acts as a defuzzifier. 

Each node in this layer corresponds to one output variable. 
(5) (5)[ ]i i i if u wu  , (5) ( )a f f                                                      (7) 

For details on structure and parameter learning of the SONFIN, users can refer to [18]. 

2.2 Fuzzy C-means Clustering 

In 1981, Bezdek introduced fuzzy c-means (FCM) [25], which allows each data point exhibits 

to one or more clusters that are specified by a membership function. The minimization of 

objective which decides the performance of FCM is defined as shown in Eq. (8). 

2

1 1

|| ||
N c

m

M ij i j

i j

J u x v
 

                                                                  (8) 

where M is real number great than 1, uij is the degree of membership of xi in the cluster j, xi is the 
i
th

 data point of d-dimension dataset, vj is the d-dimension of the cluster and ||*|| is any norm 
expressing the similarity between any measured data and the center. 

 Procedure for FCM 

1. Set up a value of c (number of clusters); 

2. Select initial cluster prototype V1, V2, …, Vc from Xi, i=1, 2, …, N; 

3. Compute the distance ||Xi-Vj|| between objects and prototypes; 

4. Compute the elements of the fuzzy partition matrix (i=1, 2, …, N; j=1, 2, …, c) 

 

1

1

c i j

ij l
i l

x v
u

x v





  
  

  
  

                                                            (9) 

5. Compute the cluster prototypes ( j=1, 2, …, c) 

 

2

1

2

1

N

ij ii

j N

iji

u x
V

u









                                                                                        (10) 

6. Stop if the convergence is attained or the number of iterations exceeds a given limit. 

Otherwise, go to step 3 

2.3 Collaborative Fuzzy Clustering 

Pedrycz introduced the collaborative fuzzy clustering (CFC) technique [49, 50], in which 

several subsets of patterns can be processed together with an objective to finding a structure that 

is common to all of them. Horizontal collaborative clustering and vertical collaborative 

clustering are the two major variants of the CFC and it has been applied in different research 

areas to solve clustering and modeling problems [26, 51-53]. The general schemes of horizontal 

collaborative clustering and vertical collaborative clustering are shown in Fig. 1 and Fig. 2 

respectively. 
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Fig. 1. A General scheme of horizontal clustering 

  

Fig. 2. A General scheme of vertical clustering Fig. 3. Collaborative clustering scheme 

The objective function for collaboration technique is given by: 

2 2 2 2

1 1 1 1 1

[ ] [ ] [ ] [ , ] { [ ] [ ]} [ ]
pN c N n

ij ij ij ij ij

i j m i j
m l

Q l u l d l l m u l u m d l
    



                (11) 

where β is a user defined parameter based on datasets (  >0), β[l, m] denotes the collaborative 

coefficient with collaborative effect on dataset l through m, c is the number of clusters. l=1, 

2, ….., p. p is the number of datasets, N  is the number of patterns in the dataset, u represents the 

partition matrix, n is the number of features, and d is an Euclidean distance between patterns and 

prototypes. 

Fig. 3 shows the connections of matrices in order to accomplish the collaboration between the 

subsets of the dataset. First, we solve the problem for each dataset separately and allow the 

results to interact globally by forming a collaborative process between the datasets. Collaborative 

fuzzy partitioning is carried out through an iterative optimization of the objective function as 

shown in Eq. (11) with an update of partition matrix u[l] and the prototype vi[l]. For optimization 

details please refer to [49, 50]. The prototype and partition matrices bring the way of structural 
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findings at each dataset in the structure learning phase of the proposed method. The calculations 

of the partition matrix u[l] and the prototype vi[l] are as follows: 

 2
1

2
1

[ ][ ] 1
[ ] 1

1 [ ] 1 [ ][ ]

[ ]

c
jtst

st c
jst

j jt

ll
u l

l ld l

d l



 



 
   

  



                                              (12) 

where 

 
1

[ ] [ , ] [ ]
p

st st

m
m l

l l m u m 



                                                                   (13) 

 
1

[ ] [ , ]
p

m
m l

l l m 



                                                                            (14) 

and 

2 2

1 1 1

2 2

1 1 1

[ ] [ ] [ , ] ( [ ] [ ]) [ ]

[ ]

[ ] [ , ] ( [ ] [ ])

pN N

sk kt sk sk kt

k m k
m l

st pN N

sk sk sk

k m k
m l

u l x l l m u l u m x l

v l

u l l m u l u m





  


  


 



 

  

  
                                       (15) 

Procedure for CFC 

1. Given, subsets of patterns X1, X2, …, Xp. 

2. Select, distance function, number of clusters (c), termination condition and collaboration 

coefficient β[l, m]. 

3. Compute, randomly initialize all partition matrices U[1], U[2], …, U[P] 

4. Phase I 

For each data 

 Repeat 

     Compute, prototype { Vj[l],  j=1, 2, …, c and partition matrices U[l] for all  

     subsets  of patterns} 

 Until a termination condition has been satisfied 

      End of Phase I 

5. Phase II 

 Repeat 

      For the matrix of collaborative links β[l, m]. 

     Compute, prototype Vj[l] and partition matrices U[l] by using (12) and (15). 

 Until a termination condition has been satisfied 

 End of phase II 

2.4 Preprocessed Collaborative Fuzzy Clustering 

A preprocessed collaborative fuzzy clustering (PCFC) [54] is an improved version of the 

collaborative fuzzy clustering (CFC). In this section, the problem, which lies with CFC has 

pointed out and an appropriate solution has been given by proposing a cluster center mapping 

mechanism before it goes for collaboration process. 
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2.4.1 Problem with CFC  

By taking a direct subtraction of two different partition matrices uik[l] and uik[m] (i.e. uik[l]-

uik[m]), we may lose the useful information under different partition matrices of one pattern Xk of 

the same cluster. The cluster described by k
th

 row Vk[l] in uik[l] may be different from the one 

described by the k
th

 row in Vk[m] in uik[m]. If the rows order of one matrix changes, the 

subtraction between two matrices changes as well. In this case, taking direct subtraction between 

two matrices uik[l] and uik[m] is not an appropriate way. 

2.4.2 Solution by PCFC 

To find a constructive approach of preprocessing in order to rearrange the row order of uik[l] 

corresponding to the row order of uik[m] in a rational way, the matching row pair is determined 

as follows: 

 
2

1,2..,
1

arg ( [ ] [ ])
n

ki ji
j c

i

r min V l V m




                                                      (16) 

The k
th

 row of V[l] and the r
th

 row of V[m] are considered to be a matching row pair (k = 1, 2, …, 

c), where the number of features is denoted by n. Similarly, update uik[l] and uik[m] with 

correspond to V[l] and V[m]. 

2.4.3 Discussions 

In order to verify the mapping mechanism, we have used the paradigm of three classes and 

then divided equally into two subsets of dataset, namely dataset1 and dataset2. Fig. 4 (a) and 4 

(b) are clustered feature vectors of dataset1 and dataset2, respectively. As we can see, in fig. 4(a) 

and 4(b), the first cluster (green color) of dataset1 matches with the second cluster of dataset2, 

the second cluster (red color) of dataset1 matches with the third cluster of dataset2 and the third 

cluster (blue color) of dataset1 matches with the first cluster of dataset2, which are totally 

mismatched with each other. Fig. 4(c) and 4 (d) show the plotting results after the mapping 

mechanism, here we can see the effect of centroid mapping for prototype and row order mapping 

with the partition matrix. Now, we can easily take the difference(s) between rows of dataset1 

and dataset2 and easily do mapping between them. 

  
(a) Clustered feature vectors of dataset1 based on FCM (b) Clustered feature vectors of dataset2 based on FCM 
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(c) Clustered feature vectors of dataset1 based on FCM 

after mapping 

(d) Clustered feature vectors of dataset2 of FCM after 

mapping 

Fig. 4 Clustered feature vectors of dataset1 and dataset2 

2.4.4 Algorithm for PCFC 

Based on the above discussions and the results, we have added one more phase called phase III 

in the CFC procedure for preprocessing and the refined algorithm is as follows: 

Procedure for PCFC 

1. Given, subsets of patterns X1, X2, …, Xp. 

2. Select, distance function, number of clusters (c), termination condition, and collaboration 

coefficient β[l, m]. 

3. Compute, randomly initialize all partition matrices U[1], U[2], …, U[P]  

4. Phase I 

For each data 

 Repeat 

      Compute, prototype { Vj[l],  j=1, 2, …, c and partition matrices U[l] for all  

      subsets of patterns} 

 Until a termination condition has been satisfied 

Communicate cluster prototype from each data site to all others;  

       End of Phase I 

5. Phase II 

Choose an approach as given in Eq. (16) for the preprocessing on cluster prototype and 

its corresponding partition matrices in order to adjust the feature row order.  

 End of Phase II 

6. Phase III 

Repeat 

For the matrix of collaborative links β[l, m]. 

Compute, prototype Vj[l] and partition matrices U[l] by using (12) and (15). 

     Until a termination condition has been satisfied 

End of Phase III 
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2.5 Rule-transfer-based Self Constructing Neural Fuzzy Inference Networks 

The proposed method combines the collective knowledge of the PCFC and neural fuzzy 

networks which possesses the advantages of both neural networks and fuzzy systems. The 

structure and parameter learning parts of fuzzy neural networks can be identified with the 

knowledge of the PCFC and learning ability of neural networks, which improves the 

interpretation result of fuzzy neural networks. The proposed method only uses one halve of the 

patterns of the given dataset to model the system whereas other methods use the entire datasets to 

achieve similar performance. Therefore, we can say that the proposed method is capable of 

solving the big data issues with satisfactory result in terms of computational complexity due to 

fewer rules while taking into consideration of privacy and security of the datasets. The 

framework structure of proposed method is shown in Fig. 5. 

The proposed method is divided into two phases, namely the structure learning phase and the 

parameter learning phase. In structure learning phase, the collective knowledge of the PCFC is 

applied for building the network structure in order to replace the self-evolving ability of the 

SONFIN. The parameter leaning phase helps the network to redefine their parameter values 

based on the knowledge coming from structure learning phase. The performance of the proposed 

method is demonstrated on the Mackey glass time series prediction problem with two different 

conditions and a nonlinear dynamics system identification problem. The proposed method is 

analyzed on the given datasets under MATLAB 7.9 and implemented using an Intel i5, 3.1 GHz 

CPU, with 4 GB of RAM running on Windows XP 7 (32 bit) operating system. 

 

 
Fig. 5. Framework of the proposed method 

The results of the proposed method are compared with other previously proposed methods, 

such as GEBF-OSFNN [14], RBF-AFS [27], OLS [28], DFNN [29], FAOS-PFNN [30], RAN 

[31], RANEKF [32], MRAN [33], GGAP-RBF [34], OS-ELM [35], SOFNN [36], SOFNNGA 

[37], Khayat’s model [38], SAFIS [39], eTS [40], Mean shift method [41], KNN method [41], 

Space partitioning method [41], and simpleLeTS [42]. Based on the experimental results shown 

in Tables 1-4, it can be easily seen that the proposed method outperforms other models on the 

benchmark problems. 
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The performance of the proposed method is evaluated in terms of root mean square error 

(RMSE) and the number of rule during training and testing phase. The RMSE is a popular and 

useful index for assessing the performance of the predictors [43] and is given by Eq. (17). 

2

1

1
ˆ( )

n

i i

i

RMSE y y
n 

                                                    (17) 

where n is the number of predictions, y is the desired value and ŷ is the predicted value. 

3. EXPERIMENTAL RESULTS 
3.1 Mackey Glass Time Series Prediction 

One of the classical benchmark chaotic Mackey glass time-series predictions used in [44-48] is 

chosen for verification of the proposed method. The discrete model of the time series is as 

follows: 

10

( )
( 1) (1 ) ( )

1 ( )

bx t
x t a x t

x t






   

 
                                                (18) 

where a=0.1, b=0.2, τ=17 and x(0)=1.2. The problem is to predict the value x(t+p) (where p=6) 

from the following prediction model: 

( ) { ( ), ( 6), ( 12), ( 18)}x t p f x t x t x t x t                                       (19) 

A set of 1000 samples extracted from Eq. (18) for each, training and testing purpose and these 

samples used for preparing the input and output sample data based on Eq. (19). Subsequently, 

training dataset is divided into two datasets, namely dataset1 and dataset2, which contain 500 

patterns each. The proposed method only uses the collective knowledge of 500 patterns of 

dataset1/dataset2 for neural networks training after applying the PCFC mechanism. The 

parameters used for the proposed method in this prediction model are: P1=0.7 (learning rate), 

P2=0.5 (collaboration coefficient) and P3=500 (number of iterations). Table 1 shows a 

performance comparison of the proposed method with GEBF-OSFNN, RBF-AFS, OLS, DFNN 

and FAOS-PFNN. The performance of the proposed method as shown in Table 1 is the mean 

value based on 10 experimental trials. The best training and testing RMSE value during 10 

experimental trials is 0.0005 and 0.0012, respectively. It can be easily seen that the proposed 

method achieves better performance while using significantly fewer rules. Fig. 6 and 8 show the 

output value of predicted and desired model and Fig. 7 and 9 show the predicted errors during 

training and testing phase, respectively. It can be easily seen from Table 1 that the performance 

achieved by the proposed method is superior to the previously proposed methods. 

 

Table 1 

Performance comparison of DDNFS-CFCM, GEBF-OSFNN, RBF-AFS, OLS, 

DFNN and FAOS-PFNN 

Method No. of Rules Training RMSE Testing RMSE 

RBF-AFS [27] 21 0.0107 0.0128 

OLS [28] 13 0.0158 0.0162 

FAOS-PFNN [30] 11 0.0073 0.0127 

GEBF-OSFNN [14] 10 0.0091 0.0087 

DFNN [29] 10 0.0082 0.0127 

DDNFS-CFCM 6 0.0009 0.0034 
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Fig. 6. Desired and predicted outputs during training 

 
Fig. 7. Predicted error during training 
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Fig. 8. Desired and predicted outputs during testing 

 
Fig. 9. Predicted error during testing 
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Table 2 shows the performance of the proposed method with initial condition x(0)=0.3 and 

p=50. The parameters used for the proposed method in this prediction model are: P1=0.04 

(learning rate), P2=0.5 (collaboration coefficient) and P3=500 (number of iterations). Based on 

these values, the proposed method also achieves better results in terms of RMSE. A comparison 

of the proposed method with GEBF-OSFNN, RAN, RANEKF, MRAN, GGAP-RBF, OS-ELM 

and FAOS-PFNN is given in Table 2. The performance of the proposed method as shown in 

Table 2 is the mean value based on 10 experimental trials. The best training and testing RMSE 

value during 10 experimental trials is 0.0083 and 0.0172, respectively. Fig. 10 and 12 show the 

desired and predicted outputs and Fig. 11 and 13 show the predicted errors during the training 

and testing phase, respectively. It can be seen that the proposed method outperforms the previous 

proposed methods while requiring significant fewer rules. 

 
Table 2  

Performance comparison of DDNFS-CFCM, GEBF-OSFNN, RAN, RANEKF, 

MRAN, GGAP-RBF, OS-ELM and FAOS-PFNN 

Method No. of Rules Training RMSE Testing RMSE 

OS-ELM [35] 120 0.0184 0.0186 

RAN [31] 39 0.1006 0.0466 

RANEKF [32] 23 0.0726 0.0240 

MRAN [33] 16 0.1101 0.0337 

GGAP-RBF [34] 13 0.0700 0.0368 

DDNFS-CFCM 9 0.0105 0.0260 

 

 
Fig. 10. Desired and predicted outputs during training 
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Fig. 11. Predicted error during training 

 
Fig. 12. Desired and predicted outputs during testing 



15 

 

 
Fig. 13. Predicted error during testing 

3.2 Nonlinear dynamics system identification problem I 

The plant to be identified is described in Eq. (20):  

2 2

( ) ( 1)[ ( ) 2.5]
( 1) ( )

1 ( ) ( 1)

y t y t y t
y t u t

y t y t

 
  

  
                                       (20) 

If a series-parallel identification model is used for identifying the plant, the model can be 

described by Eq. (21) 

ˆ( 1) { ( ), ( 1), ( )}y t f y t y t u t                                                (21)                          

where the input u(t)=sin(2πt/25), y(t+1) is the output and this network contains three inputs and 

one output. The initial input values y(0)=0 and y(1)=0 was used. A set of 200 data is generated 

for each, training and testing dataset. Subsequently, training dataset is divided into two datasets, 

namely dataset1 and dataset2, which contain 100 patterns each. The proposed method only uses 

the collective knowledge of 100 patterns of dataset1/dataset2 for neural networks training after 

applying the PCFC mechanism. The parameters used for the proposed method in this prediction 

model are: P1=0.2 (learning rate), P2=0.5 (collaboration coefficient) and P3=500 (number of 

iterations). The performance of the proposed method as shown in Table 3 is the mean value 

based on 30 experimental trials. The best training and testing RMSE value during 30 

experimental trials is 0.0023 and 0.0020, respectively. Table 3 shows the performance 

comparison of the proposed method with Mean-Shift method, KNN method, Space partitioning 

method, Khayat’s model, SOFNNGA, and SOFNN. Fig. 14 and 16 show the predicted and 
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desired output values and Fig. 15 and 17 show the predicted errors during the training and testing 

phase, respectively.  

Table 3  

Performance comparison of DDNFS-CFCM, OSFNN, SOFNNGA, Khayat’s model, Mean shift 

method, KNN method and Space partitioning method 

Method No. of Rules Training RMSE Testing RMSE 

Space partitioning method [41] 9 0.0065 0.0055 

OSFNN [36] 5 0.0157 0.0151 

Mean shift method [41] 5 0.0137 0.0127 

SOFNNGA [37] 4 0.0159 0.0146 

Khayat’s model [38] 4 0.0147 0.0141 

KNN method [41] 4 0.0150 0.0131 

DDNFS-CFCM 4 0.0036 0.0031 

3.3 Nonlinear dynamics system identification problem II 

The nonlinear system is expressed as follows:  

3

2

( )
( 1) ( )

1 ( )

y t
y t u t

y t
  


                                                       (20) 

where u(t) is the input signal, which is generated by using the sinusoidal function given by 

u(t)=sin(2πt)/100. A set of 200 data is generated for each, training and testing dataset. 

Subsequently, training dataset is divided into two datasets, namely dataset1 and dataset2, which 

contain 100 patterns each. The proposed method only uses the collective knowledge of 100 

patterns of dataset1/dataset2 for neural networks training after applying the PCFC mechanism.  

The parameters used for the proposed method in this prediction model are: P1=0.2 (learning 

rate), P2=0.5 (collaboration coefficient) and P3=300 (number of iterations). The proposed 

method only uses 30000 data points (100 data patterns with 300 numbers of iteration) to train the 

system whereas, the other methods shown in Table 4 use 50000 data points. The inputs y(t) and 

u(t) follow the uniform sample distribution in the interval [-1.5, 1.5] and [-1.0, 1.0] respectively. 

The performance of the proposed method as shown in Table 4 is the mean value based on 30 

experimental trials. The best testing RMSE value during 30 experimental trials is 0.0045. Table 4 

shows a performance comparison of the proposed method with SAFIS, eTS, OS-fuzzy-ELM, and 

simpleLeTS. Fig. 18 and 19 show the predicted and desired output values and predicted errors 

during the testing phase, respectively. It can be easily seen that the proposed method outperforms 

other methods in terms of RSMS while keeping significantly fewer rules. 

 
Table 4  

Performance comparison of DDNFS-CFCM, SAFIS, MRAN, 

RANEKF, simpleLeTS, and eTS 

Method No. of Rules Testing RMSE 

eTS [40] 19 0.0082 

simpleLeTS [42] 18 0.0122 

RANEKF [32] 11 0.0184 

MRAN [33] 10 0.0129 

SAFIS [39] 8 0.0116 

DDNFS-CFCM 5 0.0046 
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Fig. 14. Desired and predicted outputs during training 

 

Fig. 15. Predicted error during training 
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Fig. 16. Desired and predicted outputs during testing 

 

Fig. 17. Predicted error during testing 
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Fig. 18. Desired and predicted outputs during testing 

 

Fig. 19. Predicted error during testing 
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4. CONCLUSIONS 

In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy 

inference networks is proposed. The features of the proposed method are: (1) Fuzzy rules are 

generated facilely by fuzzy c-means (FCM) and then adapted by the preprocessed collaborative 

fuzzy clustering (PCFC) technique, and (2) Structure and parameter learning are performed 

simultaneously without selecting initial parameters. Based on the experimental results, the 

proposed method has shown satisfactory results in terms of computational complexity with 

significantly fewer rules while taking into consideration of privacy and security of the datasets. 

The proposed method is superior to existing state-of-the-art methods as demonstrated on the set 

of benchmark problems. 
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