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ABSTRACT 

Ultrasonic guided waves are used in the non-destructive testing of pipelines.  This involves 

launching an elastic wave along the wall of the pipe and then capturing the returning wave 

scattered by a defect. Numerical study of wave scattering is often computationally expensive 

because the shortest wavelength is often very small compared to the size of the pipe in the 

ultrasonic frequency range. Furthermore, the number of the scattered wave modes from a 

non-axisymmetric defect in the pipe can be large and separation of these modes is difficult in 

a conventional finite element method. Accordingly, this article presents a model suitable for 

studying elastic wave propagation in waveguides with an arbitrary cross-section in the time 

and frequency domain.  A weighted residual formulation is used to deliver an efficient hybrid 

numerical formulation, which is applied to a long pipeline containing a defect of arbitrary 

shape.  The problem is solved first in the frequency domain and then extended to the time 

domain using an inverse Fourier transform.  To separate the scattered wave modes in the time 

domain, a technique is proposed whereby measurement locations are arranged axially along 

the pipe and a two dimensional Fourier transform is used to present data in the wavenumber-

frequency domain.  This enables the separation of highly dispersive modes and the recovery 

of modal amplitudes.  This has the potential to reveal more information about the 

characteristics of a defect and so may help in distinguishing between different type of defects, 

such a cracks or regions of corrosion, typically found in pipelines.  



3 
 

1. INTRODUCTION 

Guided ultrasonic waves are used in the non-destructive testing of pipelines.  The guided 

waves normally take the form of a pulse with a narrow frequency bandwidth, which is 

launched along the pipe wall and is then scattered when it hits a defect in the pipe, such as a 

crack or region of corrosion.  Following scattering by the defect the returning wave is 

detected and interrogated and the aim of the method is to infer the presence of the defect and 

if possible the geometry of the defect.  The scattering of guided ultrasonic waves from a 

general defect is a three-dimensional problem and so this presents a significant computational 

challenge that potentially requires a large number of degrees of freedom.  Consequently 

computation time can quickly become prohibitive for relatively long pipe lengths. To 

overcome this problem, this article applies a hybrid numerical approach in order to deliver an 

efficient three dimensional methodology for the propagation of elastic waves in a pipe.  It is 

demonstrated that this type of approach is sufficiently efficient to permit the generation of 

predictions for scattering from arbitrary defects located in long lengths of pipe in both the 

frequency and time domain.   

 

The development of three dimensional numerical models suitable for modelling large 

structures including pipelines continues to present a significant challenge.  Current strategies 

include attempting to take advantage of symmetries present in a structure, or using finite 

element discretisations that are localised around a defect.  For example, one may take 

advantage of symmetry in a pipeline and reduce the problem to two dimensions.  Heidary and 

Ozevin recently accomplished this for an axisymmetric pipe under non-axisymmetric loading 

conditions [1], although this method cannot readily be applied to wave scattering problems 

from a general defect in a pipe because the loading function for a general defect remains 
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unknown.  Moreover, one must still mesh the entire pipe length which reduces the 

effectiveness of the method for long pipes.  Alternatively, one can treat the pipe wall as a one 

dimensional structure and assume that the displacements and associated stresses and strains 

are constant over the pipe wall [2, 3].  This will give a good approximation of the true 

behaviour for those modes in which the through thickness displacement profile is close to 

being constant, although this will be less successful for those modes for which this is not the 

case.  Therefore, as the frequency of excitation is increased this approach is unlikely to 

capture accurately the behaviour of all modes propagating within a pipe.  

 

To overcome the limitations of two dimensional models one must return to a three 

dimensional approach that delivers a full numerical discretisation of the defect as well as the 

surrounding structure.  For example, Casadei et al. [4] presented a multi-scale finite element 

approach to study localized defects in plates.  A multi-scale approach delivers a significant 

reduction in elements placed well away from a defect and so improves the efficiency of the 

model.  However, this method still demands that the entire structure is meshed and so for 

large structures such as plates recent efforts centre on discretising only the immediate vicinity 

surrounding a scattering object.  For example, Velichko and Wilcox [5] use finite elements to 

discretise the region surrounding a scatterer and then asymptotic Green’s functions to 

reconstruct the solution outside this region.  This has the advantage of lowering the number 

of degrees of freedom required to analyse a relatively small scattering object located in a 

much larger structure; however, in order to suppress reflections from the boundaries in the 

outer region it is necessary to include an artificial absorbing region.  Velichko and Wilcox 

demonstrate that this method can be applied to guided wave scattering from a circular hole in 

a plate, and this approach was later applied to irregular defects by Moreau et al. [6].  The 

addition of an absorbing layer, which is often called a perfectly matched layer, has also been 
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widely applied by other authors and is popular in commercial finite element software.  For 

example, Żak et al. proposed an absorbing layer with a particular damping profile to suppress 

reflections in a finite element model for elastic wave propagation in unbounded structures [7].  

It is of course possible to apply this type of approach to the study of guided waves in 

pipelines; however, the absorbing boundary or perfectly matched layer demands extra 

degrees of freedom and this leads to computational inefficiencies.  Moreover, the absorbing 

region does not fully absorb the outgoing waves and so some reflection is inevitable, 

especially in three dimensional applications where high order propagating modes are difficult 

to attenuate.  Accordingly, where possible it is desirable to seek methods that avoid the use of 

absorbing layers. 

 

In the study of guided waves it is common to encounter long uniform sections of waveguide 

surrounding a relatively small scattering object or defect.  It is desirable to take advantage of 

regions of uniformity and this can be accomplished in an efficient way by using a normal 

mode expansion.  For example, Cho and Rose [8, 9], and Zhao and Rose [10] proposed a 

hybrid boundary element method for analysing the scattering of Lamb and shear horizontal 

waves in a plate.  Here the elastodynamic boundary integral equation is mapped onto an 

analytical normal mode expansion for the uniform section of the plate and this enabled the 

study of mode conversion by arbitrary defects.  This method demonstrates a more efficient 

approach to studying guided waves as it does not rely on adding artificial absorbing regions.  

However, the method relies on the use of analytic expression for the propagating eigenmodes 

and so it is desirable to look at ways of removing this restriction so one can study waveguides 

with irregular cross-sectional geometries, as well as those applications where obtaining 

analytic solutions is challenging.  Accordingly, it is sensible to extend this type of approach 

http://www.sciencedirect.com/science/article/pii/S0168874X14001073
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to include a numerical solution of the governing eigenequation for the uniform section of the 

waveguide.  To this end a hybrid normal mode/finite element methodology has long been 

used in the study of elastic waves, although its application to pipes is still relatively limited.  

For example, Datta and Shah [11] applied the method to the scattering of shear waves in a 

plate, and Baronian et al. [12] examined the more general case of scattering from an arbitrary 

defect, although this was limited to a two dimensional waveguide.  For pipes, Zhuang et al. 

[13] applied a hybrid formulation in the study of scattering from cracks in welds, although 

their analysis was restricted to an axisymmetric problem in order to permit the use of a 

Rayleigh Ritz approach for solving the eigenproblem on either side of the defect.  Bai et al. 

[14] extended the work of Zhuang et al. [13] to non-axisymmetric circumferential cracks by 

combining analytic solutions for the pipe eigenmodes and coupling these to a numerical 

discretisation for the crack, although this was limited to an infinitely thin crack and, like Cho 

and Rose [8, 9], they relied upon analytic eigensolutions.  However, by subdividing the 

scattering from the crack into a symmetric and antisymmetric problem, Bai et al. were able to 

show that one may generate reflection coefficients for a non-axisymmetric problem in a pipe.   

 

An alternative method for computing the eigenmodes in a uniform section of the pipe was 

proposed by Zhou et al. [15], who used the wave finite element (WFE) method to solve the 

governing eigenproblem.  This numerical solution for the eigenmodes enabled Zhou et al. to 

link their model to a finite element discretisation of the defect in a computationally efficient 

way.  Zhou et al. used a hybrid WFE and finite element scheme to study axisymmetric and 

non-axisymmetric defects in pipes and presented predictions for reflection coefficient in the 

frequency domain.  The majority of the results presented by Zhou et al. are for a two 

dimensional formulation.  Furthermore, it is known that some numerical issues are present 

with the WFE method [16, 17] and so it appears appropriate to investigate alternative 
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methods for three dimensional problems.  One possible approach is to find the eigenmodes 

for a waveguide by directly solving the governing eigenequation.  This method is often 

referred to in the elastodynamic literature as the semi analytic finite element (SAFE) method; 

however it has also been used in the acoustic waveguide literature where there is no such 

terminology [18, 19]. A hybrid SAFE-FE method was recently applied to elastic wave 

propagation in a solid cylinder by Benmeddour et al. [20].  This method uses a full three 

dimensional discretisation of a small region surrounding the non-axisymmetric crack and 

then uses the two dimensional finite element mesh on the surface of this region to directly 

solve the governing eigeneqaution.  Accordingly, this method removes the need for absorbing 

boundaries remote from the defect and/or separating three dimensional slices of the pipe for 

solving the eigenproblem.  This makes the SAFE-FE hybrid method very efficient and so it 

has also been used, for example, to study axisymmetric defects in coated pipes [21, 22].  The 

purpose of this article is the application of the SAFE-FE method to pipe in a way that permits 

the solution and separation of all propagating modes in the time domain. 

 

The hybrid methods developed so far tend to be limited to the frequency domain, at least 

when studying three dimensional problems.  This article will demonstrate that it is possible to 

generate predictions in the time domain for an arbitrary non-axisymmetric defect in a 

waveguide of arbitrary cross-section.  The work presented here adopts a hybrid finite element 

method similar to that proposed by Benmeddour et al. [20], although a different formulation 

is used here.  Benmeddour et al. use the principle of virtual work and apply a variational 

formulation to derive the governing SAFE-FE equations, whereas in this article we will use 

the alternative weighted residual method (WRM).  The WRM is in principle a more general 

approach than the variational method and so this method is presented here for elastic wave 

propagation in pipes.  Galerkin’s method is then used to solve the problem and this is of 
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course equivalent to a variational approach, but it will be shown that by using the WRM 

method one may arrive at a final governing equation that avoids the multiplication of global 

matrices seen in the variational approach of Benmeddour et al. [20].  The avoidance of these 

additional global matrix multiplications is potentially advantageous when one is required to 

make many repetitive solutions of the problem, as will be the case when Fourier transforms 

are used here to generate time domain predictions.  Accordingly, this article begins by 

presenting a hybrid SAFE-FE formulation in section 2 using a weighted residual approach.  

The frequency domain methodology is presented first and time domain simulations are then 

obtained following an inverse Fourier transform of the frequency domain computations.  In 

section 3, predictions are benchmarked against measured and predicted values for reflection 

coefficients reported in the literature.  The method is then used to study scattering from a 

relatively small non-axisymmetric defect in both the time and frequency domain.  Here 

𝑘 − 𝜔 plots are used to separate the propagating eigenmodes and it is shown that these plots 

can be used to avoid problems with dispersion when attempting to recover information about 

the defect at high frequencies.   
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2. THEORY 

A hybrid SAFE-FE method is presented here that is valid for a waveguide of arbitrary cross-

section.  The material properties of the waveguide are assumed to be isotropic and 

homogeneous in order to simplify the notation in the equations that follow; however this 

method may be used for material properties that vary over the pipe cross section, as well as 

within the region discretised by finite elements.  The governing equation for wave 

propagation in an elastic medium is given by Navier’s equation: 

 

(𝜆 + 𝜇)∇(∇ ∙ 𝒖′) + 𝜇∇2𝒖′ = 𝜌
𝜕2𝒖′

𝜕𝑡2 , (1) 

 

where 𝜆 and 𝜇 are the Lamé constants, 𝒖′ is the displacement vector, 𝜌 is density and 𝑡 is time.  

A time dependence of 𝑒i𝜔𝜔 is assumed throughout this article, where 𝜔 is the radian 

frequency and i = √−1.  Navier’s equation may be written as three scalar equations using a 

Cartesian co-ordinate system, which gives 

(𝜆 + 𝜇)�
𝜕2𝑢𝑥′

𝜕𝑥2
+
𝜕2𝑢𝑦′

𝜕𝑥𝜕𝜕
+
𝜕2𝑢𝑧′

𝜕𝑥𝜕𝜕
� + 𝜇 �

𝜕2𝑢𝑥′

𝜕𝑥2
+
𝜕2𝑢𝑥′

𝜕𝜕2
+
𝜕2𝑢𝑥′

𝜕𝜕2
� = 𝜌

𝜕2𝑢𝑥′

𝜕𝑡2
, (2a) 

(𝜆 + 𝜇)�
𝜕2𝑢𝑥′

𝜕𝑥𝜕𝜕
+
𝜕2𝑢𝑦′

𝜕𝜕2
+
𝜕2𝑢𝑧′

𝜕𝜕𝜕𝜕
� + 𝜇 �

𝜕2𝑢𝑦′

𝜕𝑥2
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𝜕2𝑢𝑦′

𝜕𝜕2
+
𝜕2𝑢𝑦′

𝜕𝜕2
� = 𝜌

𝜕2𝑢𝑦′

𝜕𝑡2
, (2b) 

(𝜆 + 𝜇)�
𝜕2𝑢𝑥′
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+
𝜕2𝑢𝑦′
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𝜕𝜕2
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𝜕𝑥2
+
𝜕2𝑢𝑧′

𝜕𝜕2
+
𝜕2𝑢𝑧′

𝜕𝜕2
� = 𝜌

𝜕2𝑢𝑧′

𝜕𝑡2
, (2c) 

 

where 𝑢𝑥′ , 𝑢𝑦′  and 𝑢𝑧′  are displacements in the x, y and z directions, respectively, see also Fig. 

1.  On the surface of the pipe it is assumed that no external forces are present so that all the 

tractions over the surface are zero. The boundary conditions may then be written as 
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ℎ𝑞 = 𝜎𝑞𝑞𝑛𝑞 = 0, (3) 
 
where the indices 𝑞 and 𝑙 take on values of 𝑥,𝜕 and 𝜕, and the summation convention applies 

to repeated indices of 𝑙 only.  In Eq. (3) 𝜎𝑞𝑞 denotes the Cauchy stress tensor and 𝑛𝑞 is the unit 

outward normal vector to the surface of the pipe.  The usual relationships between stresses 

and strains are  

ℎ𝑥 = 𝜆 �
𝜕𝑢𝑥′

𝜕𝑥
+
𝜕𝑢𝑦′

𝜕𝜕
+
𝜕𝑢𝑧′

𝜕𝜕
�𝑛𝑥 + 2𝜇
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𝜕𝑥
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𝜕𝑢𝑥′

𝜕𝜕
+
𝜕𝑢𝑦′

𝜕𝑥
�𝑛𝑦
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𝜕𝜕
+
𝜕𝑢𝑧′

𝜕𝑥
�𝑛𝑧 , 

(4a) 
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+
𝜕𝑢𝑧′

𝜕𝜕
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Figure 1.  Geometry of pipe containing arbitrary defect. 
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2.1 Eigenvalue Analysis 

The SAFE method is used to obtain the eigenvalues for the pipe and this method is now well 

rehearsed in the literature, see for example Refs. [23-26], and so this is only briefly reported 

here.  The displacements 𝑢1𝑞′  in region Ω1 of the pipe (regions Ω1 and Ω3 are assumed to be 

identical) are expanded over the pipe eigenmodes to give 

𝑢1𝑞′ (𝑥, 𝜕, 𝜕) = �𝑢1𝑞
𝑛 (𝑥, 𝜕)𝑒−𝑖𝑖𝛾𝑛𝑧

∞

𝑛=0

, (5) 

 

where the subscript 𝑞 = 𝑥,𝜕 or 𝜕, and 𝑢1𝑞(𝑥,𝜕) are the eigenvectors in region Ω1, with 

𝑘 = 𝜔 𝑐T⁄  so that 𝛾 is a dimensionless wavenumber.  In addition, 𝑐T and 𝑐L are the shear 

(torsional) and compressional (longitudinal) bulk wave velocities, respectively. The finite 

element analysis proceeds by discretising the displacements of any mode 𝑛 over the pipe 

cross-section to give 

𝑢1𝑞(𝑥, 𝜕) = �N𝑞𝑞(𝑥, 𝜕)𝑢1𝑞𝑞 = 𝐍q𝐮1q,

𝑝1𝑞

𝑞=1

 (6) 

 

where N𝑞𝑞 is a global trial (or shape) function, 𝑢1𝑞𝑞 is the value of 𝑢1𝑞 at node 𝑗, and 𝑝1𝑞 is 

the number of nodes (or degrees of freedom) for the displacements in direction 𝑞.  In addition, 

𝐍q and 𝐮1q are row and column vectors of length 𝑝1𝑞, respectively, and it is convenient to 

choose 𝐍𝑥 = 𝐍𝑦 = 𝐍𝑧 = 𝐍.  To formulate the governing eigenequation, Eq. (5) is substituted 

back into Eq. (2) and by using a weak formulation and introducing the boundary conditions in 

Eq. (3) one may arrive at the following general eigenequation: 

𝐏𝐮1 = γ𝐒𝐮1, (7) 
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where 𝐮1 = [𝐮1𝑥 𝐮1𝑦 𝐮1𝑧 γ𝐮1𝑥 γ𝐮1𝑦 γ𝐮1𝑧]T.  The constituents of matrices 𝐏 and 𝐒 

are given in Appendix 1.  Equation (7) is a sparse symmetric eigenequation of order 6𝑝1, with 

𝑝1 = 𝑝1𝑥 = 𝑝1𝑦 = 𝑝1𝑧. This equation is able to provide eigenvalue solutions for waveguides 

with an arbitrary cross-sectional area. However, the focus of this article is to study wave 

scattering problem in an axisymmetric pipe. Solution of this equation yields an unordered list 

of the eigenvalues 𝛾 and their associated eigenvectors 𝐮1, where the eigenvalues appear in the 

pairs 𝛾 and – 𝛾, which indicates waves travelling in the positive and negative 𝜕 directions, 

respectively.  It is necessary to sort these modes before further implementation of the hybrid 

method; however, one problem with a general application of the SAFE method is that it is 

often rather difficult to distinguish each family of modes when sorting the unordered list of 

eigenvalues.  To overcome this the eigenvectors are first transformed from a Cartesian to a 

cylindrical coordinate system (𝑟, 𝜃 and 𝜕) through the relationships 𝐮1θ = −𝑠𝑠𝑛𝜃𝐮1𝑥 +

𝑐𝑐𝑠𝜃𝐮1𝑦, 𝐮1r = 𝑐𝑐𝑠𝜃𝐮1𝑥 + 𝑠𝑠𝑛𝜃𝐮1𝜕, and with 𝐮1𝑧 remaining the same for both systems.  This 

article focuses on pipes and so the modes are labelled according to the convention established 

by Silk and Bainton  [27], which defines the torsional T(0,𝑛), longitudinal L(0,𝑛) and 

flexural F(𝑚,𝑛) modes, for 𝑚 > 0.  To sort these modes a Fourier transform is applied to 

those values of 𝐮1θ and 𝐮1z lying on the outer circumference of the pipe. Now 𝐮1θ and 𝐮1z 

may be expressed in the circumferential direction as either sin𝑚𝜃 or cos𝑚𝜃, so that the peak 

value in the Fourier transformed domain can only exist at mode order 𝑚 if 𝐮1θ or 𝐮1z is not 

equal to zero. Thus, the circumferential order 𝑚 of each mode is found by locating the peak 

value of the Fourier transformed data for 𝐮1θ or 𝐮1z, which permits the sorting of solutions to 

Eq. (7) into torsional, longitudinal and flexural modes.  Each mode type is then sorted in 

ascending order based on the absolute value of the eigenvalue. 
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2.2 The Hybrid Method 

A three dimensional finite element discretisation is used for the non-uniform section of the 

pipe, Ω2, which is assumed to contain a defect of arbitrary shape, see Fig. 1.  The 

displacements 𝑢2𝑞′ (𝑥,𝜕, 𝜕) in Ω2 are discretised to give 

𝑢2𝑞′ (𝑥, 𝜕, 𝜕) = �W𝑞𝑗(𝑥, 𝜕, 𝜕)𝑢2𝑞𝑗 = 𝐖𝐪𝐮𝟐𝐪

𝑝2𝑞

𝑗=1

, (8) 

 

where W𝑞𝑞 is a global shape function and 𝑢2𝑞𝑞 is the value of 𝑢2q′  at node j, and 𝑝2𝑞 is the 

number of nodes in the q direction.  Following the previous section, 𝐖𝑥 = 𝐖𝑦 = 𝐖𝑧 = 𝐖.  

The hybrid method implemented here follows the same general approach as that described by 

Kirby et al. [21, 22] for elastic waveguides, see also Kirby [18] and Duan and Kirby [19] for 

acoustic waveguides.  Accordingly, a weak form of Eq. (2) yields 

 

� ��(𝜆 + 𝜇)
𝜕𝐖T

𝜕𝑥
𝜕𝐖
𝜕𝑥

+ 𝜇∇𝐖T∇𝐖− 𝜌𝜔2𝐖T𝐖�𝐮2𝑥
Ω2

+ �𝜆
𝜕𝐖T

𝜕𝑥
𝜕𝐖
𝜕𝜕

+ +𝜇
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝑥

� 𝐮2𝜕

+ �𝜆
𝜕𝐖T

𝜕𝑥
𝜕𝐖
𝜕𝜕

+ 𝜇
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝑥

�𝐮2𝜕� 𝑑Ω2 = � 𝐖Tℎ2𝑥
Γ2

𝑑Γ2, 

(9a) 

 

� ��𝜆
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝑥

+ 𝜇
𝜕𝐖T

𝜕𝑥
𝜕𝐖
𝜕𝜕

�𝐮2𝑥
Ω2

+ �(𝜆 + 𝜇)
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

+ 𝜇∇𝐖T∇𝐖− 𝜌𝜔2𝐖T𝐖�𝐮2𝜕

+ �𝜆
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

+ 𝜇
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

�𝐮2𝜕� 𝑑Ω2 = � 𝐖Tℎ2𝑦
Γ2

𝑑Γ2, 

(9b) 
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� ��𝜆
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝑥

+ 𝜇
𝜕𝐖T

𝜕𝑥
𝜕𝐖
𝜕𝜕

� 𝐮2𝑥 + �𝜆
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

+ 𝜇
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

� 𝐮2𝜕
Ω2

+ �(𝜆 + 𝜇)
𝜕𝐖T

𝜕𝜕
𝜕𝐖
𝜕𝜕

+ 𝜇∇𝐖T∇𝐖− 𝜌𝜔2𝐖T𝐖�𝐮2𝜕� 𝑑Ω2 

= � 𝐖Tℎ2𝑧
Γ2

𝑑Γ2. 

(9c) 

 

On the surface of region Ω2 that does not include planes ΓA and ΓB it is assumed that no 

external forces are applied so that tractions ℎ2𝑞 are equal to zero. However, on planes Γ𝐴 and 

Γ𝐵, these traction forces are not zero and it is these surfaces that form the link to the modal 

expansions in regions Ω1 and Ω3.  Accordingly, the displacements in regions Ω1 and Ω3 are 

written as modal expansions so that 

𝑢1q′ (𝑥,𝜕, 𝜕) = � A𝑛𝑢1𝑞+𝑛

𝑚1𝑞

𝑛=0

(𝑥,𝜕)𝑒−i𝑖𝛾𝑛𝑧 + � B𝑛

𝑚1𝑞

𝑛=0

𝑢1𝑞−𝑛 (𝑥,𝜕)𝑒i𝑖𝛾𝑛𝑧 , (10) 

𝑢3q′ (𝑥, 𝜕, 𝜕′) = � C𝑛𝑢1𝑞+𝑛 (𝑥,𝜕)

𝑚1𝑞

𝑛=0

𝑒−i𝑖𝛾𝑛𝑧′ . (11) 

 

Here, A𝑛, B𝑛 and C𝑛 are modal amplitudes, and 𝑢1𝑞+𝑛  and 𝑢1𝑞−𝑛  are eigenvectors for the 

incident and reflected waves, respectively.  The number of modes in regions Ω1 and Ω3 in 

direction 𝑞 is 𝑚1𝑞, where 𝑚1𝑞 ≤ 𝑝1𝑞.  It is assumed that the pipe extends to infinity in region 

Ω3 so that no reflected waves are present in this region.  In addition, Eq. (10) allows for a 

general incident sound field, although in the analysis that follows this will be restricted either 

to torsional T(0,1) or longitudinal L(0,2) excitation as this best reflects experimental practice.  
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Continuity of the normal and shear stresses is enforced over planes ΓA and ΓB by substituting 

Eqs. (10) and (11) into Eqs. (9a)-(9c), and using the stress/strain relations in Eq. (4).  This 

permits Eqs. (9a) to (9c) to be re-written as 

𝐆22𝐮𝟐𝒙 + 𝐆32T 𝐮𝟐𝒚 + 𝐆42T 𝐮𝟐𝒛 + 𝐆21𝐁+ 𝐆25𝐂 = [𝐐𝟏𝒙+ − 𝐐𝟏𝒛𝒙+]𝐀, (12a) 

 

𝐆32𝐮2𝑥 + 𝐆33𝐮2𝑦 + 𝐆43T 𝐮2𝑧 + 𝐆31𝐁+ 𝐆35𝐂 = �𝐐1𝜕+ −𝐐1𝜕𝜕+� 𝐀, (12b) 

 

𝐆42𝐮2𝑥 + 𝐆43𝐮2𝑦 + 𝐆44𝐮2𝑧 + 𝐆41−𝐁+ 𝐆45𝐂 = −𝐆41+𝐀, (12c) 

 

where 𝐀, 𝐁 and 𝐂 are vectors holding the modal amplitudes A𝑛, B𝑛 and C𝑛 respectively.  The 

other matrices in these equations are given in Appendix 2.  Equations (12a-c) enforce the 

traction continuity conditions over planes ΓA and ΓB; continuity of displacement is enforced 

separately, which yields 

𝑢𝑞2(𝑥, 𝜕, 0) = � A𝑛𝑢1𝑞+𝑛

𝑚1𝑞

𝑛=0

+ � B𝑛

𝑚1𝑞

𝑛=0

𝑢1𝑞−𝑛  (13a) 

and 

𝑢𝑞2(𝑥,𝜕, 𝐿) = � C𝑛𝑢1𝑞+𝑛

𝑚1𝑞

𝑛=0

, (13b) 

 

where 𝐿 is the length of region Ω2, see Fig. 1.  The displacement continuity equations are 

weighted by an appropriate weighting function and then integrated over planes Γ𝐴 and Γ𝐵 

respectively.  The weighting function is chosen to take advantage of modal orthogonality 

where possible, see for example Gregory [28] for a discussion on orthogonality relations for 

elastic waves, and also Kirby et al. [21, 22] for implementation in axisymmetric problems.  
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The use of an appropriate semi-orthogonality relation also helps to deliver a convergent 

system of equations, which is crucial in delivering an accurate solution for the problem.  

Accordingly, the displacement on plane ΓA in the 𝑥 direction is weighted with 𝐆21T , while in 

the 𝜕 and 𝜕 directions 𝐆31T  and 𝐆41−T  are used, respectively. For ΓA this yields  

 

𝐆21T 𝐮2x + 𝐆31T 𝐮2y + 𝐆41−T 𝐮2z − 𝐆11−𝐁 = 𝐆11+𝐀, (14a) 

 
and for Γ𝐵 
 

𝐆25T 𝐮2x + 𝐆35T 𝐮2y + 𝐆45T 𝐮2z + 𝐆55𝐂 = 𝟎. (14b) 

 

Finally, Eqs. 12(a)-(c) and 14(a)-(b) are grouped together to give the final system equation   

⎣
⎢
⎢
⎢
⎢
⎡−𝐆11− 𝐆21T 𝐆31T 𝐆41−T 𝟎
𝐆21 𝐆22 𝐆32T 𝐆42T 𝐆25
𝐆31 𝐆32 𝐆33 𝐆43T 𝐆35
𝐆41− 𝐆42 𝐆43 𝐆44 𝐆45
𝟎 𝐆25T 𝐆35T 𝐆45T 𝐆55⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧ 𝐁
𝐮2x
𝐮2y
𝐮2z
𝐂 ⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧

𝐆11+𝐀
[𝐐1x+ − 𝐐1zx+]𝐀
�𝐐1y+ − 𝐐1zy+�𝐀

−𝐆41+𝐀
𝟎 ⎭

⎪
⎬

⎪
⎫

. (15) 

 

Equation (15) is a set of 𝑛𝜔 (= 2𝑚1+𝑝2) linear equations, where 𝑝2 is the number of nodes in 

region Ω2 (𝑝2 = 𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧), and 𝑚1 is the number of modes in regions Ω1 and Ω3 

respectively (𝑚1 = 𝑚1𝑥 + 𝑚1𝑦 + 𝑚1𝑧). The modal amplitudes in Ω1 and Ω3, and the 

displacements in region Ω2, are then found on the solution of Eq. (15). The frequency domain 

displacements in region Ω1 can be calculated from Eq. (10), and the corresponding time 

domain displacements in region Ω1 are easily obtained following an inverse Fourier 

transform.  
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Equation (15) is solved in the frequency domain.  In order to generate a time domain 

response an incident pulse is first specified in the time domain, which is then transformed 

into the frequency domain using a discretised Fourier transform.  The complex amplitude 

obtained for the pulse at each frequency is then used as the incident modal amplitude in Eq. 

(15).  For the time domain predictions that follow, Eq. (15) is solved in the frequency domain 

at 3671 discrete frequencies, which delivers a frequency range suitable for minimising 

numerical noise whilst at the same time delivering an acceptable solution time.  Following 

the frequency domain calculations an inverse Fourier transform is undertaken to generate the 

time domain predictions. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Convergence of hybrid model 

The accuracy of the hybrid model generally depends on the number of modes used in the 

uniform sections of the pipe, as well as the number of the degrees of freedom in the non-

uniform section.  To achieve a good level of accuracy while retaining the efficient nature of 

the model, a convergence study is carried out first for a non-axisymmetric defect in a pipe in 

the frequency domain.  The defect studied in this section is chosen to be a relatively small 

crack so that it is difficult to locate and presents a demanding problem with which to 

investigate convergence.  Accordingly, a defect is chosen that extends around 10% of the 

circumference of a 3 inch schedule 40 steel pipe. The shape of this defect is shown in Fig. 2. 

The outer and inner radius of the pipe is 43.5 mm and 38 mm respectively. The depth of the 

defect is 50% of the pipe wall thickness and its length (in the 𝜕 direction) is 2.5 mm. This 

equates to a defect that extends approximately 27 mm around the outer circumference of the 
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pipe, with a depth of 2.75 mm, and so this is considered to be a relatively small defect in the 

context of typical non-destructive testing on pipelines [3]. The properties of the steel pipe are 

𝑐𝑇 = 3260 m/s, 𝜏 = 3.342 , and 𝜌 = 8030 kg/m3 . For the three dimensional model, six 

noded isoparametric elements are used for planes ΓA  and ΓB , and ten noded tetrahedral 

isoparametric elements are used for Ω2 . The distance between planes ΓA  and ΓB  is 𝐿 =

8.5 mm. The numerical model was programmed in MATLAB and executed on a laptop with a 

2.4 GHz Intel Core™ CPU and an 8 GB RAM.  

 

 

 

 

 

 

 

 

Fig. 2. Shape of a defect. (a) cross-sectional view, (b) side view. 

 

The convergence of the numerical model is investigated in the frequency domain using a 

frequency of 70 kHz.  The convergence of the model is investigated in terms of the number of 

modes (𝑚1) used in the uniform sections, see Table 1, and the number of degrees of freedom 

in the mesh surrounding the crack (𝑝2), see Table 2.  Here convergence is investigated in 

terms of sound power in order to permit a power balance to be calculated.  Accordingly, the 

reflected and transmitted sound power ratio is defined, in the frequency domain, as 

 

(b) (a) 

 

 

∞ ∞ 
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 𝑃𝑟 =
Re �∫ �𝜎1𝑧𝑞− ∙ 𝑢1𝑞−∗ �𝑑Γ𝐴Γ𝐴

�

Re �∫ �𝜎1𝑧𝑞+ ∙ 𝑢1𝑞+∗ �𝑑Γ𝐴Γ𝐴
�
 (16) 

 
and 
 

 𝑃𝜔 =
Re �∫ �𝜎3𝑧𝑞+ ∙ 𝑢3𝑞+∗ �𝑑Γ𝐵Γ𝐵

�

Re �∫ �𝜎1𝑧𝑞+ ∙ 𝑢1𝑞+∗ �𝑑Γ𝐴Γ𝐴
�

. (17) 

 

Here, the superscript * indicates the complex conjugate, and 𝑞 takes on values of 𝑥,𝜕 and 𝜕.  

In addition,  𝑢1𝑞+ and 𝑢1𝑞− are the incident and reflected displacements, and 𝜎1𝑧𝑞+ and 𝜎1𝑧𝑞− 

are the incident and reflected stress tensors, on plane Γ𝐴.  Similarly, 𝑢3𝑞+ and 𝜎3𝑧𝑞+ are the 

transmitted displacement and stress tensor on plane Γ𝐵, respectively.  The sum of the 

reflected and transmitted sound power ratio should of course be equal to unity and in Tables 1 

and 2 the percentage error in the power balance is seen to be less than 0.01% once a sufficient 

number of elements have been included.  This represents very good agreement and compares 

favourably to the error in the energy balance reported elsewhere, for example Velichko and 

Wilcox [5] report an error of between 2 and 4% for guided waves in a plate with three 

propagating modes present.  Note that in Table 1, the number of degrees of freedom 

surrounding the defect is fixed so that 𝑝2 = 21,030 and this corresponds to an element 

density of 31 nodes per wavelength for the torsional mode. This high mesh density is 

designed to demonstrate that very accurate results can be obtained, although if one relaxes 

this requirement and tolerates a higher error in the power balance then a much faster solution 

may be obtained.  The aim of this article is to retain very accurate solutions where possible 

and so in view of the results presented in Tables 1 and 2 the number of modes in the uniform 

pipe section is chosen to be 𝑚1 = 200 so that good convergence of the solution is retained.  

Note that when 𝑚1 = 200 for this particular problem, both propagating and non-propagating 
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(evanescent) modes are included.  Evanescent modes are very important in delivering good 

convergence for the matching conditions over boundaries ΓA and ΓB, and so a sufficient 

number of modes is necessary to obtain an accurate solution.  At a frequency of 70 kHz, 39 

propagating modes are present for this pipe, and of these 3 are axisymmetric and 36 are 

flexural modes; the total number of evanescent modes is 161, with 80 modes possessing 

purely imaginary wavenumbers and 81 modes possessing complex wavenumbers. This 

number of modes was chosen to ensure good convergence of the matching conditions over 

boundaries ΓA and ΓB. Note that the evanescent modes are sorted in ascending order 

according to the absolute value of their imaginary parts, and so evanescent modes with 

smaller imaginary parts are always selected first. This is because those evanescent modes 

with a smaller imaginary part will play a more important role in satisfying the boundary 

conditions when compared to those with a larger imaginary part. The three dimensional 

model is computationally efficient so that the computation time is less than 3 minutes for 

each frequency when using 𝑚1 = 200 and 𝑝2 = 21,030.  Clearly if one tolerates lower levels 

of accuracy, such as those reported in the literature, then this computation time can be 

significantly improved and it can be seen in Tables 1 and 2 that this can be reduced to 18 

seconds for 𝑚1 = 50 and 𝑝2 = 21,030.  Moreover, with solutions times of this order the 

method is suitable for the use of inverse Fourier transforms in order to generate time domain 

predictions. 
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Table 1.  

Convergence for a non-axisymmetric defect in the frequency domain with 𝑝2 = 21,030. 

𝑚1 Reflected sound 
power ratio 

Transmitted 
sound power 

ratio 

Power 
balance % 

Computation 
time (s) 

50 0.012636 0.991402 0.4038 18 

75 0.012344 0.991104 0.3447 24 

100 0.011192 0.989217 0.0409 35 

125 0.010910 0.989501 0.0412 48 

150 0.010862 0.989548 0.0411 80 

175 0.010830 0.989545 0.0375 121 

200 0.010398 0.989627 0.0025 147 

225 0.010377 0.989624 0.0001 215 

250 0.010367 0.989624 -0.0010 316 

275 0.010364 0.989628 -0.0008 400 

300 0.010359 0.989620 -0.0021 513 
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Table 2.  
Convergence for a non-axisymmetric defect in the frequency domain with 𝑚1 = 200. 

𝑝2 Reflected sound 
power ratio 

Transmitted 
sound power 

ratio 

Power 
balance % 

Computation 
time (s) 

4584 0.008564 0.991463 0.0027 24 

5241 0.009207 0.990797 0.0004 44 

6297 0.010251 0.989740 -0.0008 54 

8181 0.010642 0.989639 0.0281 94 

9936 0.010468 0.989599 0.0067 114 

11595 0.010315 0.989690 0.0005 124 

14034 0.010473 0.989564 0.0036 129 

21030 0.010398 0.989627 0.0025 147 

33951 0.010529 0.989501 0.0030 163 

50508 0.010829 0.989193 0.0022 248 

 

In order to illustrate convergence in terms of fulfilling the matching conditions across the 

boundary ΓA , the torsional displacement distribution for plane ΓA  is shown in Fig. 3 at a 

frequency of 70 kHz.  The displacement field over plane ΓA lying in region Ω1 is calculated 

by solving Eq. (15) and substituting the incident and reflected modal amplitudes A and B into 

Eq. (10).  This is then combined with the eigensolutions from Eq. (7) to enable the modal 

sum, and hence the displacement field in Ω1, to be computed.  The displacement distribution 

over plane ΓA lying in region Ω2 is obtained from the nodal displacement field for the finite 

element mesh found on solution of Eq. (15).  It can be seen that the two solutions deliver 

identical displacement distributions demonstrating that the displacement boundary condition 

has been executed correctly.  Similar diagrams can be obtained for the other boundaries and 

matching conditions.  It is interesting to note in Fig. 3 that the highest displacement is at the 

top of the pipe in the region that is opposite the defect.  Clearly this displacement field is non-
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axisymmetric and so this is evidence of the strong influence of flexural modes on the 

displacement distribution over this plane.  

 
 

 

 

 

Fig. 3. Displacement distribution over plane ΓA. (a) 𝑢1θ
, ; (b) 𝑢2θ

, .  
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3.2 Validation in the frequency domain 

The hybrid method is now validated in the frequency domain because this can be done by 

comparing predictions against a two dimensional model for an axisymmetric defect.  A two 

dimensional model will be very accurate because a significant reduction in the degrees of 

freedom is possible for a symmetrical problem.  This then provides a very rigorous test of the 

current model.  The two dimensional results presented by Kirby et al. [21, 22] are chosen 

here and so this validation is carried out for a 3 inch Schedule 40 steel pipe and a square 

(uniform) axisymmetric defect with a 50% area reduction and a length of 15 mm. For the 

three dimensional model, six noded isoparametric elements are used for planes ΓA and ΓB, and 

ten noded tetrahedral isoparametric elements are used for Ω2.  

 

In the results that follow the reflection coefficient of waves reflected back into region Ω1 is 

used to characterise the scattering by the defect.  The model presented in the previous section 

will capture every mode scattered by a defect and so accommodate all mode conversions that 

take place during this process.  However, in commercial experimental tools transducers are 

used to transmit as well as receive the guided waves and these transducers are normally 

aligned to excite/measure either torsional or longitudinal displacements.  This means that 

only those modes with a dominant displacement in the torsional direction will be picked up 

when the transducers are aligned to excite T(0,1), and similarly for axial displacements when 

exciting with L(0,2).  Therefore, in order to enable direct comparison with the experimental 

measurements of Kirby et al. [21, 22] the reflection coefficient predictions must be designed 

to separate torsionally and axially dominant displacements.  Accordingly, the reflection 

coefficient Λ for mode (𝑚,𝑛) is defined [in the frequency domain only] as  
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 Λ(𝑚,𝑛) =
B(𝑚,𝑛)𝑢1𝑞−

(𝑚,𝑛)

A(𝑚I,𝑛I)𝑢1𝑞+
(𝑚I,𝑛I) ,    𝑞 = 𝜃 or 𝜕. (18) 

 

Thus, Λ is calculated by normalising a reflected mode (𝑚,𝑛) by an incident mode (𝑚I,𝑛I), 

where the incident mode determines whether one chooses the torsional (𝜃) or longitudinal (𝜕) 

displacements on the right hand side of Eq. (18).  That is, if the incident mode is T(0,1) then 

𝑞 = 𝜃, and if it is 𝐿(0,2) then 𝑞 = 𝜕.  Building in the appropriate torsional or longitudinal 

displacements into Eq. (18) thus permits the comparison with measurements taken with 

𝑇(0,1) and 𝐿(0,2) incident modes.   

 

In Figs. 4(a) and 4(b) the reflection coefficients for an axisymmetric defect are compared for 

excitation by T(0,1) and L(0,2) incident modes, respectively.  The theoretical model uses 

values of 𝑚1 = 200  and 𝑝2 = 64,707  for each frequency.  The agreement between the 

different methods is seen to be very good and the reflection coefficients for the two and three 

dimensional models agree to an accuracy of at least two decimal places over the frequency 

range shown in Figs. 4(a) and 4(b).  This provides evidence that the three dimensional model 

is working correctly and is capable of accurately modelling wave scattering of different 

incident modes in the frequency domain. 
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Fig. 4. Reflection coefficients for (a) the T(0,1) mode and (b) the L(0,2) mode incident upon 

an axisymmetric defect: ───, current three dimensional model;  ─ ─ ─, two dimensional 

axisymmetric models of Kirby et al. [21, 22]; ▲, Experiment [21, 22]. 
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3.3 Validation in the time domain 

The theoretical model is now validated in the time domain.  Time domain predictions are 

obtained using the method outlined at the end of Section 2, with an incident pulse consisting 

of a 10 cycle Hanning windowed sinusoidal wave with a centre frequency of 70 kHz.  

Following transformation in the frequency range, the problem is solved at 3671 discrete 

frequencies extending from 35 kHz to 105 kHz in increments of 19.07 Hz.  Predictions are 

compared against reflection coefficient data measured by Lowe et al. [3] for an L(0,2) mode 

incident on a through thickness defect in a 3 inch schedule 40 steel pipe.  This defect was 

machined into the pipe by Lowe et al. using a 3.2 mm slot drill, and different distances 

around the circumference of the pipe were machined in order to generate a range of different 

non axisymmetric defects.  Accordingly, the data reported by Lowe et al. [3] provides a 

rigorous test of the theoretical model as it covers a number of different defects, as well as the 

reflection coefficients for L(0,2) and F(1,3).   

 

The reflection coefficients reported by Lowe et al. [3] contain data for F(1,3) so that the 

displacement profile varies around the circumference of the pipe.  Lowe et al. [3] placed 16 

transducers evenly around the circumference of the pipe in order to capture the 

circumferential displacement profile.  A phase delay of (𝑚𝜃/2𝜋) was then applied to each 

transducer before summing up and averaging the data measured by each transducer, where 𝑚 

is the order of the circumferential mode to be extracted.  If 𝑚 > 0 the circumferential 

dependence is sinusoidal and so for flexural modes the average value will be exactly halfway 

between the maximum and minimum displacements.  In this article our reflection coefficient 

in the time domain is defined as the ratio of the maximum values of the reflected and incident 

signals.  Therefore in order to directly compare the theoretical predictions generated in this 

article with the experimental data measured by Lowe et al. [3] it is necessary to multiply the 
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measured data by 2 for F(1,3).  Accordingly, the reflection coefficients measured by Lowe et 

al. for the L(0,2) and F(1,3) modes are compared against theoretical predictions obtained 

using a time domain model in Fig. 5.  The current method is seen to agree very well with the 

experimental data over a wide range of different non-axisymmetric defect geometries and this 

serves to further validate the hybrid model presented here.   

 

 
 

Fig. 5. Reflection coefficient for the L(0,2) mode incident upon a part-circumferential 

through-thickness defect:     □      , current three dimensional model; ▲, experiments of 

Lowe et al. [3].  

 

3.4 Separating modes in the time domain 

It is common when measuring the scattering of modes in the time domain to measure the 

peak amplitude of the displacement.  A common problem with this is that the peak amplitude 

changes with distance from the defect because all modes apart from T(0,1) are dispersive.  

Accordingly it is common to choose modes and a centre frequency that minimises this effect 
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and for the L(0,2) and F(1,3) modes chosen by Lowe et al. [3] these modes are only weakly 

dispersive at 70 kHz.  However, at different frequencies and/or for different modes dispersion 

will causes many problems when trying to identify a reflection coefficient and this limits the 

general use of this method and often makes it difficult to distinguish scattering from objects 

that convert energy into many dispersive modes.   

 

This problem may be illustrated with the theoretical model developed here.  To do this a non-

axisymmetric part-thickness defect of the type shown in Fig. 2 is generated for a 3 inch 

schedule 40 pipe.  The dimensions of this defect are the same as those described in Section 

3.1.  This type of defect is commonly found in real applications and generates a more 

complicated scattering profile when compared to through thickness defects such as those 

examined in Fig. 5.  Accordingly, a long length of pipe is utilised here so that propagating 

eigenmodes may be separated, as far as possible, in the time domain.  The sound source is 

again chosen to be a 10 cycle Hanning windowed sinusoidal wave with a centre frequency of 

70 kHz.  Following transformation in the frequency range, the problem is solved at 3671 

discrete frequencies extending from 35 kHz to 105 kHz in increments of 19.07 Hz.  To 

maintain a well converged and yet computationally efficient solution those values identified 

in section 3.1 (𝑚1 = 200 and 𝑝2 = 21,030) are used and the model is executed on a 

computer with 12 CPU cores and a total accessible RAM of 128 GB. Parallelisation 

techniques are used so that the problem is solved in parallel for 12 frequencies at a time. The 

total computation time is around 13 hours.  

 

In Figs. 6 and 7 the normalised displacements in the 𝑥 and 𝜕 directions are presented for 

excitation by the T(0,1) and L(0,2) modes, respectively. The displacements are those 
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obtained at the outer circumference of the pipe using the modal expansion given by Eq. (13a).  

The displacements are sampled up to 15 m away from the defect so that differences in group 

velocity help to separate out the modes in each figure.  Note that the defect is placed on top of 

the pipe so that it is symmetric about the 𝜕 axis (see Fig. 2).  It can be seen that some 

numerical noise is present between the incident and the first reflected pulse in Figs. 6 and 7.  

This is a result of using an inverse Fourier transform for the time domain predictions, 

whereby the total time duration of the signal is determined by the number of frequencies used 

in the model, as well as the sampling period chosen. The duration of the time domain signal 

is of course finite, however theoretically the time domain signal should be infinitely long to 

accommodate those modes that are extremely dispersive [with group velocities approaching 

zero at modal cut-on frequencies].  Accordingly, one has to use a finite time domain window 

to truncate this infinitely long signal and this leads to numerical noise following the inverse 

Fourier transform.  For the examples shown in Figs. 6 and 7 the total duration of the signal is 

52.4ms and this delivers a minimum signal to noise ratio of 52dB.  Therefore, it is concluded 

that this numerical noise has a negligible influence on the scattered signals that are of interest 

here.  Of course, one may further increase this signal to noise ratio, but this would require an 

increase in the duration of the time domain signal, which would increase the computation 

time.   Accordingly, one must balance numerical noise in the time domain signal with 

computational time for solving the problem, and in this and following examples a signal to 

noise ratio of greater than 50 dB was deemed to be sufficient.  

 

The complexity of the scattering problem is obvious in Figs. 6 and 7, even with a long pipe 

length to separate the propagating modes.  A large number of modes are seen to be cut-on at 

70 kHz, and the part through defect is seen readily to scatter energy into a number of these 

modes.  The modes are identified by comparing values calculated for their group velocity 
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with the time of flight measured in Figs. 6 and 7.  It is not surprising to see that energy 

scatters into the same mode as the one used to excite the problem; however, significant 

amounts of energy is also seen to scatter into higher order flexural modes, especially those 

that have a mode shape similar to the incident mode.  For example, in Fig. 8(a) the mode 

shapes for F(1,2) and F(2,2) are compared to those for T(0,1), and in Fig. 8(b) modes F(1,3) 

and F(5,2) are compared to L(0,2).  In both cases these modes shapes are sufficiently similar 

to the incident mode to see significant energy reflected into these modes in Figs. 6 and 7.  

This illustrates one of the problems of using guided elastic waves at high frequencies, as 

modes with similar shapes will continue to cut on as the frequency increases and so energy 

will readily transfer into these propagating higher order modes.  Accordingly, this scattering 

of energy into dispersive higher order modes presents a problem when trying to interpret 

reflections obtained in the time domain because the amplitude of each mode depends on the 

distance travelled.  This is seen to occur even at a centre frequency of 70 kHz and for a 

relatively small pipe. These results also illustrate the difficulty of discretising the whole pipe 

using a traditional finite element based approach because a large number of modes are seen to 

carry energy and so fully capturing the behaviour of these modes is likely to require a very 

large number of elements as the pipe extends beyond about 1 m.  The hybrid finite element 

method neatly overcomes this difficulty by using a modal expansion for the displacement 

field in the uniform pipe section so that the time to solve the problem is independent of pipe 

length, which allows all of the scattered modes to be captured over a long-length of pipe and 

does not rely on absorbing regions to damp unwanted reflections.  
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Fig. 6. Predicted displacement for the T(0,1) mode incident upon a non-axisymmetric defect. 

(a) 𝑥 direction, (b) 𝜕 direction. 
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Fig. 7. Predicted displacement for the L(0,2) mode incident upon a non-axisymmetric defect. 

(a) 𝑥 direction, (b) 𝜕 direction. 
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Fig. 8. Mode shapes for a 3 inch schedule 40 pipe at 70 kHz. 

(a) ────, T(0,1); − − −, F(1,2); ·······, F(2,2).  

(b) ────, L(0,2); − − −, F(1,3); ·······, F(5,2). 
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The problems with dispersion seen in previous figures serve to reduce the effectiveness of 

experimental methods, especially when one is trying to separate signals from more than one 

defect.  Therefore, it is interesting to investigate possible methods for removing the effects of 

dispersion when processing the scattered data.  One possible approach is to define the 

reflection coefficient in terms of modal amplitude in the frequency domain rather than using 

peak amplitude in the time domain.  This can be achieved using a two dimensional Fourier 

analysis in order to separate out modes in the time domain modes.  For example, when 

undertaking experimental measurements Lowe et al. [3] used evenly spacing multiple 

receivers around the circumference of a pipe to separate out modes with different 

circumferential orders.  This procedure is demonstrated theoretically in Figs. 9 and 10 for the 

pipe and defect studied previously in this section, with 64 receivers used for torsional T(0,1) 

and longitudinal L(0,2) excitation, respectively.  It can be seen in Figs. 9 and 10 that low-

order flexural modes may be separated, however, higher order flexural modes that are highly 

dispersive still overlap, see for example F(2,2) and F(2,3), F(3,2) and F(3,3).  Furthermore, 

the high levels of dispersion mean that the peak amplitudes of these modes will depend 

strongly on receiver location. As a consequence, it is difficult to arrive at a meaningful 

interpretation of the time domain peak amplitudes of these flexural modes and this problem 

cannot be overcome simply by increasing the number of transducers in the circumferential 

direction.  
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Fig. 9. Predicted displacement for the T(0,1) mode incident upon a non-axisymmetric defect, 

separated into different circumferential mode orders. 

(a) 𝑚 = 0; (b) 𝑚 = 1; (c) 𝑚 = 2; (d) 𝑚 = 3. 
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Fig. 10. Predicted displacement for the L(0,2) mode incident upon a non-axisymmetric 

defect, separated into different circumferential mode orders. 

  (a) 𝑚 = 0; (b) 𝑚 = 1; (c) 𝑚 = 2; (d) 𝑚 = 3; (e) 𝑚 = 4; (f) 𝑚 = 5. 
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A two dimensional Fourier transform with receivers arranged circumferentially is seen to be 

able to separate some propagating modes, however an alternative approach is to use the 

Fourier transform to study modal amplitudes rather than displacement amplitude. Modal 

amplitude is entirely independent of modal dispersion, see for example Eqs. (10) and (11).  

Accordingly, modal amplitude may be recovered by using a 𝑘 − 𝜔 plot.  This can be 

achieved for a pipe by placing receivers along the length of the pipe rather than around the 

pipe circumference.  Thus, for the pipe and defect geometry used in Figs. 6-10, 𝑘 − 𝜔 plots 

are generated here using displacements calculated at 512 axial sampling points placed evenly 

along the length of the outer circumference of the pipe, with every point at the same 

circumferential location directly opposite the defect, so that 𝑥 = 0 for all sampling points.  

The first sampling point is located 15 m away from the defect, with the other points placed a 

distance of 10 mm away from one another in the direction of the defect, so that the sampling 

points extend a distance of 5.11 m towards the defect.  The time domain signal calculated at 

each sampling point is then stored in the row of a matrix and, following truncation of each 

signal, a two dimensional Fourier transform is applied to the matrix in order to generate a 

𝑘 − 𝜔 plot.  In the 𝑘 − 𝜔 domain the largest wavenumber that can be sampled is dictated by 

the distance between the sampling points and for this example the maximum value is 

𝑘max = 314 m−1.  The wavenumber resolution ∆𝑘 is determined by the distance between the 

first and last receivers, which for this example gives ∆𝑘 = 1.227 m−1.   

 

In Figs. 11(a) and 11(b), 𝑘 − 𝜔 plots are presented for the modes scattered by a defect with 

excitation by the T(0,1) and L(0,2) modes, respectively.  It is well known that 𝑘 − 𝜔 plots 

will recover the dispersion curves for a waveguide and this is clearly seen in Fig. 11.  



39 
 

Accordingly, this method separates out individual modes and will remove those problems 

associated with dispersion that are typically encountered in the time domain.  Crucially, the 

𝑘 − 𝜔 plots also deliver the modal amplitudes at each frequency; these are independent of the 

effects of dispersion and so they may be used to generate reflection coefficients that are 

independent of sampling location.  This is very important when attempting to study energy 

scattered into higher order modes when a large number of modes propagate.  It is interesting 

also to note in Fig. 11 that the scattering from an L(0,2) incident mode delivers a much more 

complex response when compared to a T(0,1) incident mode.  It is, therefore, possible to 

reduce the number of sampling locations if one is interested solely in excitation by T(0,1).  

Note also that some of these modes are seen to overlap one another at particular frequencies 

and better discrimination between these modes may be achieved by increasing the length of 

the pipe over which the data is sampled; however, this is not thought to be necessary as it is 

relatively straightforward to avoid frequencies where modes overlap one another by 

consulting dispersion curves for a pipe.   
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Fig. 11.  Reflections from a defect in the k-ω domain (colour online).  (a) excitation by 

T(0,1); (b) excitation by L(0,2). 
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The key advantage of a 𝑘 − 𝜔 plot is that reflection coefficients may be generated that are 

independent of the effects of dispersion.  This is illustrated in Figs. 12 (a) and (b), where the 

modal amplitude is plotted against wavenumber at a frequency of 70 kHz for T(0,1) and 

L(0,2) excitation, respectively (this is a vertical slice through the 𝑘 − 𝜔 plots in Fig. 11).  

One can clearly see that it is now much easier to separate the response from individual modes 

when compared to the time domain responses seen previously.  Thus, these reflection 

coefficients provide significantly more information when compared to that recovered in the 

time domain and through the careful processing of this information it may be possible to gain 

more knowledge about the defect, such as the geometry and/or type of defect encountered.  

For example, in Fig. 12 it is seen that it may be possible to use F(3,3) or F(5,2) as a guide to 

interpreting the presence of a defect rather than T(0,1) or L(0,2), respectively. The 𝑘 − 𝜔 

domain figures also remove the problem of coherent noise (the overlapping of dispersive 

modes in the time domain).  Of course, such an approach does depend on being able to 

distinguish the signature of this crack from that of other scattering objects that are likely to be 

present in a real pipe. Furthermore, this approach requires the use of a relatively large number 

of sampling points placed along the axis of a pipe and so it remains to be been seen how easy 

it is to apply this method in practice.  One may also be able to significantly reduce the 

number of sampling locations is one wishes to target particular modes in the dispersion curve.  

However, ultimately an increase in experimental difficulty is a penalty one must probably 

expect to pay in order to recover significantly more information about a defect in a pipe.   
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Fig. 12.  Modal amplitudes at 70 kHz for excitation by (a) T(0,1), and (b) L(0,2).   
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4. CONCLUSIONS 

This article develops a three dimensional numerical approach to the analysis of elastic wave 

propagation in pipes with non-axisymmetric defects.  The article introduces an alternative 

WRM approach to deriving the governing finite element equations and through the use of 

Galerkin’s method a hybrid SAFE-FE method is developed that avoids multiplying global 

matrices before solving the problem. The modal and displacement solutions are obtained 

through solution of a final governing equation in the frequency domain, and time domain 

solutions are calculated from an inverse Fourier transform. A hybrid approach permits the 

study of long lengths of pipe and it is shown that for non axisymmetric defects energy is 

scattered into higher order flexural modes and the dispersive nature of these modes means 

that separating them in the time domain is likely to be difficult.  Moreover, when attempting 

to recover the peak amplitude of a particular mode problems will occur because for all modes 

apart from T(0,1) these amplitudes are a function of the axial location of the receiver on the 

pipe. 

The hybrid model is seen to converge quickly and for a non-axisymmetric defect the error in 

power balance is generally below 0.01% for a computation time of less than 3 minutes for 

each frequency. Following this the time domain model currently takes about 13 hours to 

solve with the use of parallelisation techniques; however, if one tolerates lower levels of 

accuracy then this solution time may be significantly reduced.  Accordingly a time domain 

model based on frequency calculations using the hybrid method presented here are seen to be 

significantly faster than using a full FE discretisation of the problem.  Thus, this paper 

demonstrates that an FE based method can be used to solve a time domain scattering problem 

for an arbitrary defect in a long waveguide with an arbitrary cross-section.  This article also 

demonstrates that it is possible to avoid problems caused by dispersion by working in the 

𝑘 − 𝜔 domain using sensors placed along the pipe axis.  This permits modal amplitudes for 
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every propagating mode to be determined, which provides a significant increase in the 

information that may be extracted when compared to the analysis of amplitude in the time 

domain.  
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APPENDIX 1 

𝐏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝟎 𝟎 𝟎 𝐙41T 𝐙51T 𝟎
𝟎 𝟎 𝟎 𝐙51 𝐙52T 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐙63T

𝐙41 𝐙51T 𝟎 𝟎 𝟎 𝐙64T

𝐙51 𝐙52 𝟎 𝟎 𝟎 𝐙65T
𝟎 𝟎 𝐙63 𝐙64 𝐙65 𝟎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (A1) 

𝐒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐙41

T 𝐙51T 0 0 0 0
𝐙51 𝐙52T 0 0 0 0
0 0 𝐙63T 0 0 0
0 0 0 −𝑘2𝐊2 0 0
0 0 0 0 −𝑘2𝐊2 0
0 0 0 0 0 𝜏𝑘2𝐊2⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (A2) 

 

𝐙41 = (𝜏 − 1)𝐊x + 𝐊1 − 𝑘2𝐊2 (A3) 

𝐙51 = (𝜏 − 2)𝐊xy
T + 𝐊xy (A4) 

𝐙52 = (𝜏 − 1)𝐊y + 𝐊1 − 𝑘2𝐊2 (A5) 

𝐙63 = −(𝐊1 − 𝑘2𝐊2) (A6) 

𝐙64 = 𝑠𝑘�(2 − 𝜏)𝐊𝟑 + 𝐊𝟑
T� (A7) 

𝐙65 = 𝑠𝑘[(2 − 𝜏)𝐊4 + 𝐊4
T] (A8) 

𝐊1 = � ∇𝐍T∇𝐍
Γ1

𝑑Γ1     and     𝐊2 = � 𝐍T𝐍
Γ1

𝑑Γ1 (A9a,b) 

𝐊3 = � 𝐍T 𝜕𝐍
𝜕𝑥Γ1

𝑑Γ1     and     𝐊4 = � 𝐍T 𝝏𝐍
𝝏𝜕Γ1

𝑑Γ1  (A10a,b) 

𝐊x = �
𝜕𝐍T

𝜕𝑥
𝜕𝐍
𝜕𝑥Γ1

𝑑Γ1     and     𝐊y = �
𝜕𝐍T

𝜕𝜕
𝜕𝐍
𝜕𝜕Γ1

𝑑Γ1 (A11a,b) 

𝐊xy = �
𝜕𝐍T

𝜕𝑥
𝜕𝐍
𝜕𝜕Γ1

𝑑Γ1 (A12) 

Note that 𝜏 = 𝑐L2 𝑐T2⁄ . 
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APPENDIX 2 

 

𝐑𝑥 = �
𝜕𝐖𝐓

𝜕𝑥
𝜕𝐖
𝜕𝑥Ω2

𝑑Ω2     and     𝐑𝑦 = �
𝜕𝐖𝐓

𝜕𝜕
𝜕𝐖
𝜕𝜕Ω2

𝑑Ω2   (A13a,b) 

𝐑𝑥𝑦 = �
𝜕𝐖𝐓

𝜕𝑥
𝜕𝐖
𝜕𝜕Ω2

𝑑Ω2     and     𝐑𝑥𝑧 = �
𝜕𝐖𝐓

𝜕𝑥
𝜕𝐖
𝜕𝜕Ω2

𝑑Ω2 (A14a,b) 

𝐑𝑦𝑧 = �
𝜕𝐖𝐓

𝜕𝜕
𝜕𝐖
𝜕𝜕Ω2

𝑑Ω2     and    𝐑𝑧 = �
𝜕𝐖𝐓

𝜕𝜕
𝜕𝐖
𝜕𝜕Ω2

𝑑Ω2  (A15a,b) 

𝐑1 = � ∇𝐖𝐓∇𝐖
Ω2

𝑑Ω2     and    𝐑2 = � 𝐖𝐓

Ω2
𝐖𝑑Ω2  (A16a,b) 

𝐐1𝑥± = 𝑠𝑘𝛾𝑛 � 𝐖T𝑢1𝑥±
𝑛 𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A17) 

𝐐1𝑧𝑥± = � 𝐖T 𝜕𝑢1𝑧±
𝑛

𝜕𝑥
𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A18) 

𝐐3𝑥+ = 𝑠𝑘𝛾𝑛 � 𝐖Tu1𝑥+𝑛 𝑑ΓB
ΓB

, 𝑛 = 1,2 …𝑚1 (A19) 

𝐐3𝑧𝑥+ = � 𝐖T 𝜕u1𝑧+𝑛

𝜕𝑥
𝑑ΓB

ΓB
, 𝑛 = 1,2 …𝑚1 (A20) 

𝐐1𝑦± = 𝑠𝑘𝛾𝑛 � 𝐖T𝑢1𝑦±
𝑛 𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A21) 

𝐐1𝑧𝑦± = � 𝐖T 𝜕𝑢1𝑧±
𝑛

𝜕𝜕
𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A22) 

𝐐3𝑦+ = 𝑠𝑘𝛾𝑛 � 𝐖T𝑢1𝑦+𝑛 𝑑ΓB
ΓB

, 𝑛 = 1,2 …𝑚1 (A23) 

𝐐3𝑧𝑦+ = � 𝐖T 𝜕u1𝑧+𝑛

𝜕𝜕
𝑑ΓB

ΓB
, 𝑛 = 1,2 …𝑚1 (A24) 

𝐐1𝑧± = 𝑠𝑘𝛾𝑛 � 𝐖T𝑢1𝑧±
𝑛 𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A25) 

𝐐1𝑥𝑥± = � 𝐖T 𝜕𝑢1𝑥±
𝑛

𝜕𝑥
𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A26) 

𝐐1𝑦𝑦± = � 𝐖T 𝜕𝑢1𝑦±
𝑛

𝜕𝜕
𝑑ΓA

ΓA
, 𝑛 = 1,2 …𝑚1 (A27) 
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𝐐3𝑧+ = 𝑠𝑘𝛾𝑛 � 𝐖Tu1𝑧+𝑛 𝑑ΓB
ΓB

, 𝑛 = 1,2 …𝑚1 (A28) 

𝐐3𝑥𝑥+ = � 𝐖T 𝜕u1𝑥+𝑛

𝜕𝑥
𝑑ΓB

ΓB
, 𝑛 = 1,2 …𝑚1 (A29) 

𝐐3𝑦𝑦+ = � 𝐖T 𝜕u1𝑦+𝑛

𝜕𝜕
𝑑ΓB

ΓB
, 𝑛 = 1,2 …𝑚1 (A30) 

 

𝐌1𝑞± = 𝑠𝑘𝛾𝑚 � 𝑢1𝑞−𝑚 𝑢1𝑞±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A31) 

𝐌1𝑧𝑥𝑥± = �
𝜕𝑢1𝑧−𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A32) 

𝐌1𝑧𝑦𝑦± = �
𝜕𝑢1𝑧−𝑚

𝜕𝜕
𝑢1𝑦±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A33) 

𝐌1𝑥𝑥𝑧± = �
𝜕𝑢1𝑥−𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A34) 

𝐌1𝑦𝑦𝑧± = �
𝜕𝑢1𝑦−𝑚

𝜕𝜕
𝑢1𝑧±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A35) 

𝐌3𝑞± = 𝑠𝑘𝛾𝑚 � 𝑢1𝑞+𝑚 𝑢1𝑞±
𝑛 𝑑ΓB

ΓB
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A36) 

𝐌3𝑧𝑥𝑥± = �
𝜕𝑢1𝑧+𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A37) 

𝐌3𝑧𝑦𝑦± = �
𝜕𝑢1𝑧+𝑚

𝜕𝜕
𝑢1𝑦±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A38) 

𝐌3𝑥𝑥𝑧± = �
𝜕𝑢1𝑥+𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A39) 

𝐌3𝑦𝑦𝑧± = �
𝜕𝑢1𝑦+𝑚

𝜕𝜕
𝑢1𝑧±
𝑛 𝑑ΓA

ΓA
  (𝑚 = 0,1,⋯ ,𝑚1;𝑛 = 0,1,⋯ ,𝑚1) (A40) 
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𝐆11± = 𝐌1𝑥± + 𝐌1𝑧𝑥𝑥± + 𝐌1y± + 𝐌1𝑧𝑦𝑦± + 𝜏𝐌1𝑧± + (𝜏 − 2)𝐌1𝑥𝑥𝑧±

+ (𝜏 − 2)𝐌1𝑦𝑦𝑧± (A41) 

𝐆21 = 𝐐1𝑥− + 𝐐1𝑧𝑥− (A42) 

𝐆31 = 𝐐1𝑦− + 𝐐1𝑧𝑦− (A43) 

𝐆41± = (𝜏 − 2)𝐐1𝑥𝑥± + (𝜏 − 2)𝐐1𝑦𝑦± ∓ 𝜏𝐐1𝑧± (A44) 

𝐆22 = (𝜏 − 1)𝐑𝑥 + 𝐑1 − 𝑘2𝐑2 (A45) 

𝐆32 = (𝜏 − 2)𝐑𝑥𝑦
T + 𝐑𝑥𝑦 (A46) 

𝐆42 = (𝜏 − 2)𝐑𝑥𝑧
T + 𝐑𝑥𝑧 (A47) 

𝐆33 = (𝜏 − 1)𝐑y + 𝐑1 − 𝑘2𝐑2 (A48) 

𝐆43 = (𝜏 − 2)𝐑𝑦𝑧
T + 𝐑𝑦𝑧 (A49) 

𝐆44 = (𝜏 − 1)𝐑𝑧 + 𝐑1 − 𝑘2𝐑2 (A50) 

𝐆25 = 𝐐3𝑥+ − 𝐐3𝑧𝑥+ (A51) 

𝐆35 = 𝐐3𝑦+ − 𝐐3𝑧𝑦+ (A52) 

𝐆45 = −(𝜏 − 2)𝐐3𝑥𝑥+ − (𝜏 − 2)𝐐3𝑦𝑦+ + 𝜏𝐐3z+ (A53) 

𝐆55 = −𝐌3𝑥+ + 𝐌3𝑧𝑥𝑥+ −𝐌3𝑦+ + 𝐌3𝑧𝑦𝑦+ − 𝜏𝐌3𝑧+ + (𝜏 − 2)𝐌3𝑥𝑥𝑧+

+ (𝜏 − 2)𝐌3𝑦𝑦𝑧+ (A55) 
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FIGURE CAPTIONS 

 

Fig. 1.  Geometry of pipe containing arbitrary defect. 

 

Fig. 2. Shape of a defect. (a) cross-sectional view, (b) side view. 

 

Fig. 3.  Displacement distribution over plane ΓA. (a) 𝑢1θ
, ; (b) 𝑢2θ

, .  

 

Fig. 4. Reflection coefficients for (a) the T(0,1) mode and (b) the L(0,2) mode incident upon 

an axisymmetric defect: ───, current three dimensional model;  ─ ─ ─, two dimensional 

axisymmetric models of Kirby et al. [21, 22]; ▲, Experiment [21, 22]. 

 

Fig. 5. Reflection coefficient for the L(0,2) mode incident upon a part-circumferential 

through-thickness defect:     □      , current three dimensional model; ▲, experiments of 

Lowe et al. [3].  

 

Fig. 6. Predicted displacement for the T(0,1) mode incident upon a non-axisymmetric defect.  

(a) x direction; (b) y direction. 

 

Fig. 7. Predicted displacement for the L(0,2) mode incident upon a non-axisymmetric defect.  

(a) x direction; (b) y direction. 
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Fig. 8. Mode shapes for a 3 inch schedule 40 pipe at 70 kHz. (a) --------, T(0,1); ────, 

F(1,2); − − − , F(2,2). (b) --------, L(0,2); ────, F(1,3); − − − , F(5,2). 

 

Fig. 9. Predicted displacement for a T(0,1) mode incident upon a non-axisymmetric defect, 

separated into different circumferential mode orders. (a) 𝑚 = 0; (b) 𝑚 = 1; (c) 𝑚 = 2; (d) 

𝑚 = 3. 

 

Fig. 10. Predicted displacement for a L(0,2) mode incident upon a non-axisymmetric defect, 

separated into different circumferential mode orders. (a) 𝑚 = 0; (b) 𝑚 = 1; (c) 𝑚 = 2; (d) 

𝑚 = 3; (e) 𝑚 = 4; (f) 𝑚 = 5. 

 

Fig. 11.  Reflections from a defect in the k-ω domain (colour online).  (a) excitation by 

T(0,1); (b) excitation by L(0,2). 

 

Fig. 12.  Modal amplitudes at 70 kHz for excitation by (a) T(0,1), and (b) L(0,2).   

 


