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ABSTRACT 
The way in which novice programmers learn to write code is of 

considerable interest to computing education researchers. One 

research approach to understanding how beginners acquire their 

programming abilities has been to look at student performance in 

exams.  Lopez et al. (2008) analyzed student responses to an end-

of-first-semester exam.  They found two types of questions 

accounted for 46% of the variance on the code writing portion of 

the same exam. One of those types of question required students 

to trace iterative code, while the other type required students to 

explain what a piece of code did. In this paper, we investigate 

whether the results by Lopez et al. may be generally indicative of 

something about novice programmers, or whether their results are 

just an artifact of their particular exam. We studied student 

responses to our own exam and our results are broadly consistent 

with Lopez et al.  However, we did find that some aspects of their 

model are sensitive to the particular exam questions used.  

Specifically, we found that student performance on explaining 

code was hard to characterize, and the strength of the relationship 

between explaining and code writing is particularly sensitive to 

the specific questions asked. Additionally, we found Lopez et al.’s 

use of a Rasch model to be unnecessary, which will make it far 

easier for others to conduct similar research. 

Categories and Subject Descriptors 

K.3 [Computers & Education]: Computer & Information 

Science Education - Computer Science Education. 

General Terms 

Measurement, Experimentation, Human Factors. 

Keywords 

Novice programmers, CS1, tracing, comprehension, hierarchy. 

1. INTRODUCTION 
Over the last five years, the BRACElet project has investigated a 

possible hierarchy of programming skills.  At the bottom of the 

hierarchy is knowledge of basic programming constructs (e.g. 

what an “if” statement does). At the top of the hierarchy is the 

ability to write code.  

One of the earliest BRACElet papers (Whalley et al., 2006) 

reported on the performance of students in an end-of-semester 

exam. As part of that exam, the students were given a question 

that began “In plain English, explain what the following segment 

of Java code does”. Whalley et al. found that some students 

responded with a correct, line-by-line description of the code 

while other students responded with a correct summary of the 

overall computation performed by the code (e.g. “the code checks 

to see if the elements in the array are sorted”). Furthermore, it 

was noted that the better a student performed on other 

programming–related tasks in that same exam, the more likely the 

student was to provide such a correct summary.  In a follow up 

study, Lister et al. (2006) found that when the same “explain in 

plain English” question was given to academics, they almost 

always offered a summary of the overall computation performed 

by the code, not a line-by-line description.  The authors of that 

study concluded that the ability to provide such a summary of a 

piece of code ─ to “see the forest and not just the trees” ─ is an 

intermediate skill in a hierarchy of programming skills.   

In a subsequent BRACElet study, Philpott, Robbins and Whalley 

(2007) found that students who could trace code with less than 

50% accuracy could not usually explain similar code, indicating 

that the ability to trace code is lower in the hierarchy than the 

abilty to explain code.  Also, Sheard et al. (2008) found that the 

ability of students to explain code correlated positively with their 

ability to write code. 

While the recent BRACElet work on a hierarchy of programming 

skills is a novel empirical approach to the study of novice 

programmers (particularly in its use of data collected in the 

“natural setting” of end-of-semester exams), a belief in the 

importance of tracing skills, and also skills similar to explanation, 

is present in quite old literature on novice programmers. Perkins 

et. al. (1989) discussed the importance and role of tracing as a 

debugging skill. Soloway (1986) claimed that skilled 

programmers carry out frequent “mental simulations” of their 

code, and he advocated the explicit teaching of mental simulations 

to students.  

1.1 Lopez et al. (2008) 
Of the BRACElet studies into a hierarchy of programming skills, 

the most statistically sophisticated was undertaken by Lopez et al. 

(2008). They analyzed student responses to an end-of-first-

semester exam by placing their exam questions into several 

categories, which included: 
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● Basics, where students are required to recall knowledge of  Java 

constructs, recognize the definition of common Java terms, and 

detect syntax errors. 

● Data, where students are tested on their knowledge of data 

types, and operations on data types. 

● Parson’s Problems, where students are given a set of lines of 

code, in random order, and are required to place the lines into 

the correct order to solve a given task.  

● Tracing2, which are tracing tasks that involve loops. Students 

have to nominate the values outputted, or the values in one or 

more variables when the code finishes.  

● Tracing1, which are tracing tasks that do not involve loops. 

● Explain, as discussed above. 

● Writing, where students write code for a given problem. 

In their analysis, Lopez et al. used stepwise regression to 

construct a hierarchical path diagram where the points each 

student earned on the exam’s code writing tasks was the 

dependent variable (i.e. at the top of hierarchy).  At or near the 

bottom of the resultant hierarchy were “basic” and “data” 

questions. Highest in the intermediate levels of the path diagram 

were “explain” and “tracing2” tasks.  Figure 1 shows that higher 

portion of the Lopez et al. hierarchy.  It can be seen that the points 

students earned on tracing iterative code accounted for only 15% 

of the variance of student points for the writing question (i.e. R2 = 

0.15) and the points students earned on “explain” questions 

accounted for only 7% of the variance in the writing question.  

However, in combination, the “tracing2” and “explain” questions 

accounted for 46% of the variance in the writing question (as 

indicated in Figure 1 by R2 = 0.46 within the box headed 

“Writing”).  In a follow up study, Lister, Fidge and Teague (2009) 

performed a non-parametric analysis on similar data and found 

statistically significant relationships between these variables.  

 

Figure 1: The upper portion of the stepwise regression model 

from Lopez et al. (2008). 

1.2 Research Issues and Questions 
In this paper, we report on our own study of the relationships 

between tracing iterative code, explaining code, and writing code. 

(Henceforth, when we refer to “tracing”, we will be referring to 

“tracing2” problems, the tracing of iterative code.) Our study is 

motivated by a number of issues and questions raised by the 

Lopez et al. study, which we discuss in this section. 

Are the relationships that Lopez et al. found a reflection of the 

intrinsic nature of the categories into which they broke their tasks 

(i.e. tracing, explain, etc), or are these relationships due to the 

specific exam questions they asked?  For example, is their report 

of a weak (R2 = 0.15) statistical relationship between tracing tasks 

and code writing due to the intrinsic nature of tracing tasks or is 

the weak relationship simply due to Lopez et al. using poor 

tracing questions? To express this more generally, did Lopez et al. 

find fundamental relationships between coding and non-coding 

tasks, or are their results simply an artifact of their specific exam 

paper? 

An even more fundamental issue is whether code writing is 

something an end-of-first-semester novice can do reliably.  That 

is, if we have a set of N programming problems that we (as 

teachers) regard as being similar, do novice programmers at an 

equal stage of their development tend to perform consistently 

across that set of problems?  In other words, are N-1 problems in 

such a set of problems a good predictor of how novices will 

perform on the Nth problem? If not, then there is little point in 

looking for consistent, general statistical relationships between 

code writing and non-code writing tasks. The exam used by Lopez 

et al. contained two writing questions. They reported statistics 

indicating that students performed very differently on their two 

writing questions. For example, the average class grades on these 

two writing questions were 29% and 45%. Lopez et al. did not 

consider the reasons why student performance differed on these 

code writing questions, nor did they discuss any implication this 

inconsistency might have for the generality of their model. In this 

paper, we will study the performance reliability of end-of-first-

semester novices on the questions in our exam. 

1.2.1 Rasch Model 
Another issue with the Lopez et al. study is the sophistication of 

the techniques used to analyse the data. They used a polytomous 

Rasch model to preprocess their data. Doing so addresses some of 

the non-linearities in grading. For example, in a question graded 

on a 10 point scale, the difference in quality between two student 

answers, one scoring 5 points and the other 6 points, is probably 

not the same as the difference in quality between two other 

student answers, one scoring 9 and the other 10 points. However, 

there are difficulties with using Rasch models, beyond the 

inherent complexity. One difficulty is that it is a technique 

originally intended for larger datasets than the sets typically 

collected from small college classes.  

Another difficulty with using a Rasch model is the need to find a 

suitable parameter that describes the general ability of each 

student who took the exam. For a test containing many items (and 

ideally a test taken by a large number of people) the score of each 

person on the entire test is often used as the measure of general 

ability.  However, for a test with a small number of questions, 

taken by a small number of people (as is the case for both Lopez 

et al. and us) it is not clear whether the overall score for the test 

can be used as the measure of general ability. In fact, and perhaps 

for this reason, Lopez et al. chose not to use the overall score. 

Instead, they set aside one exam question from their path analysis 

– an essay style question – and used student scores on that 

question as their measure of general ability.  The question then 

arises as to whether the essay question used by Lopez et al. was a 

valid measure of general ability. More pragmatically, setting aside 

such an exam question for this purpose is not an option for us in 

our study, and likewise, it would not be an option for most 

computing education researchers attempting similar studies.  

In this paper, we do not use a Rasch model. Instead, we work with 

relatively “raw” data points, to investigate whether the same 

relationships found by Lopez et al. on their Rasch-processed data 

Writing 

R2 = 0.46 
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Explain in 

plain English 

 

R2 = 0.15 

R2 = 0.07 R2 = 0.30 

118



can still be found in our data. It is our conjecture that it should 

still be possible to find these relationships in “raw” data, 

especially when the exam questions used display a relatively 

uniform distribution of grade points. 

1.3 Study Sample 
The data we used for our study was collected in an exam that 

students took at the end of a one-semester introductory course on 

programming. These students attended the university of the first 

and second authors. Students from this university had not 

participated in any of the earlier studies summarized above.   

These students were taught the Java programming language. 

Thirty two students took the final exam which was subsequently 

graded by one person.  

2. DEPENDENT VARIABLE: WRITING 
As teachers, our aim is to produce students who can write 

programs. Therefore, the analysis in this paper, like the analysis in 

the Lopez et al. paper, treats student performance on code writing 

as the dependent variable, and studies the relationship between 

student performance on code writing questions and non-code 

writing questions.  In this section, we describe the three code 

writing questions from our exam, and investigate the performance 

reliability of our students on these three tasks.  

As Traynor, Bergin, and Gibson (2006) have argued, the true 

indication of the difficulty of a code writing task is not the task 

itself, but how the task is graded. We therefore also describe, in 

detail, how each of our tasks was graded. In all three cases, the 

grading schemes were designed solely for the purposes of grading 

the students, prior to our analysis commencing. One person 

graded all writing tasks for all students.  

2.1 Two Iterative Code Writing Questions 
Two of the three code writing questions required the students to 

write iterative code. 

2.1.1 Sum of N 
For one of the two iterative code writing questions, the students 

were told to “write a segment of Java code that will show the sum 

of 1 to n for every n from 1 to 20.  That is, the program prints 1, 3 

(the sum of 1 and 2), 6 (the sum of 1, 2 and 3), and so on.  You 

may use either while or for loops and your program is required to 

produce screen output in two columns the same as the following 

… <Sample output was then given, including a heading> … You 

are not required to provide the entire program”. A suitable 

solution (with the heading omitted) may have looked like this: 

   int  sum = 0; 

   for ( int n=1 ; n<=20 ; n++ ) 

   { 
       sum = sum + n; 

       System.out.println(n + “   “ + sum); 
   } 

The students’ answers to this question were graded on a 7 point 

scale. One point was awarded for outputting a correct heading, 

and 1 point was awarded for a correct declaration and 

initialization of variable that would subsequently be used to 

accumulate the sum (i.e. “sum” in our sample solution).  One 

point was awarded for a correct formulation of the “for” loop (or 

an equivalent “while”). Three points were awarded for correctly 

calculating the sum.  In many cases, students wrote an inner loop 

to calculate the sum, and this was not penalized. The final point 

was awarded for a correct println statement. In subsequent 

analysis, we will regard students scoring 5 or higher as having 

manifested a grasp of the problem. 

2.1.2 Average  
The second iterative code writing question required students to 

provide code that “continually asks the user to enter a list of 

positive numbers.  When the user has completed their list, they 

type a negative number that stops the input process. Once input is 

complete, the program prints out the average of the numbers to 

the screen”. The question then continued, giving two sample 

sessions of the program. The second of these sample sessions 

illustrated the case where the first number inputted is negative, in 

which case the program was shown to output “No list to average”. 

As students were not taught exception handling prior to this exam, 

they were not required to handle input exceptions in their answer 

to this question. A suitable solution may have looked like this: 

  int n = 0; 

  double sum = 0;  

  Scanner stdin = new Scanner(System.in); 

  double x = stdin.nextDouble(); 

  while ( x > 0 ) 

  { 
      n++; 

      sum = sum + x;  

      x = stdin.nextDouble();     
  } 

  if ( n > 0 ) 

   System.out.println(”Average: “ + sum/n); 

  else 

   System.out.println(”No list to average“); 

This code writing exercise is similar to Soloway’s well known 

“rainfall problem” (Soloway, Bonar, and Ehrlich, 1983; Soloway, 

1986). As Soloway et al. demonstrated, this is not a problem that 

all novices solve easily.  

As with the ”Sum of N” writing task, the students’ answers to this 

task were graded on a 7 point scale. One point was awarded for 

declaring and initializing two variables analogous to “n” and 

“sum” in our sample solution. One point was awarded for a read 

prior to the loop and 1 point was for having a while loop that 

correctly tested for a positive input value.   Within the loop, 1 

point was awarded for an assignment statement to accumulate the 

sum, while 0.5 points were awarded for incrementing the variable 

that counted the number of values inputted, and another 0.5 points 

were for reading the next input value. The final 2 points were for 

the “if” statement after the loop. As with the other iterative 

writing problem, we will regard students scoring 5 or higher as 

having manifested a grasp of the problem. 

2.1.3 Comparison of Grade Distributions 
Figure 2 illustrates that most students scored similar points on 

these two iterative code writing tasks.  Both problems were graded 

on a 7 point scale. The shaded squares indicate equal scores on 

both problems. Almost half the students (47%) scored exactly the 

same points on both problems.  Almost three quarters of the 
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students (72%) scored either the same points or points that 

differed by only 1 point.  Only 1 student had a point difference 

greater than 2. The diagonal line though the figure is a regression 

line, with a relatively high R2 value of 0.8. The 3 by 3 square at 

the top right of the Figure 2 (indicated by the double lines) 

contains the 13 students who are regarded as having manifested a 

grasp of both problems. 

A student’s performance on either of these two code writing 

problems is a good predictor of the student’s performance on the 

other problem. Had that not been the case, there would be few 

grounds for believing that the non-code writing tasks that we 

analyze later in the paper might be good predictors for code 

writing. Furthermore, we can regard R2 = 0.8 as an informal upper 

expectation of the extent of the relationship between code writing 

and non-code writing tasks.     

Given this high degree of collinearity between these two iterative 

code writing tasks, there is little to be gained by building 

regression models for each and so, in further analysis, we will 

often consider the two problems combined.  Figure 3 shows the 

distribution of student scores when their scores on “Sum of N” 

and “Average” are added together.  There is some clumping at 

each end of the distribution, since several students did either very 

well or very poorly on both problems, but between the extremes 

the distribution is a relatively uniform.   
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Figure 2: Student scores on “Sum of N” and “Average” code 

writing tasks, with a line of regression  (R2 = 0.8). 
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Figure 3: Distribution of student scores when their scores on 

“Sum of N” and “Average” are added together. The dashed 

line indicates the threshold at which we regard students as 

having demonstrated a grasp of both problems. 

2.2 Non-Iterative Code Writing Question 
The third code writing question required the students to write a 

nested set of “if” statements. The students were given the 

following instructions: The speed limit on a freeway is 100 km/h.  

Drivers exceeding the speed limit will be issued a speeding ticket.  

The amount of the fine depends on whether this is their first 

traffic offence or not and how much over the speed limit they are 

driving if it is their first traffic offence.  Using the table given 

below, write the missing code for the Java program on the 

following page so that the program will display one of the 

messages, depending on the input entered by the user.  

Demonstrate the use of nested if statements in your solution. 

Speed (km/h) 
First Traffic 

Offence 
Message to be displayed 

<= 100 Not Applicable Drive Safely! 

101 – 120 True Your ticket is $105 

>121 True Your ticket is $160 

More than 100 False Your ticket is $200 

Students were provided with the following variable declarations: 

  final int LIMIT = 100; 

  int speed; 

  String name; 

  boolean fineBefore; 

 

A suitable solution may have looked like this: 

Scanner stdin = new Scanner (System.in); 

System.out.print("Enter your name: "); 

name = stdin.next( ); 

System.out.print("What was your speed: "); 

speed = stdin.nextInt( ); 

System.out.print("Any previous fines: "); 

fineBefore = stdin.nextBoolean( );  

 

if ( speed <= LIMIT ) 

      System.out.println ("Drive Safely"); 

  else  

  { 

    System.out.print(name + 

                       ", your ticket is ");   

    if ( fineBefore ) 

        System.out.println("$200! "); 

    else 

    { 

       if ( speed <= 120 ) 

    System.out.println("$105! "); 

       else 

          System.out.println("$160! "); 

    } 

   } 

 

This question was graded out of 10 points. The grading scheme 

awarded a student up to 4 points for the code that (in our sample 

solution) precedes the first “if” condition, 1 point for an “if” 

handling “speed <= LIMIT”, 1 point for an “else” 

0   1    2     3   4    5   6    7   8    9  10  11  12 13 14 
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associated with that first “if” (i.e. 6 points cumulative to this 

stage). Inside that “else”, 1 point was awarded for handling the 

input of whether the driver had been fined before, and the 

remaining 3 points were allocated for the remaining code 

commencing (in our sample solution) at “if (fineBefore)”. 

In subsequent analysis, we will regard students scoring 8 or higher 

as having manifested a grasp of the problem. 

2.2.1 Grade Distribution 
Figure 4 shows the distribution of student scores on this 

“Speeding” task.  There are few students who did poorly on this 

task, and quite a few students who did well. 

Figure 5 compares the performance of students on “Speeding” 

with their performance on the combined iterative problems. The 

dashed line in the figure indicates equal percentage points on 

“Speeding” and on the iterative tasks. Over 90% of the students 

did better on “Speeding”. The solid line is a regression, with a 

moderate R2 = 0.54. Again, this R2 of 0.54 is a guide to what we 

might expect of any relationship between code writing and non-

code writing tasks. 

It could be argued that the control logic in the “Speeding” task is 

more complex than the control logic of both iterative tasks. (One 

author of this paper took far longer to write a sample solution for 

“Speeding” than for the two iterative tasks – we suggest that 

readers place to one side the sample solutions given in this paper 

and see how long it takes them to write their own solutions.)  That 

most students did better on “Speeding” may be due to iteration 

being harder to master than selection, but it also could be an 

artifact of the grading schemes for these exam questions. 
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Figure 4: Distribution of student scores on the non-iterative 

“Speeding” code writing problem.  The dashed line indicates 

the threshold at which students are regarded as having 

demonstrated a grasp of the problem.  

A relatively uniform distribution of student scores for code 

writing results from adding together each student’s points on all 

three writing tasks, as is shown in Figure 6.  In the remainder of 

this paper, we will refer to this combination of the three tasks 

simply as “writing”. 

2.3 Aside: Predictors of Success 
In Computer Science Education research, there has been a great 

deal of work on pre-enrollment “predictors of success” (e.g. 

Wilson, 2002), where “success” is often the grade students earned 

in their first programming course. Factors studied include SAT 

scores, mathematical background and gender. Some linear 

regression models have accounted for almost half the variation of 

student grades at the end of the first semester.  Given the R2 

values we reported above, between our three code writing tasks 

that students completed in a single exam session, the performance 

of these “predictors of success” is impressive, and may be near the 

upper limit of what can reasonably be expected.   
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Figure 5: A comparison of student scores on the combined 

iterative tasks with the “Speeding” task. (R2 = 0.54).  
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Figure 6: Distribution of student scores when their scores on 

“Sum of N”, “Average” and “Speeding” are combined.  

2.4 Procedural vs. Object Oriented Questions 
The exam also contained three other questions. Unlike all other 

questions described in this paper, those three questions tested 

students on aspects of object-oriented programming. Please note 

that those three questions are not included in this analysis, as our 

focus is upon the ability of students to understand and write 

procedural code.   

3. INDEPENDENT VARIABLES 
In this section, we describe the non-code writing questions in our 

exam, using the Lopez et al. classification scheme. We also 

provide examples of each type of question so that the reader can 

develop a stronger impression of what our exam questions are 

like.  At this stage of the development of our field of research, we 

feel the only way to ensure that our work (and similar work by 

others) is reproducible is to include a representative sample of 

exam questions, verbatim. Eventually, Computer Science 

Education research may develop a comprehensive classification 

system for exam questions that allows authors to pithily describe 

the salient features of their exam to other researchers, but the 

classification scheme offered by Lopez et al. (2008) is a first and 

Writing  =  Sum + Average + Speeding 
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rudimentary step toward such a comprehensive exam question 

classification scheme.   

The non-code writing exam questions analyzed in this paper 

consisted of three broad question types: (1) 30 multiple choice 

questions, (2) two short answer explanation questions; and (3) one 

Parson’s problem.  The 30 multiple choice questions can be 

further broken down into four Lopez classifications – “basics”, 

“data”, “tracing1” and “tracing2”.  Students had three hours to 

complete the entire exam, which was intended to be ample time, 

and anecdotal evidence suggests that it was ample time.  

This paper focuses upon studying the higher levels of the Lopez et 

al. path diagram so we will not describe all our exam questions. 

Instead we will only describe our explanation and tracing 

questions. 

3.1 The Two Explanation Questions 
Both of our explanation questions begin with the following 

instruction: Explain the purpose of the following segment of code. 

Assume that a, b, c are declared as integers and have been 

initialized. The code presented in the first explanation question 

was: 

   c = b; 

   b = a; 

   a = c;  

A good answer to this first explanation question would be “It 

swaps the values in a and b”. We took this question from the 

earlier study by Sheard et al. (2008).  The code for the second 

explanation question was as follows: 

   if ( a < b) 

      if ( b < c) 

    System.out.println (c); 

      else 

    System.out.println (b); 

   else if ( a < c) 

    System.out.println (c); 

   else 

          System.out.println (a); 

A good answer to this question would be “It prints out the largest 

of the three values”. 

Each explain question was graded out of a total of 4 points where 

students were given 4 points if they correctly summarized the 

function performed by the code (as the above model answers do). 

Students were given 3 points if they correctly described the 

behaviour of every line of code, and fewer points if they showed 

some partial understanding of the lines of code. This grading was 

done as a routine part of grading the entire exam, and was done by 

one person, prior to the analysis presented in this paper.   

Prior to the exam, students had seen only one example of an 

explanation question, but they were also told there would be at 

least one such question in the exam and answers that summarized 

the code would score more than line by line descriptions. 

3.1.1 Reliability of Explain Questions 
Table 1 provides the frequency of student scores on each of these 

two explanation problems. The table shows that the bulk of the 

students either did very well or very poorly on “Swap”, whereas 

relatively few students did very poorly on “Largest”. These results 

indicate that any statistical relationship between explanation and 

code writing (particularly linear relationships) may vary according 

to the exact explanation questions used. Given that “Swap” has 

fewer lines of code and fewer programming constructs than the 

“Largest” code, it would seem that the difficulty of explanation 

questions cannot be characterized by simple measures, such as the 

number of lines of code, or the programming constructs used. 

“Swap” Score  

    1       2         3         4 

“Largest” 

Totals 

1  2   1  3 

2  5   1  6 

3  3  2   5 

                              

“Largest”    

Score 

4  6   12 18 

“Swap” Totals 16  0 2 14  

Table 1: The frequency of student scores on each of the two 

explanation questions. 

3.1.2 Linear Prediction of Writing from Explaining 
The statistical relationship between student points on the 

combined explanation questions and the combined writing 

questions is shown in Figure 7. The figure shows that the students 

who received maximum points on both explanation tasks (i.e. the 

rightmost vertical line of points) did better than most of their 

classmates on the writing tasks.  A line of regression through all 

points in the figure (solid line) has R2 = 0.49. For students who 

scored less than maximum points, however, the explanation 

questions are a poor linear predictor of writing performance.  A 

line of regression through the points for just those students 

(dashed line) only has R2 = 0.06. For their equivalent data on 

explanation and writing questions, Lopez et al. reported R2 = 0.07 

for a line of regression through all points. (We note, however, that 

our R2 values were attained without using a Rasch model.)  

Given the markedly different points distributions for “Swap” and 

“Largest”, and also between “Speeding” and the two iterative 

writing problems, we might expect to see markedly different R2 

values for various combinations of explanation and writing tasks.  

Table 2 shows that, while the R2 values do vary, regularities are 

apparent. For example, the combination of the two explanation 

tasks always results in a higher R2 than either of the explanation 

tasks alone. Also, the iterative code writing tasks, both 

individually and collectively, have a higher R2 than the non-

iterative “Speeding” task. Such regularities are an indication that, 

while the exact strength of the relationship may vary, there is a 

general relationship between explanation and writing.  

It is interesting that the students who received maximum points on 

both explanation tasks (i.e. correctly summarized both pieces of 

code) did relatively well on the code writing questions, when 

neither of the explanation questions involved a loop, whereas two 

of the three writing tasks did require loops. We offer no firm 

explanation for this, but suggest that it may be that novices who 

can regularly “see the forest” in code, irrespective of what 

programming constructs are in that code, are better placed to 

exhibit the higher level skills required to envisage the solution to 

a writing task.  
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Figure 7: A comparison of student scores on explanation and 

writing tasks. 

Explanation Task(s) 

Writing Task(s) 
Swap 

Print 

Largest 
Combined 

Speeding 0.22 0.19 0.30 

Sum of N 0.46 0.25 0.53 

Average 0.35 0.28 0.46 

Iterative Combined 0.43 0.28 0.52 

All Writing 0.39 0.28 0.49 

Table 2: R2 values for various combinations of explanation and 

writing tasks.  

3.1.3 Non-Parametric Analysis 
Figure 7 shows that, for students who scored less than the 

maximum number of points on the explanation questions, there is 

no clear relationship between their performance on those 

explanation questions and their performance on the writing 

questions. In contrast, none of the students who scored the 

maximum number of points on explanation questions did poorly 

on the code writing questions. This suggests that, while there may 

be a relationship between being able to explain code and being 

able to write code, that relationship is not linear.  In this section, 

we explore the possibility of such a non-linear relationship, by 

carrying out a simple non-parametric analysis of the data. 

Earlier in the paper, we defined a score of 8 or higher on the non-

iterative “Speeding” task, and a score of 5 or higher on either 

iterative task, as an indication that a student had demonstrated a 

grasp of these writing tasks. These threshold scores, for each 

problem, divide the students into two groups.  Similarly, a student 

who receives the maximum score (i.e. 4) on an explanation 

question has (by definition of the grading scheme) demonstrated a 

grasp of the overall computation performed by that particular 

piece of code. Again, students can be divided into two groups on 

each explanation problem, according to whether or not they 

demonstrated sufficient grasp of the explanation question to 

receive a perfect score. For any one writing task, in combination 

with any one explanation task, we can divide the students into 

four groups, according to whether or not they achieved the 

threshold score on each task. With four such groups, the non-

parametric chi-square test can be used to test whether there is a 

relationship between the two tasks. 

Table 3 shows the results of chi-square analysis on combinations 

of explanation and code writing tasks. In our analysis, with four 

groups in each chi square calculation, the degrees of freedom (df) 

= 1, so any χ2 ≥ 4 is significant at p ≤ 0.05.  All the relationships 

in Table 3 are significant at that level, except for the relationship 

between the “largest” explanation task and the combination of all 

three writing tasks (where χ2 = 2.3).  Therefore, with that one 

exception, our data indicates that there is a non-linear but 

statistically significant relationship between the ability to “see the 

forest” in a given piece of code and being able to write code.  

Explanation Task(s) 

Writing Task(s) 
Swap 

Print 

Largest 

Both 

Explains 

Speeding ≥ 8 points 5.0 7.7 5.7 

Sum of N ≥ 5 points 12.3 8.8 12.3 

Average ≥ 5 points 10.0 6.5 10.2 

Both Iterative ≥ 5 9.8 7.2 14.6 

Speeding ≥ 8 and  

both Iterative ≥ 5 
4.3 2.3 7.6 

Table 3: The χ2 values for various combinations of explanation 

and writing tasks. 

3.2 Tracing Questions 
Lopez et al. (2008) define “tracing2” questions as tracing tasks 

involving loops.  As discussed earlier, we will henceforth refer to 

tracing2 questions simply as “tracing” questions.  The following 

multiple choice tracing question was the easiest for our 32 

students, with 81% of them correctly selecting option “c”: 

   What is printed to the screen by the following code? 

for (int count=0; count<4; count--) 
   System.out.print(count); 

   a) 0 + 0 + 0 + 0 + 0 + 0 + …continuously 
   b) 0 + 1 + 2 + 3 + 4 + 5 + …continuously 
   c) 0-1-2-3-4 …continuously 

   d) no output to the screen 

The lowest percentage of correct responses for a tracing question 

was 56%, for this question, where the correct solution is “b”:  

   What is the output to the screen by the following code?   

   int n = 4; 
   for (int row=1; row<=n; row++) {    

     for (int column=1; column<=n; column++) 

        if (row==1 || row==n || column==1  

                             || column==n) 

      System.out.print ("* "); 

        else   

           Sytem.out.print ("  "); 

   System.out.println( ); 

   } 

Explain         
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   a) *          b) * * * * 

      * *           *     * 

      * * *         *     * 

      * * * *       * * * * 

 

   c) * * * *    d) * * * * 

      * * * *         * * * 

      * * * *           * * 

      * * * *             * 

 

(Note: In the exam, which was formatted as a single column 

document, the “if” in the above code was not broken across two 

lines). 

No other tracing question involved nested loops. However, two 

other tracing questions were like the above tracing question in that 

they contained a conditional inside a loop.  Henceforth, we will 

refer to these three problems collectively as the “Complex” 

tracing problems.  One of the other complex tracing questions was 

the second hardest tracing question for the students (59% 

answered it correctly), while the remaining complex question 

ranked as one of the more easily answered questions of all nine 

tracing questions (69% answered it correctly).  

Six of the “tracing” problems involved a single loop without a 

conditional inside the loop. Henceforth, we will refer to these six 

problems collectively as the “Simple” tracing problems.  Below is 

the simple tracing question that received the median percentage of 

correct responses (i.e. 63% for option “b”) of all 9 tracing 

questions:  

   What is printed to the screen by the following code? 

int number = 3; 
while (number == 3) 
  { System.out.print(number + “ + “ ); 
    number++; 
  } 

   a) 3  
   b) 3 + 
   c) 3 + 4 
   d) 3 + 4 + 5 + 6 + …continuously….. 
   e) 3 + 3 + 3 + 3 + …continuously….. 
   f) nothing will be printed to the screen 

Figure 8 shows the distribution of scores for all “tracing” 

questions.  Nineteen of the students (59%) scored 7 or higher on 

these 9 questions. Given the variable number of options used in 

these multiple choice questions, the expected value for students 

answering by guessing is 1.8 (20%). 

3.2.1 Simple vs. Complex Tracing Questions 
On any pair of the three tracing questions given in full above (i.e. 

any pairing of the three tracing questions that our students found 

easiest, hardest and of median difficulty) the percentage of 

students who answered both questions in the pair correctly, or 

both questions in the pair incorrectly, varied in the small range of 

63-69%.  Those percentages are an informal but intuitive 

description of the reliability of the nine tracing questions.  

A more formal measure of reliability is the classic Cronbach’s 

alpha.  For the 9 tracing questions answered by our 32 students, 

Cronbach’s alpha is 0.87.  A common rule of thumb is that an 

alpha higher than 0.7 (or 0.8 for some people) is considered an 

indication of a reliable set of multiple choice questions.   
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Figure 8: The distribution of student scores on the nine tracing 

questions. 

For the complex tracing questions, Cronbach’s alpha was only 

0.66, but a lower alpha is to be expected for only three questions.  

For the six simple tracing questions, Cronbach’s alpha was 0.85.   

The performance relationship between simple and complex 

tracing questions is non-linear. Of the 8 students who scored less 

than 50% on the simple problems, all but one scored 0 or 1 on the 

3 complex tracing problems.  Given that these complex tracing 

problems are multiple choice questions, that is a performance 

level that is probably most easily explained by chance.  For the 24 

students who scored 50% or higher on the simple tracing 

questions, the average student score on the 3 complex tracing 

problems was 2.2.  However, a line of regression through the data 

points for these 24 students is almost horizontal, and has an R2 

value of only 0.03.   In mathematical parlance, ≥50% performance 

on the simple tracing problems is a necessary condition for being 

able to answer the complex tracing problems, but it is not a 

sufficient condition. We surmise that the complex tracing 

problems require a systematic approach to tracing (perhaps 

involving pen and paper) that is not required for the simple 

tracing problems.    

3.2.2 Linear Prediction of Writing from Tracing 
The linear statistical relationship between student score on the 

nine tracing questions and the combined writing questions is 

shown in Figure 9. The solid line in the figure is a line of 

regression through all data points, with an associated R2 = 0.50 

(shown in bold). This is an R2 considerably higher than the R2 = 

0.15 reported by Lopez et al.  These differing R2 values indicate 

(as we similarly concluded for explanation questions) that the 

predictive power of tracing questions is sensitive to the exact 

nature of the questions.  Furthermore, we note (as for explanation 

questions) that our higher R2 value was attained, unlike Lopez et 

al., without using a Rasch model.   

The dashed line in Figure 9 is a line of regression for the subset of 

tracing scores ≥4. That line only has an associated R2 = 0.23. That 

is, Figure 9 illustrates that students who score poorly on the 

tracing questions rarely score well on the code writing tasks, but 

there is no clear relationship with code writing for students who 

scored well on tracing questions. This suggests a causal 

relationship, where a minimal level of skill at tracing is necessary 

for code writing, but that minimal skill at tracing is not sufficient 

by itself to enable code writing. 

Figure 10 shows the relationship between student scores on the 

six simple tracing questions and the combined writing questions. 
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The solid line in the figure is a line of regression through all data 

points, with an associated R2 = 0.51 (shown in bold).  However, 

the dashed line in Figure 10 is a line of regression for that subset 

of simple tracing scores ≥3, and it only has an associated R2 = 

0.06. Again, this suggests a causal relationship between tracing 

and code writing, where a minimal level of skill at tracing is 

necessary for code writing, but that minimal skill at tracing is not 

sufficient by itself to enable code writing. 
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Figure 9: A comparison of student scores on all nine tracing 

questions and the combined writing questions.  

Figure 11 shows the relationship between student scores on the 

three complex tracing questions and the combined writing 

questions. Many students who scored a perfect 3 on these 

complex tracing questions also scored well on the writing tasks. 

Consequently, each data point in the upper right of Figure 11 

represents multiple students. For example, of the rightmost data 

points, the 3 highest represent 9 students, which makes less 

obvious in Figure 11 the relationship between the code writing 

tasks and the three complex tracing tasks. Never-the-less, the line 

of regression through all of the data points in Figure 11 only has 

associated R2 = 0.27, so there is not an obvious linear relationship 

between the complex tracing problems and code writing. 

Table 4 shows R2 values for various combinations of tracing and 

writing tasks. On all combinations of writing tasks, the six simple 

tracing tasks have a markedly higher R2 value than the three 

complex tracing tasks. 

Our intuition was that tracing is an easier skill than writing, so the 

complex tracing tasks would relate better to performance on 

writing than the simple tracing tasks.  We have no firm 

explanation for why this proved not to be the case.  One 

possibility is that complex tracing is an error prone activity, and 

thus best avoided, so part of the skill in code writing is verifying 

code without doing complex tracing. 

3.2.3 Non-Parametric Analysis 
Figures 9 and 10 show that, for students who scored above certain 

threshold values on tracing tasks, there is no clear linear 

relationship between tracing tasks and code writing tasks.  In this 

section, we explore the non-linear relationship between tracing 

tasks and code writing tasks, via a chi-square analysis. 
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Figure 10: A comparison of student scores on the six simple 

tracing questions and the combined writing questions.  

Figure 11: A comparison of student scores on the three 

complex tracing questions and the combined writing questions.  

Tracing Task(s) 
Writing Task(s) 

Simple Complex Both  

Speeding 0.49 0.15 0.42 

Sum of N 0.40 0.27 0.42 

Average 0.40 0.29 0.43 

Iterative Combined 0.42 0.30 0.45 

All Writing 0.51 0.27 0.50 

Table 4: R2 values for various combinations of tracing and 

writing tasks.  
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Table 5 shows the results of our chi-square analysis on various 

combinations of tracing and writing tasks. As was the case with 

our earlier chi square analysis of the explanation questions, any χ2 

≥ 4 is significant at p ≤ 0.05.  The chi square analysis confirms 

two relationships which already appeared to be the case from the 

above linear analysis – that (1) students who score three or higher 

on the six simple tracing problems tend to do better on writing 

tasks than students who scored less than 3, but (2) a score of five 

or higher on the six simple tracing problems is not necessarily an 

advantage over a score of 3 or 4. The chi square analysis also 

confirms two relationships not apparent in the linear analysis – 

that (3) students who performed at or above a given threshold on 

the tracing problems (either simple, complex or both) tend to do 

better on the non-iterative “Speeding” problem than students who 

performed below the given threshold, and (4) there is a significant 

non-linear statistical relationship between the three complex 

tracing tasks and code writing.  

Score on Tracing Task(s) 

Simple 
Writing  

Task(s) 

≥3 ≥5 

Complex 

≥2 

Tracing 

≥ 7 

Speeding ≥ 8  13.7 7.8  9.8 9.8 

Sum of N ≥ 5  8.3 2.3 11.6 7.2 

Average ≥ 5  9.4 3.4  8.7 5.0 

Iterative ≥ 5  7.3 1.5  9.8 5.8 

Speeding ≥ 8  

&&  

Iterative ≥ 5 

 6.4 0.8  8.3 4.6 

Table 5 The χ2 values for various combinations of tracing and 

writing tasks. 

4. TRACING AND EXPLAINING 
In the introduction, we mentioned that Philpott, Robbins and 

Whalley (2007) found that students who traced code with less 

than 50% accuracy could not usually explain similar code, 

indicating that the ability to trace code is lower in the hierarchy 

than the abilty to explain code. In support of that finding, Lopez 

et al. found a linear relationship between tracing and explaining 

(R2 = 0.30, see Figure 1). In this section, we investigate whether 

we also find a similar relationship in our data. 

Between our nine tracing tasks and our two explanation tasks, we 

find a linear relationship of comparable strength to that found by 

Lopez et al. (our R2 = 0.26).  Table 6 shows R2 values for various 

combinations of tracing and explanation tasks. Most of the R2 

values indicate that the linear relationships between tracing and 

explanation are weak.  

Table 7 presents the results of a chi-square analysis, into the non-

linear relationship between tracing and explaining. For example, 

the analysis that led to the top left chi value of 4.2 compared 

student performance on the “Swap” question (i.e. whether or not 

the students provided a correct summary) with their performance 

on the six simple tracing tasks (i.e. whether or not the students 

answered at least 50% of those questions correctly). As with 

earlier analysis, χ2 ≥ 4 is significant at p ≤ 0.05. For all 

combinations of tracing and explanation tasks, and for all 

threshold values on the tracing tasks, there is a statistically 

significant relationship between tracing and explaining. 

Score on Tracing Task(s) Explain  

Task(s) Simple Complex Both  

Swap 0.13 0.10 0.14 

Largest 0.27 0.09 0.24 

Both 0.27 0.13 0.26 

Table 6: R2 values for various combinations of tracing and 

explanation tasks.  

Score on Tracing Task(s) 

Simple Complex Tracing 

Explain  

Task(s) 

≥3 ≥5 ≥2 ≥ 5 ≥ 7 

Swap 4.2  5.0 7.2 4.2 7.2 

Largest 8.3 12.3 5.8 8.3 9.8 

Both 6.4  5.7 8.3 6.4 8.3 

Table 7: The χ2 values for various combinations of tracing and 

explanation tasks. 
 

5. TRACING, EXPLAINING & WRITING  
Until this point of the paper, we have investigated pair wise 

relationships between any two of tracing, explaining and writing. 

In this section, we analyze the combined effect of tracing and 

explaining upon writing. 

Figure 12 illustrates the results of a multiple regression, with 

score on the code writing tasks as the dependent variable. The 

independent variables are the scores on the nine tracing tasks and 

the scores on the two explanation tasks. The line of regression in 

the figure has an associated R2 = 0.66. Our R2 is higher than the 

R2 = 0.46 reported by Lopez et al., indicating (as earlier 

regressions also showed) that the predictive power of these 

models is sensitive to the exact nature of the exam questions used.  

Furthermore, we note (as we have for earlier regressions) that our 

higher R2 value was attained, unlike Lopez et al., without using a 

Rasch model.   

Earlier in the paper, in section 2.1.3, and illustrated in Figure 2, 

we reported that a plot of the two iterative tasks (i.e. “Sum of N” 

and “Average”) yielded R2 = 0.8. At that point in the paper, and 

given the similarity in those two iterative code writing tasks, we 

wrote that R2 = 0.8 could be regarded as an informal upper 

expectation of the extent of the relationship between code writing 

and non-code writing tasks.  Given that expectation, the R2 = 0.66 

reported in Figure 12 (i.e. 83% of our informal upper expectation) 

is an excellent outcome, especially with only two explanation 

tasks available for inclusion in our model. Furthermore, we 

remind the reader that the R2 value between the non-iterative 

“Speeding” task and the combination of the two iterative tasks 

was only R2 = 0.54, which is lower than what we have achieved 

with the regression model in Figure 12.  

In all of our earlier figures, there were data points that fell well 

away from the associated line of regression.  A visually striking 

feature of Figure 12 is the absence of data points that are well 
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removed from the line of regression – there are no points toward 

the upper left or the lower right of Figure 12. One interpretation 

of this relatively tight distribution around the line of regression is 

that the two independent variables describe most of the factors 

leading to performance at code writing.  
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Figure 12: A multiple regression, with score on code writing as 

the dependent variable, and the combination of scores on 

tracing and explaining as the dependent variables. 

As the label of the x-axis in Figure 12 shows, the co-efficient of 

the “Tracing” variable is 1.24 and the co-efficient of the 

“Explain” variable is 1.68. This difference can largely be 

attributed to the differing number of points awarded to the tracing 

questions (9 points) and explanation questions (8 points).  When 

allowance is made for that point difference, the weight of tracing 

questions and the explanation questions in the model is roughly 

equal. However, while that equality may be due to the tracing and 

explanation being of equal importance, the difference in how the 

tracing and explanation tasks were framed and graded suggests 

that the equality may be a coincidence – the tracing questions 

were framed as multiple choice questions with 0/1 grading, while 

the explanation questions were framed as free response questions 

with a more sophisticated grading strategy. 

Table 8 shows R2 values for various subsets of the three writing 

tasks.  All of these multiple regressions are statistically significant 

(p < 0.001). The R2 value for the non-iterative “Speeding” task is 

less than the other R2 values. 

Speeding Sum of N Average Iterative Writing 

0.48 0.63 0.59 0.64 0.66 

Table 8: R2 values for the writing tasks, on multiple 

regressions of scores on tracing and explain questions.  

5.1.1 Non-Parametric Analysis 
A non-parametric analysis further underlines the strength of the 

relationship between the code writing and the combination of skill 

in tracing and explaining. Table 9 shows the percentage of 

students who provided good answers to the iterative writing tasks 

(i.e. a score ≥10) for several combinations of their scores on 

tracing and explain tasks. Of the 8 students who did relatively 

poorly on tracing and explaining (i.e. the bottom left cell of Table 

9), only 1 student out of 8 students (13%) scored 10 or higher on 

the two iterative writing tasks.  Moving horizontally from that 

lower left cell, we see that there are no students who score less 

than 50% on tracing and answer both explanation tasks correctly 

(further illustrating, as Philpott, Robbins and Whalley first 

observed, that ≥50% accuracy in tracing precedes skill in 

explaining).  If instead we move vertically from the lower left cell 

(thus maintaining the number of explanation tasks answered 

correctly at less than 2), we see that only 2 students out of 12 

students (17%) scored 10 or higher on the two iterative writing 

tasks.  That percentage difference between these two cells is not 

statistically significant (χ2 = 0.07). However, moving from the 

upper left cell to the upper right cell, we see that 10 students out 

of 12 (83%) scored 10 or higher on the two iterative writing tasks. 

The percentage difference between these two upper cells is 

statistically significant (χ2 = 10.7).  Thus, Table 9 demonstrates 

that it is the combination of tracing and explaining, more so than 

each skill independently, that leads to skill in writing. 

 Number of  correct explanations 

Tracing  

Tasks  

Correct 

< 2 2 

>50% 17%  of  12 83%  of  12 

<50% 13%  of    8 Zero students 

Table 9:  Percentage of good answers to the iterative writing 

tasks (i.e. score ≥10) for combined scores on tracing and 

explanation tasks.  

6. DISCUSSION 
Our results are consistent with the earlier findings of Lopez et al. 

and the studies upon which they in turn had built. That is, we also 

found statistically significant relationships between tracing code, 

explaining code, and writing code. Unlike those earlier studies, 

we also used non-parametric statistical tests to establish non-

linear relationships in our data, and unlike Lopez et al., we found 

all our reported relationships without resorting to a Rasch model. 

We are surprised at the strength of the statistically significant 

relationships that we found, given our limited amount of data – 

our exam only contained two explanation questions, and three 

writing tasks, and was administered to only 32 students.  Despite 

our limited data, our multiple linear regression (i.e. Figure 12) 

yielded a relatively tight distribution of data points around the line 

of regression, with an R2 = 0.66 which is 83% of our informal 

upper expectation. Also, our non-parametric analysis of tracing 

and explaining in combination (i.e. Table 9) demonstrated that it 

is the combination of tracing and explaining, more so than each 

skill independently, that leads to skill in writing. 

A high fit between writing and the combination of tracing and 

explaining may only be observed when the questions within each 

task type (i.e. tracing, explaining and writing) span a comparable 

range of difficulty and when these tasks are a good match to the 

range of abilities found among the students who take the exam. 

Our results show that the strength of the relationships between 

tracing, explaining and writing tasks do vary considerably 

according to the exact nature of the tasks. Furthermore, the 
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strength of those relationships is not simply a function of obvious 

aspects of the code, such as the number of lines of code in the 

tasks, nor is it a function of the degree of congruence between the 

programming constructs used in the explanation/tracing/writing 

tasks. More work is required to characterize the critical features of 

these tasks that explain the variation in the strength of the 

relationships.  Such work will require larger sets of explanation, 

tracing and writing problems. These larger sets may be too large 

to administer as part of a conventional end-of-semester exam, and 

this type of empirical work may need to move to more 

conventional experimental settings, using student volunteers. 

This paper is a study of novice programmers at a very early stage 

of their development. It is possible that the relationships we report 

in this paper between tracing, explaining and writing may not hold 

later in the development of the novice programmer. By analogy, 

just as a child begins to learn to read by “sounding out” words, so 

may a novice programmer begin by tracing code, but as both the 

child reader and the novice programmer develop, they may move 

to more sophisticated strategies. An obvious and interesting 

direction for future research would be a cross sectional or 

longitudinal study of tracing, explaining and writing skills across 

the entire undergraduate degree. 

7. CONCLUSION 
From this BRACElet study, and the earlier BRACElet studies 

upon which it builds, a picture is emerging of the early 

development of the novice the programmer. First, the novice 

acquires the ability to trace code. As the capacity to trace becomes 

reliable, the ability to explain code develops.  When students are 

reasonably capable of both tracing and explaining, the ability to 

systematically write code emerges.   

Most of the results in this paper are correlations, and correlation 

does not prove causality – perhaps the harder a student studies, 

the better the student gets at tracing, explaining, and writing?  On 

the basis of the evidence presented in this paper, we cannot 

dismiss such an argument. However, there are three reasons why 

we argue for a hierarchy of skills. First, Figures 9 and 10 do not 

show a strong linear correlation, but instead show a threshold 

effect, where writing ability is poor below a (roughly) 50% tracing 

score, and writing ability is only weakly correlated with tracing 

above that 50% threshold. Second, a hierarchy of tracing, 

explaining and writing is consistent with general results in 

cognitive science. Third, the Rasch model used in the earlier work 

of Lopez et al. allows for underlying group invariance.       

While arguing for a hierarchical development of programming 

skills, we do not support the idea of a strict hierarchy; where the 

ability to trace iterative code, and explain code, precedes any 

ability to write code. We believe that all three skills reinforce each 

other and develop in parallel.  Having written a small piece of 

code, a novice programmer needs to be able to inspect that code, 

and verify that it actually does what the novice intended – novices 

need to be able to “explain” their own code to themselves. Also, 

when writing code, a novice will sometimes need to trace the 

code.  Thus, writing code provides many opportunities to improve 

tracing and explanation skills, which in turn helps to improve 

writing skills.  In arguing for a hierarchy of programming skills, 

we merely argue that that some minimal competence at tracing 

and explaining precedes some minimal competence at 

systematically writing code. Any novice who cannot trace and/or 

explain code can only thrash around, making desperate and ill-

considered changes to their code − a student behavior many 

computing educators have reported observing.   
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