
A Closer Look at Tracing, Explaining and Code Writing

Skills in the Novice Programmer

Anne Venables and Grace Tan
School of Engineering and Science,

Victoria University,
Melbourne, Australia

{Anne.Venables,Grace.Tan}@vu.edu.au

Raymond Lister
Faculty of Engineering and Information Technology

University of Technology, Sydney
NSW 2007, Australia

raymond@it.uts.edu.au

ABSTRACT
The way in which novice programmers learn to write code is of

considerable interest to computing education researchers. One

research approach to understanding how beginners acquire their

programming abilities has been to look at student performance in

exams. Lopez et al. (2008) analyzed student responses to an end-

of-first-semester exam. They found two types of questions

accounted for 46% of the variance on the code writing portion of

the same exam. One of those types of question required students

to trace iterative code, while the other type required students to

explain what a piece of code did. In this paper, we investigate

whether the results by Lopez et al. may be generally indicative of

something about novice programmers, or whether their results are

just an artifact of their particular exam. We studied student

responses to our own exam and our results are broadly consistent

with Lopez et al. However, we did find that some aspects of their

model are sensitive to the particular exam questions used.

Specifically, we found that student performance on explaining

code was hard to characterize, and the strength of the relationship

between explaining and code writing is particularly sensitive to

the specific questions asked. Additionally, we found Lopez et al.’s

use of a Rasch model to be unnecessary, which will make it far

easier for others to conduct similar research.

Categories and Subject Descriptors

K.3 [Computers & Education]: Computer & Information

Science Education - Computer Science Education.

General Terms

Measurement, Experimentation, Human Factors.

Keywords

Novice programmers, CS1, tracing, comprehension, hierarchy.

1. INTRODUCTION
Over the last five years, the BRACElet project has investigated a

possible hierarchy of programming skills. At the bottom of the

hierarchy is knowledge of basic programming constructs (e.g.

what an “if” statement does). At the top of the hierarchy is the

ability to write code.

One of the earliest BRACElet papers (Whalley et al., 2006)

reported on the performance of students in an end-of-semester

exam. As part of that exam, the students were given a question

that began “In plain English, explain what the following segment

of Java code does”. Whalley et al. found that some students

responded with a correct, line-by-line description of the code

while other students responded with a correct summary of the

overall computation performed by the code (e.g. “the code checks

to see if the elements in the array are sorted”). Furthermore, it

was noted that the better a student performed on other

programming–related tasks in that same exam, the more likely the

student was to provide such a correct summary. In a follow up

study, Lister et al. (2006) found that when the same “explain in

plain English” question was given to academics, they almost

always offered a summary of the overall computation performed

by the code, not a line-by-line description. The authors of that

study concluded that the ability to provide such a summary of a

piece of code ─ to “see the forest and not just the trees” ─ is an

intermediate skill in a hierarchy of programming skills.

In a subsequent BRACElet study, Philpott, Robbins and Whalley

(2007) found that students who could trace code with less than

50% accuracy could not usually explain similar code, indicating

that the ability to trace code is lower in the hierarchy than the

abilty to explain code. Also, Sheard et al. (2008) found that the

ability of students to explain code correlated positively with their

ability to write code.

While the recent BRACElet work on a hierarchy of programming

skills is a novel empirical approach to the study of novice

programmers (particularly in its use of data collected in the

“natural setting” of end-of-semester exams), a belief in the

importance of tracing skills, and also skills similar to explanation,

is present in quite old literature on novice programmers. Perkins

et. al. (1989) discussed the importance and role of tracing as a

debugging skill. Soloway (1986) claimed that skilled

programmers carry out frequent “mental simulations” of their

code, and he advocated the explicit teaching of mental simulations

to students.

1.1 Lopez et al. (2008)
Of the BRACElet studies into a hierarchy of programming skills,

the most statistically sophisticated was undertaken by Lopez et al.

(2008). They analyzed student responses to an end-of-first-

semester exam by placing their exam questions into several

categories, which included:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICER’09, August 10–11, 2009, Berkeley, California, USA.

Copyright 2009 ACM 978-1-60558-615-1/09/08...$10.00.

117

● Basics, where students are required to recall knowledge of Java

constructs, recognize the definition of common Java terms, and

detect syntax errors.

● Data, where students are tested on their knowledge of data

types, and operations on data types.

● Parson’s Problems, where students are given a set of lines of

code, in random order, and are required to place the lines into

the correct order to solve a given task.

● Tracing2, which are tracing tasks that involve loops. Students

have to nominate the values outputted, or the values in one or

more variables when the code finishes.

● Tracing1, which are tracing tasks that do not involve loops.

● Explain, as discussed above.

● Writing, where students write code for a given problem.

In their analysis, Lopez et al. used stepwise regression to

construct a hierarchical path diagram where the points each

student earned on the exam’s code writing tasks was the

dependent variable (i.e. at the top of hierarchy). At or near the

bottom of the resultant hierarchy were “basic” and “data”

questions. Highest in the intermediate levels of the path diagram

were “explain” and “tracing2” tasks. Figure 1 shows that higher

portion of the Lopez et al. hierarchy. It can be seen that the points

students earned on tracing iterative code accounted for only 15%

of the variance of student points for the writing question (i.e. R2 =

0.15) and the points students earned on “explain” questions

accounted for only 7% of the variance in the writing question.

However, in combination, the “tracing2” and “explain” questions

accounted for 46% of the variance in the writing question (as

indicated in Figure 1 by R2 = 0.46 within the box headed

“Writing”). In a follow up study, Lister, Fidge and Teague (2009)

performed a non-parametric analysis on similar data and found

statistically significant relationships between these variables.

Figure 1: The upper portion of the stepwise regression model

from Lopez et al. (2008).

1.2 Research Issues and Questions
In this paper, we report on our own study of the relationships

between tracing iterative code, explaining code, and writing code.

(Henceforth, when we refer to “tracing”, we will be referring to

“tracing2” problems, the tracing of iterative code.) Our study is

motivated by a number of issues and questions raised by the

Lopez et al. study, which we discuss in this section.

Are the relationships that Lopez et al. found a reflection of the

intrinsic nature of the categories into which they broke their tasks

(i.e. tracing, explain, etc), or are these relationships due to the

specific exam questions they asked? For example, is their report

of a weak (R2 = 0.15) statistical relationship between tracing tasks

and code writing due to the intrinsic nature of tracing tasks or is

the weak relationship simply due to Lopez et al. using poor

tracing questions? To express this more generally, did Lopez et al.

find fundamental relationships between coding and non-coding

tasks, or are their results simply an artifact of their specific exam

paper?

An even more fundamental issue is whether code writing is

something an end-of-first-semester novice can do reliably. That

is, if we have a set of N programming problems that we (as

teachers) regard as being similar, do novice programmers at an

equal stage of their development tend to perform consistently

across that set of problems? In other words, are N-1 problems in

such a set of problems a good predictor of how novices will

perform on the Nth problem? If not, then there is little point in

looking for consistent, general statistical relationships between

code writing and non-code writing tasks. The exam used by Lopez

et al. contained two writing questions. They reported statistics

indicating that students performed very differently on their two

writing questions. For example, the average class grades on these

two writing questions were 29% and 45%. Lopez et al. did not

consider the reasons why student performance differed on these

code writing questions, nor did they discuss any implication this

inconsistency might have for the generality of their model. In this

paper, we will study the performance reliability of end-of-first-

semester novices on the questions in our exam.

1.2.1 Rasch Model
Another issue with the Lopez et al. study is the sophistication of

the techniques used to analyse the data. They used a polytomous

Rasch model to preprocess their data. Doing so addresses some of

the non-linearities in grading. For example, in a question graded

on a 10 point scale, the difference in quality between two student

answers, one scoring 5 points and the other 6 points, is probably

not the same as the difference in quality between two other

student answers, one scoring 9 and the other 10 points. However,

there are difficulties with using Rasch models, beyond the

inherent complexity. One difficulty is that it is a technique

originally intended for larger datasets than the sets typically

collected from small college classes.

Another difficulty with using a Rasch model is the need to find a

suitable parameter that describes the general ability of each

student who took the exam. For a test containing many items (and

ideally a test taken by a large number of people) the score of each

person on the entire test is often used as the measure of general

ability. However, for a test with a small number of questions,

taken by a small number of people (as is the case for both Lopez

et al. and us) it is not clear whether the overall score for the test

can be used as the measure of general ability. In fact, and perhaps

for this reason, Lopez et al. chose not to use the overall score.

Instead, they set aside one exam question from their path analysis

– an essay style question – and used student scores on that

question as their measure of general ability. The question then

arises as to whether the essay question used by Lopez et al. was a

valid measure of general ability. More pragmatically, setting aside

such an exam question for this purpose is not an option for us in

our study, and likewise, it would not be an option for most

computing education researchers attempting similar studies.

In this paper, we do not use a Rasch model. Instead, we work with

relatively “raw” data points, to investigate whether the same

relationships found by Lopez et al. on their Rasch-processed data

Writing

R2 = 0.46

p < 0.0001

Tracing of

iterative Code

Explain in

plain English

R2 = 0.15

R2 = 0.07 R2 = 0.30

118

can still be found in our data. It is our conjecture that it should

still be possible to find these relationships in “raw” data,

especially when the exam questions used display a relatively

uniform distribution of grade points.

1.3 Study Sample
The data we used for our study was collected in an exam that

students took at the end of a one-semester introductory course on

programming. These students attended the university of the first

and second authors. Students from this university had not

participated in any of the earlier studies summarized above.

These students were taught the Java programming language.

Thirty two students took the final exam which was subsequently

graded by one person.

2. DEPENDENT VARIABLE: WRITING
As teachers, our aim is to produce students who can write

programs. Therefore, the analysis in this paper, like the analysis in

the Lopez et al. paper, treats student performance on code writing

as the dependent variable, and studies the relationship between

student performance on code writing questions and non-code

writing questions. In this section, we describe the three code

writing questions from our exam, and investigate the performance

reliability of our students on these three tasks.

As Traynor, Bergin, and Gibson (2006) have argued, the true

indication of the difficulty of a code writing task is not the task

itself, but how the task is graded. We therefore also describe, in

detail, how each of our tasks was graded. In all three cases, the

grading schemes were designed solely for the purposes of grading

the students, prior to our analysis commencing. One person

graded all writing tasks for all students.

2.1 Two Iterative Code Writing Questions
Two of the three code writing questions required the students to

write iterative code.

2.1.1 Sum of N
For one of the two iterative code writing questions, the students

were told to “write a segment of Java code that will show the sum

of 1 to n for every n from 1 to 20. That is, the program prints 1, 3

(the sum of 1 and 2), 6 (the sum of 1, 2 and 3), and so on. You

may use either while or for loops and your program is required to

produce screen output in two columns the same as the following

… <Sample output was then given, including a heading> … You

are not required to provide the entire program”. A suitable

solution (with the heading omitted) may have looked like this:

 int sum = 0;

 for (int n=1 ; n<=20 ; n++)

 {
 sum = sum + n;

 System.out.println(n + “ “ + sum);
 }

The students’ answers to this question were graded on a 7 point

scale. One point was awarded for outputting a correct heading,

and 1 point was awarded for a correct declaration and

initialization of variable that would subsequently be used to

accumulate the sum (i.e. “sum” in our sample solution). One

point was awarded for a correct formulation of the “for” loop (or

an equivalent “while”). Three points were awarded for correctly

calculating the sum. In many cases, students wrote an inner loop

to calculate the sum, and this was not penalized. The final point

was awarded for a correct println statement. In subsequent

analysis, we will regard students scoring 5 or higher as having

manifested a grasp of the problem.

2.1.2 Average
The second iterative code writing question required students to

provide code that “continually asks the user to enter a list of

positive numbers. When the user has completed their list, they

type a negative number that stops the input process. Once input is

complete, the program prints out the average of the numbers to

the screen”. The question then continued, giving two sample

sessions of the program. The second of these sample sessions

illustrated the case where the first number inputted is negative, in

which case the program was shown to output “No list to average”.

As students were not taught exception handling prior to this exam,

they were not required to handle input exceptions in their answer

to this question. A suitable solution may have looked like this:

 int n = 0;

 double sum = 0;

 Scanner stdin = new Scanner(System.in);

 double x = stdin.nextDouble();

 while (x > 0)

 {
 n++;

 sum = sum + x;

 x = stdin.nextDouble();
 }

 if (n > 0)

 System.out.println(”Average: “ + sum/n);

 else

 System.out.println(”No list to average“);

This code writing exercise is similar to Soloway’s well known

“rainfall problem” (Soloway, Bonar, and Ehrlich, 1983; Soloway,

1986). As Soloway et al. demonstrated, this is not a problem that

all novices solve easily.

As with the ”Sum of N” writing task, the students’ answers to this

task were graded on a 7 point scale. One point was awarded for

declaring and initializing two variables analogous to “n” and

“sum” in our sample solution. One point was awarded for a read

prior to the loop and 1 point was for having a while loop that

correctly tested for a positive input value. Within the loop, 1

point was awarded for an assignment statement to accumulate the

sum, while 0.5 points were awarded for incrementing the variable

that counted the number of values inputted, and another 0.5 points

were for reading the next input value. The final 2 points were for

the “if” statement after the loop. As with the other iterative

writing problem, we will regard students scoring 5 or higher as

having manifested a grasp of the problem.

2.1.3 Comparison of Grade Distributions
Figure 2 illustrates that most students scored similar points on

these two iterative code writing tasks. Both problems were graded

on a 7 point scale. The shaded squares indicate equal scores on

both problems. Almost half the students (47%) scored exactly the

same points on both problems. Almost three quarters of the

119

students (72%) scored either the same points or points that

differed by only 1 point. Only 1 student had a point difference

greater than 2. The diagonal line though the figure is a regression

line, with a relatively high R2 value of 0.8. The 3 by 3 square at

the top right of the Figure 2 (indicated by the double lines)

contains the 13 students who are regarded as having manifested a

grasp of both problems.

A student’s performance on either of these two code writing

problems is a good predictor of the student’s performance on the

other problem. Had that not been the case, there would be few

grounds for believing that the non-code writing tasks that we

analyze later in the paper might be good predictors for code

writing. Furthermore, we can regard R2 = 0.8 as an informal upper

expectation of the extent of the relationship between code writing

and non-code writing tasks.

Given this high degree of collinearity between these two iterative

code writing tasks, there is little to be gained by building

regression models for each and so, in further analysis, we will

often consider the two problems combined. Figure 3 shows the

distribution of student scores when their scores on “Sum of N”

and “Average” are added together. There is some clumping at

each end of the distribution, since several students did either very

well or very poorly on both problems, but between the extremes

the distribution is a relatively uniform.

7 2 4

6 1

5 1 1 3 1 2

4 1

3 2

2 1 1

1 4 2

“Average”

Score

0 6

 0 1 2 3 4 5 6 7

 “Sum of N” Score

Figure 2: Student scores on “Sum of N” and “Average” code

writing tasks, with a line of regression (R2 = 0.8).

0

2
4

6

8

1 3 5 7 9 11 13 15

Sum + Average

N
o

.
S

tu
d

.

Figure 3: Distribution of student scores when their scores on

“Sum of N” and “Average” are added together. The dashed

line indicates the threshold at which we regard students as

having demonstrated a grasp of both problems.

2.2 Non-Iterative Code Writing Question
The third code writing question required the students to write a

nested set of “if” statements. The students were given the

following instructions: The speed limit on a freeway is 100 km/h.

Drivers exceeding the speed limit will be issued a speeding ticket.

The amount of the fine depends on whether this is their first

traffic offence or not and how much over the speed limit they are

driving if it is their first traffic offence. Using the table given

below, write the missing code for the Java program on the

following page so that the program will display one of the

messages, depending on the input entered by the user.

Demonstrate the use of nested if statements in your solution.

Speed (km/h)
First Traffic

Offence
Message to be displayed

<= 100 Not Applicable Drive Safely!

101 – 120 True Your ticket is $105

>121 True Your ticket is $160

More than 100 False Your ticket is $200

Students were provided with the following variable declarations:

 final int LIMIT = 100;

 int speed;

 String name;

 boolean fineBefore;

A suitable solution may have looked like this:

Scanner stdin = new Scanner (System.in);

System.out.print("Enter your name: ");

name = stdin.next();

System.out.print("What was your speed: ");

speed = stdin.nextInt();

System.out.print("Any previous fines: ");

fineBefore = stdin.nextBoolean();

if (speed <= LIMIT)

 System.out.println ("Drive Safely");

 else

 {

 System.out.print(name +

 ", your ticket is ");

 if (fineBefore)

 System.out.println("$200! ");

 else

 {

 if (speed <= 120)

 System.out.println("$105! ");

 else

 System.out.println("$160! ");

 }

 }

This question was graded out of 10 points. The grading scheme

awarded a student up to 4 points for the code that (in our sample

solution) precedes the first “if” condition, 1 point for an “if”

handling “speed <= LIMIT”, 1 point for an “else”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

120

associated with that first “if” (i.e. 6 points cumulative to this

stage). Inside that “else”, 1 point was awarded for handling the

input of whether the driver had been fined before, and the

remaining 3 points were allocated for the remaining code

commencing (in our sample solution) at “if (fineBefore)”.

In subsequent analysis, we will regard students scoring 8 or higher

as having manifested a grasp of the problem.

2.2.1 Grade Distribution
Figure 4 shows the distribution of student scores on this

“Speeding” task. There are few students who did poorly on this

task, and quite a few students who did well.

Figure 5 compares the performance of students on “Speeding”

with their performance on the combined iterative problems. The

dashed line in the figure indicates equal percentage points on

“Speeding” and on the iterative tasks. Over 90% of the students

did better on “Speeding”. The solid line is a regression, with a

moderate R2 = 0.54. Again, this R2 of 0.54 is a guide to what we

might expect of any relationship between code writing and non-

code writing tasks.

It could be argued that the control logic in the “Speeding” task is

more complex than the control logic of both iterative tasks. (One

author of this paper took far longer to write a sample solution for

“Speeding” than for the two iterative tasks – we suggest that

readers place to one side the sample solutions given in this paper

and see how long it takes them to write their own solutions.) That

most students did better on “Speeding” may be due to iteration

being harder to master than selection, but it also could be an

artifact of the grading schemes for these exam questions.

0

5

10

1 2 3 4 5 6 7 8 9 10 11

Speeding

N
o

.
S

tu
d

.

Figure 4: Distribution of student scores on the non-iterative

“Speeding” code writing problem. The dashed line indicates

the threshold at which students are regarded as having

demonstrated a grasp of the problem.

A relatively uniform distribution of student scores for code

writing results from adding together each student’s points on all

three writing tasks, as is shown in Figure 6. In the remainder of

this paper, we will refer to this combination of the three tasks

simply as “writing”.

2.3 Aside: Predictors of Success
In Computer Science Education research, there has been a great

deal of work on pre-enrollment “predictors of success” (e.g.

Wilson, 2002), where “success” is often the grade students earned

in their first programming course. Factors studied include SAT

scores, mathematical background and gender. Some linear

regression models have accounted for almost half the variation of

student grades at the end of the first semester. Given the R2

values we reported above, between our three code writing tasks

that students completed in a single exam session, the performance

of these “predictors of success” is impressive, and may be near the

upper limit of what can reasonably be expected.

0

2

4

6

8

10

12

0 5 10 15

Sum + Average

S
p

e
e
d

in
g

Figure 5: A comparison of student scores on the combined

iterative tasks with the “Speeding” task. (R2 = 0.54).

0

2

4

6

1 3 5 7 9 11 13 15 17 19 21 23 25

Q34+Q35b

N
o

.
S

tu
d

.

Figure 6: Distribution of student scores when their scores on

“Sum of N”, “Average” and “Speeding” are combined.

2.4 Procedural vs. Object Oriented Questions
The exam also contained three other questions. Unlike all other

questions described in this paper, those three questions tested

students on aspects of object-oriented programming. Please note

that those three questions are not included in this analysis, as our

focus is upon the ability of students to understand and write

procedural code.

3. INDEPENDENT VARIABLES
In this section, we describe the non-code writing questions in our

exam, using the Lopez et al. classification scheme. We also

provide examples of each type of question so that the reader can

develop a stronger impression of what our exam questions are

like. At this stage of the development of our field of research, we

feel the only way to ensure that our work (and similar work by

others) is reproducible is to include a representative sample of

exam questions, verbatim. Eventually, Computer Science

Education research may develop a comprehensive classification

system for exam questions that allows authors to pithily describe

the salient features of their exam to other researchers, but the

classification scheme offered by Lopez et al. (2008) is a first and

Writing = Sum + Average + Speeding

0 1 2 3 4 5 6 7 8 9 10

121

rudimentary step toward such a comprehensive exam question

classification scheme.

The non-code writing exam questions analyzed in this paper

consisted of three broad question types: (1) 30 multiple choice

questions, (2) two short answer explanation questions; and (3) one

Parson’s problem. The 30 multiple choice questions can be

further broken down into four Lopez classifications – “basics”,

“data”, “tracing1” and “tracing2”. Students had three hours to

complete the entire exam, which was intended to be ample time,

and anecdotal evidence suggests that it was ample time.

This paper focuses upon studying the higher levels of the Lopez et

al. path diagram so we will not describe all our exam questions.

Instead we will only describe our explanation and tracing

questions.

3.1 The Two Explanation Questions
Both of our explanation questions begin with the following

instruction: Explain the purpose of the following segment of code.

Assume that a, b, c are declared as integers and have been

initialized. The code presented in the first explanation question

was:

 c = b;

 b = a;

 a = c;

A good answer to this first explanation question would be “It

swaps the values in a and b”. We took this question from the

earlier study by Sheard et al. (2008). The code for the second

explanation question was as follows:

 if (a < b)

 if (b < c)

 System.out.println (c);

 else

 System.out.println (b);

 else if (a < c)

 System.out.println (c);

 else

 System.out.println (a);

A good answer to this question would be “It prints out the largest

of the three values”.

Each explain question was graded out of a total of 4 points where

students were given 4 points if they correctly summarized the

function performed by the code (as the above model answers do).

Students were given 3 points if they correctly described the

behaviour of every line of code, and fewer points if they showed

some partial understanding of the lines of code. This grading was

done as a routine part of grading the entire exam, and was done by

one person, prior to the analysis presented in this paper.

Prior to the exam, students had seen only one example of an

explanation question, but they were also told there would be at

least one such question in the exam and answers that summarized

the code would score more than line by line descriptions.

3.1.1 Reliability of Explain Questions
Table 1 provides the frequency of student scores on each of these

two explanation problems. The table shows that the bulk of the

students either did very well or very poorly on “Swap”, whereas

relatively few students did very poorly on “Largest”. These results

indicate that any statistical relationship between explanation and

code writing (particularly linear relationships) may vary according

to the exact explanation questions used. Given that “Swap” has

fewer lines of code and fewer programming constructs than the

“Largest” code, it would seem that the difficulty of explanation

questions cannot be characterized by simple measures, such as the

number of lines of code, or the programming constructs used.

“Swap” Score

 1 2 3 4

“Largest”

Totals

1 2 1 3

2 5 1 6

3 3 2 5

“Largest”

Score

4 6 12 18

“Swap” Totals 16 0 2 14

Table 1: The frequency of student scores on each of the two

explanation questions.

3.1.2 Linear Prediction of Writing from Explaining
The statistical relationship between student points on the

combined explanation questions and the combined writing

questions is shown in Figure 7. The figure shows that the students

who received maximum points on both explanation tasks (i.e. the

rightmost vertical line of points) did better than most of their

classmates on the writing tasks. A line of regression through all

points in the figure (solid line) has R2 = 0.49. For students who

scored less than maximum points, however, the explanation

questions are a poor linear predictor of writing performance. A

line of regression through the points for just those students

(dashed line) only has R2 = 0.06. For their equivalent data on

explanation and writing questions, Lopez et al. reported R2 = 0.07

for a line of regression through all points. (We note, however, that

our R2 values were attained without using a Rasch model.)

Given the markedly different points distributions for “Swap” and

“Largest”, and also between “Speeding” and the two iterative

writing problems, we might expect to see markedly different R2

values for various combinations of explanation and writing tasks.

Table 2 shows that, while the R2 values do vary, regularities are

apparent. For example, the combination of the two explanation

tasks always results in a higher R2 than either of the explanation

tasks alone. Also, the iterative code writing tasks, both

individually and collectively, have a higher R2 than the non-

iterative “Speeding” task. Such regularities are an indication that,

while the exact strength of the relationship may vary, there is a

general relationship between explanation and writing.

It is interesting that the students who received maximum points on

both explanation tasks (i.e. correctly summarized both pieces of

code) did relatively well on the code writing questions, when

neither of the explanation questions involved a loop, whereas two

of the three writing tasks did require loops. We offer no firm

explanation for this, but suggest that it may be that novices who

can regularly “see the forest” in code, irrespective of what

programming constructs are in that code, are better placed to

exhibit the higher level skills required to envisage the solution to

a writing task.

122

0

10

20

30

0 5 10

Explain Q31+Q32

Q
3
4
 +

 Q
3
5

Figure 7: A comparison of student scores on explanation and

writing tasks.

Explanation Task(s)

Writing Task(s)
Swap

Print

Largest
Combined

Speeding 0.22 0.19 0.30

Sum of N 0.46 0.25 0.53

Average 0.35 0.28 0.46

Iterative Combined 0.43 0.28 0.52

All Writing 0.39 0.28 0.49

Table 2: R2 values for various combinations of explanation and

writing tasks.

3.1.3 Non-Parametric Analysis
Figure 7 shows that, for students who scored less than the

maximum number of points on the explanation questions, there is

no clear relationship between their performance on those

explanation questions and their performance on the writing

questions. In contrast, none of the students who scored the

maximum number of points on explanation questions did poorly

on the code writing questions. This suggests that, while there may

be a relationship between being able to explain code and being

able to write code, that relationship is not linear. In this section,

we explore the possibility of such a non-linear relationship, by

carrying out a simple non-parametric analysis of the data.

Earlier in the paper, we defined a score of 8 or higher on the non-

iterative “Speeding” task, and a score of 5 or higher on either

iterative task, as an indication that a student had demonstrated a

grasp of these writing tasks. These threshold scores, for each

problem, divide the students into two groups. Similarly, a student

who receives the maximum score (i.e. 4) on an explanation

question has (by definition of the grading scheme) demonstrated a

grasp of the overall computation performed by that particular

piece of code. Again, students can be divided into two groups on

each explanation problem, according to whether or not they

demonstrated sufficient grasp of the explanation question to

receive a perfect score. For any one writing task, in combination

with any one explanation task, we can divide the students into

four groups, according to whether or not they achieved the

threshold score on each task. With four such groups, the non-

parametric chi-square test can be used to test whether there is a

relationship between the two tasks.

Table 3 shows the results of chi-square analysis on combinations

of explanation and code writing tasks. In our analysis, with four

groups in each chi square calculation, the degrees of freedom (df)

= 1, so any χ2 ≥ 4 is significant at p ≤ 0.05. All the relationships

in Table 3 are significant at that level, except for the relationship

between the “largest” explanation task and the combination of all

three writing tasks (where χ2 = 2.3). Therefore, with that one

exception, our data indicates that there is a non-linear but

statistically significant relationship between the ability to “see the

forest” in a given piece of code and being able to write code.

Explanation Task(s)

Writing Task(s)
Swap

Print

Largest

Both

Explains

Speeding ≥ 8 points 5.0 7.7 5.7

Sum of N ≥ 5 points 12.3 8.8 12.3

Average ≥ 5 points 10.0 6.5 10.2

Both Iterative ≥ 5 9.8 7.2 14.6

Speeding ≥ 8 and

both Iterative ≥ 5
4.3 2.3 7.6

Table 3: The χ2 values for various combinations of explanation

and writing tasks.

3.2 Tracing Questions
Lopez et al. (2008) define “tracing2” questions as tracing tasks

involving loops. As discussed earlier, we will henceforth refer to

tracing2 questions simply as “tracing” questions. The following

multiple choice tracing question was the easiest for our 32

students, with 81% of them correctly selecting option “c”:

 What is printed to the screen by the following code?

for (int count=0; count<4; count--)
 System.out.print(count);

 a) 0 + 0 + 0 + 0 + 0 + 0 + …continuously
 b) 0 + 1 + 2 + 3 + 4 + 5 + …continuously
 c) 0-1-2-3-4 …continuously

 d) no output to the screen

The lowest percentage of correct responses for a tracing question

was 56%, for this question, where the correct solution is “b”:

 What is the output to the screen by the following code?

 int n = 4;
 for (int row=1; row<=n; row++) {

 for (int column=1; column<=n; column++)

 if (row==1 || row==n || column==1

 || column==n)

 System.out.print ("* ");

 else

 Sytem.out.print (" ");

 System.out.println();

 }

Explain

Writing

(R
2
 = 0.06)

R
2
 = 0.49

123

 a) * b) * * * *

 * * * *

 * * * * *

 * * * * * * * *

 c) * * * * d) * * * *

 * * * * * * *

 * * * * * *

 * * * * *

(Note: In the exam, which was formatted as a single column

document, the “if” in the above code was not broken across two

lines).

No other tracing question involved nested loops. However, two

other tracing questions were like the above tracing question in that

they contained a conditional inside a loop. Henceforth, we will

refer to these three problems collectively as the “Complex”

tracing problems. One of the other complex tracing questions was

the second hardest tracing question for the students (59%

answered it correctly), while the remaining complex question

ranked as one of the more easily answered questions of all nine

tracing questions (69% answered it correctly).

Six of the “tracing” problems involved a single loop without a

conditional inside the loop. Henceforth, we will refer to these six

problems collectively as the “Simple” tracing problems. Below is

the simple tracing question that received the median percentage of

correct responses (i.e. 63% for option “b”) of all 9 tracing

questions:

 What is printed to the screen by the following code?

int number = 3;
while (number == 3)
 { System.out.print(number + “ + “);
 number++;
 }

 a) 3
 b) 3 +
 c) 3 + 4
 d) 3 + 4 + 5 + 6 + …continuously…..
 e) 3 + 3 + 3 + 3 + …continuously…..
 f) nothing will be printed to the screen

Figure 8 shows the distribution of scores for all “tracing”

questions. Nineteen of the students (59%) scored 7 or higher on

these 9 questions. Given the variable number of options used in

these multiple choice questions, the expected value for students

answering by guessing is 1.8 (20%).

3.2.1 Simple vs. Complex Tracing Questions
On any pair of the three tracing questions given in full above (i.e.

any pairing of the three tracing questions that our students found

easiest, hardest and of median difficulty) the percentage of

students who answered both questions in the pair correctly, or

both questions in the pair incorrectly, varied in the small range of

63-69%. Those percentages are an informal but intuitive

description of the reliability of the nine tracing questions.

A more formal measure of reliability is the classic Cronbach’s

alpha. For the 9 tracing questions answered by our 32 students,

Cronbach’s alpha is 0.87. A common rule of thumb is that an

alpha higher than 0.7 (or 0.8 for some people) is considered an

indication of a reliable set of multiple choice questions.

0

2
4

6

8

1 2 3 4 5 6 7 8 9 10

Score

N
o

.
S

tu
d

.

Figure 8: The distribution of student scores on the nine tracing

questions.

For the complex tracing questions, Cronbach’s alpha was only

0.66, but a lower alpha is to be expected for only three questions.

For the six simple tracing questions, Cronbach’s alpha was 0.85.

The performance relationship between simple and complex

tracing questions is non-linear. Of the 8 students who scored less

than 50% on the simple problems, all but one scored 0 or 1 on the

3 complex tracing problems. Given that these complex tracing

problems are multiple choice questions, that is a performance

level that is probably most easily explained by chance. For the 24

students who scored 50% or higher on the simple tracing

questions, the average student score on the 3 complex tracing

problems was 2.2. However, a line of regression through the data

points for these 24 students is almost horizontal, and has an R2

value of only 0.03. In mathematical parlance, ≥50% performance

on the simple tracing problems is a necessary condition for being

able to answer the complex tracing problems, but it is not a

sufficient condition. We surmise that the complex tracing

problems require a systematic approach to tracing (perhaps

involving pen and paper) that is not required for the simple

tracing problems.

3.2.2 Linear Prediction of Writing from Tracing
The linear statistical relationship between student score on the

nine tracing questions and the combined writing questions is

shown in Figure 9. The solid line in the figure is a line of

regression through all data points, with an associated R2 = 0.50

(shown in bold). This is an R2 considerably higher than the R2 =

0.15 reported by Lopez et al. These differing R2 values indicate

(as we similarly concluded for explanation questions) that the

predictive power of tracing questions is sensitive to the exact

nature of the questions. Furthermore, we note (as for explanation

questions) that our higher R2 value was attained, unlike Lopez et

al., without using a Rasch model.

The dashed line in Figure 9 is a line of regression for the subset of

tracing scores ≥4. That line only has an associated R2 = 0.23. That

is, Figure 9 illustrates that students who score poorly on the

tracing questions rarely score well on the code writing tasks, but

there is no clear relationship with code writing for students who

scored well on tracing questions. This suggests a causal

relationship, where a minimal level of skill at tracing is necessary

for code writing, but that minimal skill at tracing is not sufficient

by itself to enable code writing.

Figure 10 shows the relationship between student scores on the

six simple tracing questions and the combined writing questions.

0 1 2 3 4 5 6 7 8 9

124

The solid line in the figure is a line of regression through all data

points, with an associated R2 = 0.51 (shown in bold). However,

the dashed line in Figure 10 is a line of regression for that subset

of simple tracing scores ≥3, and it only has an associated R2 =

0.06. Again, this suggests a causal relationship between tracing

and code writing, where a minimal level of skill at tracing is

necessary for code writing, but that minimal skill at tracing is not

sufficient by itself to enable code writing.

0

10

20

30

0 5 10

Tracing2

Q
3
4
+
Q

3
5

Figure 9: A comparison of student scores on all nine tracing

questions and the combined writing questions.

Figure 11 shows the relationship between student scores on the

three complex tracing questions and the combined writing

questions. Many students who scored a perfect 3 on these

complex tracing questions also scored well on the writing tasks.

Consequently, each data point in the upper right of Figure 11

represents multiple students. For example, of the rightmost data

points, the 3 highest represent 9 students, which makes less

obvious in Figure 11 the relationship between the code writing

tasks and the three complex tracing tasks. Never-the-less, the line

of regression through all of the data points in Figure 11 only has

associated R2 = 0.27, so there is not an obvious linear relationship

between the complex tracing problems and code writing.

Table 4 shows R2 values for various combinations of tracing and

writing tasks. On all combinations of writing tasks, the six simple

tracing tasks have a markedly higher R2 value than the three

complex tracing tasks.

Our intuition was that tracing is an easier skill than writing, so the

complex tracing tasks would relate better to performance on

writing than the simple tracing tasks. We have no firm

explanation for why this proved not to be the case. One

possibility is that complex tracing is an error prone activity, and

thus best avoided, so part of the skill in code writing is verifying

code without doing complex tracing.

3.2.3 Non-Parametric Analysis
Figures 9 and 10 show that, for students who scored above certain

threshold values on tracing tasks, there is no clear linear

relationship between tracing tasks and code writing tasks. In this

section, we explore the non-linear relationship between tracing

tasks and code writing tasks, via a chi-square analysis.

0

5

10

15

20

25

30

0 5

Six Simple Loop Tracing2 Tasks

W
ri

ti
n

g

Figure 10: A comparison of student scores on the six simple

tracing questions and the combined writing questions.

Figure 11: A comparison of student scores on the three

complex tracing questions and the combined writing questions.

Tracing Task(s)
Writing Task(s)

Simple Complex Both

Speeding 0.49 0.15 0.42

Sum of N 0.40 0.27 0.42

Average 0.40 0.29 0.43

Iterative Combined 0.42 0.30 0.45

All Writing 0.51 0.27 0.50

Table 4: R2 values for various combinations of tracing and

writing tasks.

R
2
 = 0.50

Writing

R
2
 = 0.51

R
2
 = 0.27

0

10

20

30

0 1 2 3 4

Three Tracing2 With Logic in Loop

W
ri

ti
n

g

Three Complex Tracing Questions

(R
2
 = 0.23)

(R
2
 = 0.06)

Six Simple Tracing Questions

Nine Tracing Questions

R
2
 = 0.27

125

Table 5 shows the results of our chi-square analysis on various

combinations of tracing and writing tasks. As was the case with

our earlier chi square analysis of the explanation questions, any χ2

≥ 4 is significant at p ≤ 0.05. The chi square analysis confirms

two relationships which already appeared to be the case from the

above linear analysis – that (1) students who score three or higher

on the six simple tracing problems tend to do better on writing

tasks than students who scored less than 3, but (2) a score of five

or higher on the six simple tracing problems is not necessarily an

advantage over a score of 3 or 4. The chi square analysis also

confirms two relationships not apparent in the linear analysis –

that (3) students who performed at or above a given threshold on

the tracing problems (either simple, complex or both) tend to do

better on the non-iterative “Speeding” problem than students who

performed below the given threshold, and (4) there is a significant

non-linear statistical relationship between the three complex

tracing tasks and code writing.

Score on Tracing Task(s)

Simple
Writing

Task(s)

≥3 ≥5

Complex

≥2

Tracing

≥ 7

Speeding ≥ 8 13.7 7.8 9.8 9.8

Sum of N ≥ 5 8.3 2.3 11.6 7.2

Average ≥ 5 9.4 3.4 8.7 5.0

Iterative ≥ 5 7.3 1.5 9.8 5.8

Speeding ≥ 8

&&

Iterative ≥ 5

 6.4 0.8 8.3 4.6

Table 5 The χ2 values for various combinations of tracing and

writing tasks.

4. TRACING AND EXPLAINING
In the introduction, we mentioned that Philpott, Robbins and

Whalley (2007) found that students who traced code with less

than 50% accuracy could not usually explain similar code,

indicating that the ability to trace code is lower in the hierarchy

than the abilty to explain code. In support of that finding, Lopez

et al. found a linear relationship between tracing and explaining

(R2 = 0.30, see Figure 1). In this section, we investigate whether

we also find a similar relationship in our data.

Between our nine tracing tasks and our two explanation tasks, we

find a linear relationship of comparable strength to that found by

Lopez et al. (our R2 = 0.26). Table 6 shows R2 values for various

combinations of tracing and explanation tasks. Most of the R2

values indicate that the linear relationships between tracing and

explanation are weak.

Table 7 presents the results of a chi-square analysis, into the non-

linear relationship between tracing and explaining. For example,

the analysis that led to the top left chi value of 4.2 compared

student performance on the “Swap” question (i.e. whether or not

the students provided a correct summary) with their performance

on the six simple tracing tasks (i.e. whether or not the students

answered at least 50% of those questions correctly). As with

earlier analysis, χ2 ≥ 4 is significant at p ≤ 0.05. For all

combinations of tracing and explanation tasks, and for all

threshold values on the tracing tasks, there is a statistically

significant relationship between tracing and explaining.

Score on Tracing Task(s) Explain

Task(s) Simple Complex Both

Swap 0.13 0.10 0.14

Largest 0.27 0.09 0.24

Both 0.27 0.13 0.26

Table 6: R2 values for various combinations of tracing and

explanation tasks.

Score on Tracing Task(s)

Simple Complex Tracing

Explain

Task(s)

≥3 ≥5 ≥2 ≥ 5 ≥ 7

Swap 4.2 5.0 7.2 4.2 7.2

Largest 8.3 12.3 5.8 8.3 9.8

Both 6.4 5.7 8.3 6.4 8.3

Table 7: The χ2 values for various combinations of tracing and

explanation tasks.

5. TRACING, EXPLAINING & WRITING
Until this point of the paper, we have investigated pair wise

relationships between any two of tracing, explaining and writing.

In this section, we analyze the combined effect of tracing and

explaining upon writing.

Figure 12 illustrates the results of a multiple regression, with

score on the code writing tasks as the dependent variable. The

independent variables are the scores on the nine tracing tasks and

the scores on the two explanation tasks. The line of regression in

the figure has an associated R2 = 0.66. Our R2 is higher than the

R2 = 0.46 reported by Lopez et al., indicating (as earlier

regressions also showed) that the predictive power of these

models is sensitive to the exact nature of the exam questions used.

Furthermore, we note (as we have for earlier regressions) that our

higher R2 value was attained, unlike Lopez et al., without using a

Rasch model.

Earlier in the paper, in section 2.1.3, and illustrated in Figure 2,

we reported that a plot of the two iterative tasks (i.e. “Sum of N”

and “Average”) yielded R2 = 0.8. At that point in the paper, and

given the similarity in those two iterative code writing tasks, we

wrote that R2 = 0.8 could be regarded as an informal upper

expectation of the extent of the relationship between code writing

and non-code writing tasks. Given that expectation, the R2 = 0.66

reported in Figure 12 (i.e. 83% of our informal upper expectation)

is an excellent outcome, especially with only two explanation

tasks available for inclusion in our model. Furthermore, we

remind the reader that the R2 value between the non-iterative

“Speeding” task and the combination of the two iterative tasks

was only R2 = 0.54, which is lower than what we have achieved

with the regression model in Figure 12.

In all of our earlier figures, there were data points that fell well

away from the associated line of regression. A visually striking

feature of Figure 12 is the absence of data points that are well

126

removed from the line of regression – there are no points toward

the upper left or the lower right of Figure 12. One interpretation

of this relatively tight distribution around the line of regression is

that the two independent variables describe most of the factors

leading to performance at code writing.

0

10

20

30

0 10 20 30

1.24Tracing2 + 1.68Explain - 3.12

Q
3
4
+

Q
3
5

Figure 12: A multiple regression, with score on code writing as

the dependent variable, and the combination of scores on

tracing and explaining as the dependent variables.

As the label of the x-axis in Figure 12 shows, the co-efficient of

the “Tracing” variable is 1.24 and the co-efficient of the

“Explain” variable is 1.68. This difference can largely be

attributed to the differing number of points awarded to the tracing

questions (9 points) and explanation questions (8 points). When

allowance is made for that point difference, the weight of tracing

questions and the explanation questions in the model is roughly

equal. However, while that equality may be due to the tracing and

explanation being of equal importance, the difference in how the

tracing and explanation tasks were framed and graded suggests

that the equality may be a coincidence – the tracing questions

were framed as multiple choice questions with 0/1 grading, while

the explanation questions were framed as free response questions

with a more sophisticated grading strategy.

Table 8 shows R2 values for various subsets of the three writing

tasks. All of these multiple regressions are statistically significant

(p < 0.001). The R2 value for the non-iterative “Speeding” task is

less than the other R2 values.

Speeding Sum of N Average Iterative Writing

0.48 0.63 0.59 0.64 0.66

Table 8: R2 values for the writing tasks, on multiple

regressions of scores on tracing and explain questions.

5.1.1 Non-Parametric Analysis
A non-parametric analysis further underlines the strength of the

relationship between the code writing and the combination of skill

in tracing and explaining. Table 9 shows the percentage of

students who provided good answers to the iterative writing tasks

(i.e. a score ≥10) for several combinations of their scores on

tracing and explain tasks. Of the 8 students who did relatively

poorly on tracing and explaining (i.e. the bottom left cell of Table

9), only 1 student out of 8 students (13%) scored 10 or higher on

the two iterative writing tasks. Moving horizontally from that

lower left cell, we see that there are no students who score less

than 50% on tracing and answer both explanation tasks correctly

(further illustrating, as Philpott, Robbins and Whalley first

observed, that ≥50% accuracy in tracing precedes skill in

explaining). If instead we move vertically from the lower left cell

(thus maintaining the number of explanation tasks answered

correctly at less than 2), we see that only 2 students out of 12

students (17%) scored 10 or higher on the two iterative writing

tasks. That percentage difference between these two cells is not

statistically significant (χ2 = 0.07). However, moving from the

upper left cell to the upper right cell, we see that 10 students out

of 12 (83%) scored 10 or higher on the two iterative writing tasks.

The percentage difference between these two upper cells is

statistically significant (χ2 = 10.7). Thus, Table 9 demonstrates

that it is the combination of tracing and explaining, more so than

each skill independently, that leads to skill in writing.

 Number of correct explanations

Tracing

Tasks

Correct

< 2 2

>50% 17% of 12 83% of 12

<50% 13% of 8 Zero students

Table 9: Percentage of good answers to the iterative writing

tasks (i.e. score ≥10) for combined scores on tracing and

explanation tasks.

6. DISCUSSION
Our results are consistent with the earlier findings of Lopez et al.

and the studies upon which they in turn had built. That is, we also

found statistically significant relationships between tracing code,

explaining code, and writing code. Unlike those earlier studies,

we also used non-parametric statistical tests to establish non-

linear relationships in our data, and unlike Lopez et al., we found

all our reported relationships without resorting to a Rasch model.

We are surprised at the strength of the statistically significant

relationships that we found, given our limited amount of data –

our exam only contained two explanation questions, and three

writing tasks, and was administered to only 32 students. Despite

our limited data, our multiple linear regression (i.e. Figure 12)

yielded a relatively tight distribution of data points around the line

of regression, with an R2 = 0.66 which is 83% of our informal

upper expectation. Also, our non-parametric analysis of tracing

and explaining in combination (i.e. Table 9) demonstrated that it

is the combination of tracing and explaining, more so than each

skill independently, that leads to skill in writing.

A high fit between writing and the combination of tracing and

explaining may only be observed when the questions within each

task type (i.e. tracing, explaining and writing) span a comparable

range of difficulty and when these tasks are a good match to the

range of abilities found among the students who take the exam.

Our results show that the strength of the relationships between

tracing, explaining and writing tasks do vary considerably

according to the exact nature of the tasks. Furthermore, the

R
2
 = 0.66, p < 0.001

Writing

\

127

strength of those relationships is not simply a function of obvious

aspects of the code, such as the number of lines of code in the

tasks, nor is it a function of the degree of congruence between the

programming constructs used in the explanation/tracing/writing

tasks. More work is required to characterize the critical features of

these tasks that explain the variation in the strength of the

relationships. Such work will require larger sets of explanation,

tracing and writing problems. These larger sets may be too large

to administer as part of a conventional end-of-semester exam, and

this type of empirical work may need to move to more

conventional experimental settings, using student volunteers.

This paper is a study of novice programmers at a very early stage

of their development. It is possible that the relationships we report

in this paper between tracing, explaining and writing may not hold

later in the development of the novice programmer. By analogy,

just as a child begins to learn to read by “sounding out” words, so

may a novice programmer begin by tracing code, but as both the

child reader and the novice programmer develop, they may move

to more sophisticated strategies. An obvious and interesting

direction for future research would be a cross sectional or

longitudinal study of tracing, explaining and writing skills across

the entire undergraduate degree.

7. CONCLUSION
From this BRACElet study, and the earlier BRACElet studies

upon which it builds, a picture is emerging of the early

development of the novice the programmer. First, the novice

acquires the ability to trace code. As the capacity to trace becomes

reliable, the ability to explain code develops. When students are

reasonably capable of both tracing and explaining, the ability to

systematically write code emerges.

Most of the results in this paper are correlations, and correlation

does not prove causality – perhaps the harder a student studies,

the better the student gets at tracing, explaining, and writing? On

the basis of the evidence presented in this paper, we cannot

dismiss such an argument. However, there are three reasons why

we argue for a hierarchy of skills. First, Figures 9 and 10 do not

show a strong linear correlation, but instead show a threshold

effect, where writing ability is poor below a (roughly) 50% tracing

score, and writing ability is only weakly correlated with tracing

above that 50% threshold. Second, a hierarchy of tracing,

explaining and writing is consistent with general results in

cognitive science. Third, the Rasch model used in the earlier work

of Lopez et al. allows for underlying group invariance.

While arguing for a hierarchical development of programming

skills, we do not support the idea of a strict hierarchy; where the

ability to trace iterative code, and explain code, precedes any

ability to write code. We believe that all three skills reinforce each

other and develop in parallel. Having written a small piece of

code, a novice programmer needs to be able to inspect that code,

and verify that it actually does what the novice intended – novices

need to be able to “explain” their own code to themselves. Also,

when writing code, a novice will sometimes need to trace the

code. Thus, writing code provides many opportunities to improve

tracing and explanation skills, which in turn helps to improve

writing skills. In arguing for a hierarchy of programming skills,

we merely argue that that some minimal competence at tracing

and explaining precedes some minimal competence at

systematically writing code. Any novice who cannot trace and/or

explain code can only thrash around, making desperate and ill-

considered changes to their code − a student behavior many

computing educators have reported observing.

ACKNOWLEDGEMENT
Raymond Lister’s contribution was part of a Fellowship awarded

and funded by the Australian Teaching and Learning Council.

8. REFERENCES
[1] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and

Prasad, C. (2006). Not seeing the forest for the trees: novice

programmers and the SOLO taxonomy. 11th Annual

SIGCSE Conference on Innovation and Technology in

Computer Science Education, Bologna, Italy, 118-122.

[2] Lister, R., Fidge C. and Teague, D. (2009) Further Evidence

of a Relationship between Explaining, Tracing and Writing

Skills in Introductory Programming. 14th Annual

Conference on Innovation and Technology in Computer

Science Education, Paris, France.

[3] Lopez, M., Whalley, J., Robbins, P., and Lister, R. 2008.

Relationships between reading, tracing and writing skills in

introductory programming. 4th International Workshop on

Computing Education Research, Sydney, Australia, 101–112.

[4] Perkins, D. and Martin, F. (1986) Fragile Knowledge and

Neglected Strategies in Novice Programmers. In Soloway,

E. and and Spohrer, J, Eds (1989), Studying the Novice

Programmer. Lawrence Erlbaum Associates, Hillsdale, NJ,

1989. pp. 213-229.

[5] Philpott, A, Robbins, P., and Whalley, J. (2007): Accessing

The Steps on the Road to Relational Thinking. 20th Annual

Conference of the National Advisory Committee on

Computing Qualifications, Nelson, New Zealand, 286.

[6] Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E.,

and Whalley, J. L. (2008). Going SOLO to assess novice

programmers. 13th Annual Conference on Innovation and

Technology in Computer Science Education, Madrid, Spain,

209-213.

[7] Soloway, E., Bonar, J., and Ehrlich, K. (1983). Cognitive

strategies and looping constructs: an empirical study.

Commun. ACM 26, 11 (Nov. 1983), 853-860.

[8] Soloway, E. (1986). Learning to program = Learning to

construct mechanisms and explanations. Communications of

the ACM, 29(9). pp. 850-858.

[9] Traynor, D., Bergin, S. and Gibson, J.P. (2006). Automated

Assessment in CS1. In Proc. Eighth Australasian Computing

Education Conference (ACE2006), Hobart, Australia.

CRPIT, 52. Tolhurst, D. and Mann, S., Eds. ACS. 223-228.

[10] Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins,

P., Kumar, P. K. A., & Prasad, C. (2006). An Australasian

Study of Reading and Comprehension Skills in Novice

Programmers, using the Bloom and SOLO Taxonomies. 8th

Australasian Computing Education Conference, Hobart,

Australia. 243-252.

[11] Wilson, B. (2002) A Study of Factors Promoting Success in

Computer Science Including Gender Differences. Computer

Science Education. Vol. 12, No. 1-2, pp. 141-164.

128

