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Abstract* 

This paper examines the capacity of networks of phase 
coupled oscillators to coordinate activity in a parallel, 
distributed fashion. To benchmark these networks of 
oscillators, we present empirical results from a study of the 
capacity of such networks to colour graphs. We generalise 
the update equation of Aihara et al. (2006) to an equation 
that can be applied to graphs requiring multiple colours.   
We find that our simple multi-phase model can colour 
some types of graphs, especially complete graphs and 
complete k-partite graphs with equal or a near equal 
number of vertices in each partition. A surprising 
empirical result is that the effectiveness of the approach 
appears to be more dependent upon the topology of the 
graph than the size of the graph. 
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1 Introduction  

Observations of the phenomena of coupled oscillators date 
back to the early seventeenth century, when Christiaan 
Huygens noticed that the pendula of two of his clocks, 
suspended side-by-side, always settled into swinging in 
opposite directions, even after he disturbed the position of 
the pendula  (Bennett et al., 2002; Strogatz, 2003). In 1680, 
Engelbert Kaempfer reported another form of phased 
coupled oscillation, in the synchronous flashing of 
hundreds of fireflies on trees along the Chao Phraya River 
in Thailand (Buck & Buck, 1976). Many similar instances 
of naturally occurring synchronization have since been 
discovered, such as in heart pacemaker cells and in neural 
networks  (Camazine et al., 2001). 

Fireflies generate light from the lantern in the abdomen; it 
usually takes about 800 milliseconds to recharge the 
lantern and 200 milliseconds to produce a spark; the 
process may then repeat.   Formal models of this behaviour 
describe a single firefly as an oscillator with a phase 0 ≤ θ 
≤ π2  and period ώ. For a large proportion of each cycle, 
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the oscillator is recharging and therefore discharging is 
impossible. For the remaining portion of the cycle, the 
firefly/oscillator is ready to discharge or “fire”. If the 
firefly/oscillator is operating in isolation from other 
firefly/oscillators, then it fires at θ = π2 . If a 
firefly/oscillator is not operating in isolation, has 
completed recharging, and sees sufficient light (stimulus) 
from neighbouring fireflies, the firefly/oscillator can 
adjust its phase slightly so as to bring itself closer to 
synchronization with the other firefly/oscillators 
(Camazine et al., 2001).  Mirollo & Strogatz (1990) 
demonstrated, by mathematical proof and computer 
simulation, the conditions under which a fully connected 
network of oscillators will synchronise. 

Networks of oscillators have properties that make them an 
interesting approach to coordinating activity in large 
networks of simple computational elements. First, the 
synchronization mechanism of the oscillators is parallel 
and distributed – no global coordination is required. 
Second, the oscillators can be implemented in hardware 
with very simple circuitry, making it a promising approach 
for massive networks of tiny processing elements.  In fact, 
the approach has already received some attention for 
synchronization in ad-hoc sensor networks (Hong & 
Scaglione, 2003; Lucarelli & Wang, 2004; Werner-Allen 
et al., 2005), and the coordination of multi agent systems 
(Bettstetter, 2006; Spong, 2006).      

1.1 Anti-phase Synchronisation with Two 
Oscillators  

Phase coupling need not be confined to phase 
synchronisation (i.e. where the phase difference of 
oscillators is 0).  In some applications, the desired effect 
may be to have the computational elements differentiate 
into two or more groups.  One of the simplest models of 
anti-phase synchronisation was studied by  Aihara et al. 
(2006). They studied the mating calls of rain frogs, which 
they modelled as a network of exactly two oscillators, 
where the oscillators were intended to interact in such a 
way that they would settle into having a phase difference 
of π .  

In the Aihara et al. model, the two frogs/oscillators are 
denoted  a  and b.  The phases of the frogs/oscillators are 

denoted aθ , bθ with the respective frogs calling when 

their phase is zero, and the frequency of the oscillators are 

denoted aω , bω .  The dynamic of oscillator a in isolation 

from oscillator b is described by: 
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Where g is a π2 periodic function, and the constants α and 
β are frustration parameters (we will assume α = β ). 

Typically g is )sin( βθθ −− baK  where the constant K is 

the coupling strength 

Aihara et al.  were able to show that a stable equilibrium 

phase difference ba θθϕ −= of π exists between the 

two oscillators provided Kba <<−ωω .  

We performed a computer simulation of the Aihara et al. 
model.  The phases of the two oscillators were randomly 
initialised and we used a coupling strength K of 0.1. The 
waveforms in Figures 1 and 2 show the phases of the two 
oscillators, where they are initially out of phase by 
approximately 0.4 of a radian, finally reaching a stable 
anti-phase difference of ~3.14 from the 14th cycle 
onwards. 

 

Figure 1: Evolution of the phases of two oscillators, 
which are eventually out of phase byπ . 

 

Figure 2: An alternative visualisation of the simulation 
from Figure 1.   The wheel on the left shows the initial 
phase of each oscillator, which are similar. The wheel 
on the right shows the simulation at a later stage, when 
the phases of the two oscillators are separated by π . 

1.2 Graph Colouring 

In this paper, we further investigate the computational 
power of networks of oscillators. Like Hopfield & Tank 
(1985, p. 142), we believe that the computational power of 
such networks is best characterized by studying the 
behaviour of such networks when applied to difficult but 
well understood combinatorial optimization problems. 
Consequently, we have chosen to study the dynamics of 
networks of oscillators when applied to graph colouring.  

The task of colouring a graph involves an assignment of 
colours to vertices in the graph such that no two vertices 
that share an edge have the same colour (Garey & Johnson, 
1979). In our models, each node of the graph is an 
oscillator. Two oscillators are coupled if the respective 
nodes in the graph are connected. The colour of a node is 
represented by the phase of the oscillator.  To visualise the 
graph colourings, we use a colour scheme that maps the 
phase of the oscillator in a 2π  periodic system to a colour 
in the RGB (Red, Green, Blue) domain. 

Wu (2002) conducted some simple experiments using 
oscillators to perform graph colouring.  He conducted 
computer simulations for 300 graphs with the number of 
vertices ranging from 4 to 16, and where all graphs were 
known to be 2- or 3-colourable. His system coloured all 2- 
colourable graphs correctly, with a single exception, and 
also coloured approximately 80% of the 3-colourable 
graphs correctly. However, there are several limitations in 
Wu’s study: 
• Wu’s approach to graph colouring was hybrid, where an 

initial colouring from the oscillators was subsequently 
“cleaned up” by an algorithm. Since our interest is in 
using oscillators to coordinate real networks, a hybrid 
approach is not practical: we need a purely parallel, 
distributed algorithm.   

• Wu did not consider problems where more than three 
colours are required. 

• Wu did not consider the effect of the graph topology on 
the effectiveness of the network of oscillators. 

• Wu only considered the final state of his system, not the 
dynamics leading to the final state. 

In this paper, we address these limitations in Wu’s study. 
Furthermore, we generalise the Aihara et al. model so that 
it can be applied to more general graph colouring 
problems. 

    

2 Two-Colouring in a Plane: The Ising Model 

As a preliminary experiment, we chose to apply the Aihara 
et al. model to a simple and very well understood 
2-colouring problem, the two-dimensional Ising Spin 
Problem (Kindermann &  Snell, 1980).   In this problem, 
which is illustrated in Figure 3, the nodes of the graph can 
be thought of as squares in a plane. Two nodes of the graph 
are adjacent if the corresponding squares share a common 
edge; therefore, each node is connected to four other nodes. 
It is obvious that such a graph can be 2-coloured, as shown 
in Figure 3. 

 
Figure 3: An example of the Ising Spin problem. 

The Ising Spin problem is an interesting benchmark for 
two reasons. First, a planar mesh of computational 
elements is a realistic model of how a network of 
oscillators may be organised. Second, while the optimal 
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solution is obvious, simple distributed algorithms – where 
each computational element can only “see” its four 
neighbours – do not reliably produce the optimal 
2-colouring. For example, Lister (1992) showed that, for 
an 8×32 problem, like that shown in Figure 3, a simple 
iterative improvement algorithm only produces the 
optimal 2-colouring 15% of the time.   

In performing our benchmark of networks of oscillators, 
we implemented the Aihara et al. anti-phase model, 
applying the equations from (2) above to each pair of 
connected oscillators.   

Figure 4 illustrates six “snap shots” from a typical 
simulation of the system (with K = 0.1). Snap shot (a) in 
the figure shows the initial state of the 32x8 configuration 
where the oscillators were randomly initialised to a phase. 
The sequence of the states as indicated in part (b), (c), (d), 
(e) and (f) are the states of the oscillators after 150, 300, 
450, 600 and 800 oscillator cycles. The final state of the 
system, as shown in (f) is the optimal solution, with all 
oscillators in anti-phase with their neighbours. 

 

Figure 4: Stages in the convergence of the Ising model 

Detailed examinations of the progress of the 32x8 
oscillators demonstrate that the oscillators congregate into 
a number of groups and these groups slowly merge. For 
example, there are about 6 distinct groups in figure (b) as 
identifiable by the colour. The six groups begin to 
consolidate and increase in size in figure (c). In figure (d), 
two nearly synchronised groups start to dominate the right 
half of the network and in figure (e) the synchronised 
group converts the remaining oscillators on the left. 

We ran the above simulation 100 times.  Seventy-seven of 
the runs reached a global synchronised state after 1300 
cycles. Investigation on the remaining twenty-three runs 
show that the oscillators in those runs form limit cycles. 
That is, the oscillators change their phases in a way that 
eventually brings them back to an identical set of phases; 
these changes then repeat. Figure 5 shows such a sequence 
of phases. Configuration (f) in the figure is identical to 
configuration (a). 

 

Figure 5: A limit cycle in a suboptimal run. 

The occurrence of limit cycles is observable during 
simulations, as waves or rotating spiral-like patterns as 
shown in the following snapshots Figure 6. The simulation 
in this figure consists of 1024 vertices. The patterns can be 
seen from early in a simulation. 

 

Figure 6: Rotating spirals in a simulation with 1024 
vertices 

3 Generalisation to a Multi-Phase Model 

In order to perform an arbitrary k-colouring where k > 2, 
the phase coupled oscillators need to achieve a stable 
phase configurations with oscillators grouping into k 
phase-clusters. For example, for 3-fully connected 
oscillators, the phase difference between the oscillators 
should be near 3/2π (120 degrees). To admit such phase 
configurations, we generalised the Aihara et al. equations 
from section 1.1, as described in this section.  

For a general case, where there are n fully connected 
interacting oscillators, we assume a mean field model 
(Kuramoto, 1984) to derive our generalisation of the 
Aihara et al. model: 

Ni
N

K

dt

d
ij

N

j
i

i ,...,1),(sin
0

=−−+= ∑
=

βθθωθ        …  (3) 

The frustration parameter β  and the frequency ω  are the 

same for all the oscillators in the system.  

An attractive feature of this model is that there are no 
parameters that need to be tuned depending upon the 
number of colours required by a graph.  

Below, we describe an empirical study that shows this 
model meets our initial requirement that the angle 
separation should be a multiple of 1/n for n fully connected 
oscillators. 

3.1 Testing Multi-Phase Synchrony for n>=3 

Fully connected networks are a realistic scenario to 
explore, as nodes connected by wireless could easily 
implement such a completely connected network topology, 
with the only necessary communication among the 
oscillators being a broadcast of their firings. 

Figure 7 shows examples of colourings for small complete 
graphs.  The leftmost portion of the diagram shows a graph, 
with 3 vertices. Next to it is a colour wheel showing the 
phases of the three oscillators, which are spread evenly, 
indicating a correct colouring.   Beside that is another 
graph, with 4 vertices. Its associated colour wheel also 
shows that the phases of the oscillators evenly spread. 

We have tested the update equation in (3) on complete 
graphs, up to n=100 vertices (larger graphs are not 
practical with our simulation software).  We used a 
coupling strength K/N=0.1. We have found that our 
simulations reliably converge to good solutions for a wide 
variety of values of β, provided n/2πβ ≥ .  
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Figure 7: Angle separation in a 3 & 4 fully connected 
oscillators 

The 3-colour problem in Figure 7 typically requires 20 
oscillator cycles to reach a stable state, with a worst case of 
30 oscillator cycles.  The 4-colour problem in Figure 7 
typically requires 50 oscillator cycles to give a reasonable 
phase difference between the oscillators, but requires an 
approximately 150 cycles to achieve a near perfect 
multiple 2/π  phase difference. 

Phase separation over a number of cycles is illustrated in 
Figure 8, for a complete graph of 8 nodes. The horizontal 
axis represents time.  The vertical axis shows the phase of 
each of the eight oscillators when oscillator 0 fires. The 
phases of the oscillators are randomly initialised. Soon 
after the system starts, several oscillators are already in a 
near stable synchronisation. As the clock continues, the 
remaining pairs of oscillators (0 and 5) and (3 and 6) begin 
to separate evenly after 80 cycles. The oscillators 
ultimately synchronise at the 300th cycle with a near even 
phase difference of 4/π .  

 

Figure 8: The phase of 8-fully connected oscillators 
over 300 cycles 

4 Multi-phase Oscillators in Complete 
k-Partite Graphs 

A complete k-partite graph has its vertices split into k 
partitions where (1) vertices in the same partitions are not 
connected, but (2) all nodes in each partition are connected 
to all nodes in the other partitions.  Figure 9 illustrates 
k-partite graphs for k = 2, 3 and 7.  Such graphs are an 
interesting case study to explore, as the optimal solutions 
are obvious (each partition requires one colour), and the 
results offer insight into the limitations of our 
generalisation of the Aihara et al. model.  

4.1 Equal Complete k-Partite Graphs 

The results from our experiment indicate that multi-phase 
coupled oscillators can reliably find a minimal graph 
colouring of complete k-partite graphs provided the 

number of vertices in each partition is equal. Figure 9 
demonstrate colourings we have found using our update 
equation (3) for k-partite graphs with k=2, 3 and 7 using 
coupled oscillators. Colours are typically found in a small 
number of cycles and the system synchronises rapidly. 

 

Figure 9: Complete 2, 3 and 7-partite graphs 

4.2 Unequal Complete k-Partite Graphs 

We performed tests where the number of vertices differs in 
the partitions of the complete k-partite graphs. We found 
that the quality of the results varies according to the size 
difference between partitions.  Figure 10 demonstrates the 
colouring of k-partite graphs with unequal number of 
vertices in the partitions. Part (a) illustrates that good 
colourings can still occur if the number of oscillators in 
each partition is approximately equal, but part (b) 
demonstrates what happens as the size difference in the 
partitions grows.  

 

Figure 10: K-partite graphs with unequal number of 
vertices in each partition 

4.3 A Further Illustration 

A fundamental problem with colouring k-partite graphs 
with unequal partition sizes is more obviously illustrated 
on a simpler case that is not a k-partite graph. This case is 
illustrated in Figure 11. The graph shown can be thought 
of as containing two overlapping complete subgraphs of 
different sizes: vertices v0-v3 form one complete subgraph, 
(S1) and vertices v3-v5 form the other subgraph (S2). The 
four oscillators forming S1 tend to separate into equal 
phase differences corresponding to four colours (as 
illustrated by the leftmost colour wheel in the figure), 
while the three oscillators forming S2 tend to separate into 
equal phase differences corresponding to three colours (as 
illustrated by the middle colour wheel). The combined 
effect (as illustrated by the rightmost colour wheel) is a 
suboptimal solution.  

 

Figure 11: A simple illustration on two overlapping 
complete sub graphs 
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5 Multi-Phase Oscillators in a Plane: 
Experiments with Three Colours 

Earlier, we examined the standard Ising Spin problem, 
where 2 colours are sufficient. This problem is easily 
generalised to forms that require 3 and 4 colours, by (for 
example) replacing the squares in the plane with 
tessellations of hexagons (3 colours) or adding extra 
connections to the squares so that the squares also connect 
diagonally (four colours).  

We performed tests on four hexagonal topologies as 
shown in Figure 12. The top left graph in Figure 12 
illustrates the simplest case for a hexagonal arrangement 
that can be 3-coloured. As the associated colour wheel 
illustrates, the oscillators forming this simple graph always 
synchronise with a minimum number of colours. For 
larger graphs, as illustrated in part (b), (c) and (d), there is 
an observable clustering of the oscillators phases into  
three groups (less obvious in part (d)), but the phases of the 
oscillators within those clusters remain separated.   

The reason why oscillator phases remain separated is 
related to the reason why oscillators do not converge in 
k-partite graphs with unequal number of vertices in each 
partition.  An inspection of the graphs in Figure 12 reveals 
that nodes in these graphs have unequal numbers of 
neighbours. Nodes at the periphery of the graphs can have 
as few as three neighbours, whereas nodes inside the 
graphs have as many as six neighbours.  The dynamics of 
the update equation (3) has internal nodes and peripheral 
nodes having asymmetric effects on each other.  

 

Figure 12: Colouring of hexagons 

The graph colouring problem illustrated in Figure 12 
scales to arbitrarily large numbers of nodes. As the size of 
such a network grows the ratio of peripheral elements to 
internal nodes decreases.  Thus, the problem illustrated in 
Figure 12 may be less evident in large networks of 
computational elements. 

6 Multi-phase Oscillators in Regular Graphs 

The results described in the previous section, for 
tessellations of hexagons on a plane, show that the model 
does not colour the graph optimally. This suboptimal 
behaviour is at least partly due the unequal degree of 
vertices in the tessellation.  For example, in Figure 12, the 
vertices on the fringe of the graphs typically have degree 3 
or 4 while the inner vertices have degree 6.  

To test whether the unequal degree of vertices completely 
explains such suboptimal behaviour, we performed tests 
on graphs where the vertices within each of the graphs 
have the same degree ─ we used graphs based on the 
Platonic solids and also the Ising Spin Problem on a torus. 

6.1 Platonic Solids 

Our experiments indicate that colourings of the first three 
Platonic solids, the tetrahedron, hexahedron and 
octahedron (all 3 and 4-regular graphs) are always optimal 
and are achieved in a small number of cycles. Figure 13 
shows these results. 

 

Figure 13: Colouring of simple solids 

However, colourings are sub optimal for the dodecahedron 
(3-regular) and icosahedron (5-regular) as illustrated on 
Figure 14. Typically, the oscillators settle into 6 colours 
instead of the minimum of 3 and 4 respectively. 

 

Figure 14: Colouring of dodecahedron & icosahedron 

6.2 The Ising Model on a Torus 

The torus formation of the Ising Spin Problem is achieved 
by taking a standard Euclidean Ising Spin Problem (as 
described in section 2), then connecting the upper and 
lower ends, and also the left and right ends. Consequently, 
all vertices have a degree of 4. This is illustrated in Figure 
15. The results of 100 runs of such an 8×32 problem 
resulted in network convergence that was 50% faster than 
that of the 8×32 Euclidean Ising Spin Problem. However, 
only 64% of the runs attain an optimal synchronisation. 
Figure 15 illustrates a typical suboptimal solution, where 
subsets of the oscillators are optimal within their 
respective subsets, but the relationships between subsets is 
suboptimal.  

 

Figure 15: Sub optimal colouring on torus Ising 

To illustrate this suboptimal behaviour further, we 
constructed a simple 1x7 Ising Spin Problem on a torus, 
which is a 2-regular ring graph. Ideally, the network 
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should converge to 3 colours. Figure 16 shows a run of 
such a network at 200, 400, 600 and 800 oscillator cycles. 
At 200 cycles, the oscillators tend to form 2 clusters at 
π apart. As the run continues to 800 cycles, the oscillators 
spread out evenly. By way of contrast, in similar 
experiments with rings containing an even number of 
oscillators, the networks always converged to an optimal 2 
colouring. 

 

Figure 16: A simulation on a 1x7 ring 

7 Characteristics of the Aihara Model 

From our experiments, and as a direct consequence of the 
model in Equation (3), we observe the following general 
characteristics of networks of oscillators using our 
generalised Aihara model: 

Observation 1: Convergence to a stable point in phase 
space does not imply a minimum colouring. 

Observation 2: Convergence to a stable point in phase 
space does not imply an even phase separation among the 
oscillators. 

Observation 3: The dynamic of the generalised Aihara 
equation is such that an oscillator connected to two other 
oscillators will move to a phase that is equidistant from the 
phase of the other two oscillators.   

Observation 3’: An oscillator O connected to two disjoint 
sets of oscillators, S1 and S2, where the oscillators within 
each set have the same phase, will move to a phase such 
that ratios of the phase separations from O to S1 and O to 
S2 will be proportional to the ratio of the sizes of S1 and 
S2.  

Observation 4: The effectiveness of colouring graphs 
using networks of oscillators appears to be less dependent 
upon the size of the graph and more dependent on the 
graph topology ─ the degree of the vertices and the 
existence of odd or even cycles in the graph. 

 

8 Conclusion 

The purpose of carrying out this study was certainly not to 
find an algorithm guaranteed to minimally colour graphs – 
complexity theory suggests that such an algorithm does 
not exist. Instead, the purpose was to use graph colouring 
to benchmark the capacity of phase coupled oscillators to 
coordinate activity, in a parallel distributed fashion, within 
a network of simple computational elements. The results 
of our experiments clearly indicate that the basic oscillator 
phase coupling approach can effectively coordinate 
activity, in a parallel distributed fashion, in some types of 
graphs. Surprisingly, the size of graphs to be coloured is 
not the major determinant of effectiveness, but instead it is 

the topology of the graphs that most determines the 
effectiveness of this approach to graph colouring.  

In this paper, our goal was to explore models close to the 
original biological source of the idea.  Having identified 
some limitations of the pure biological approach, our 
future work will focus on overcoming these limitations 
using techniques that can be implemented in simple 
computational elements, without undermining the 
fundamental parallel, distributed nature of phase coupled 
oscillators.  The remainder of the conclusion indicates 
some solutions to the problems identified in this paper. 

The problem of suboptimal limit cycles, which was 
identified in the experiments on the standard Ising Spin 
problem, might be addressed by injecting a small amount 
of noise into the system (i.e. randomly perturbing the 
phase of oscillators).   

A core issue to solve is the problem highlighted in the 
studies of k-partite graphs with unequal vertices in the 
partitions.  One approach might be to decrease the effect of 
an oscillator as its phase approaches the phase of other 
oscillators. By a suitable formulation of the update 
equation, a group of closely synchronized oscillators could 
have the same effect on other oscillators as a single non- 
synchronized oscillator has on those other oscillators. 

A solution to the problem highlighted in Figure 11 may 
only require (1) an initial global broadcast that 
communicates the number of colours (C) to be used in the 
colouring of a graph, and (2) a global agreement, via either 
a regular broadcasted synchronization signal, or via clocks 
aboard each processing element, that the final phase values 
of all oscillators will only differ by multiples of 2π/C.  

The characteristics of the Aihara model, and observation 3 
in particular, indicate that a mechanism may be required 
whereby an oscillator can escape from having its phase 
trapped between the phases of two other oscillators. This 
might be achieved by introducing an annealing component 
into the way an oscillator alters its phase.            
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