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Abstract 

 

This paper presents the PLS genetic algorithm segmentation methodology which uses directed 

random searches to detect an optimum solution in the complex search space that underlies 

data partitioning tasks in PLS path modeling.  The results of a simulation study allow a 

primary assessment of this novel approach and reveal its capabilities and effectiveness.  

Furthermore, applying the approach to the American Customer Satisfaction Index model 

allows unobserved heterogeneity and different consumer segments to be uncovered. 
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PLS Path Modeling in Marketing and Genetic Algorithm Segmentation 

 

 

Introduction 

 

Segmentation is a critical issue for marketing (e.g., Wedel and Kamakura, 2000) and partial 

least squares (PLS) path modeling (Lohmöller, 1989) applications in this field.  The 

assumption that the data have been collected from a single homogeneous population is often 

unrealistic.  Group-specific PLS path model estimates can significantly differ from those of 

other groups or the overall model (Ringle, Sarstedt and Mooi, 2009).  Consequently, the 

failure to account for this heterogeneity may easily result in misleading interpretations (Jedidi, 

Jagpal and DeSarbo, 1997).  On the manifest data level, sequential segmentation strategies, 

such as k-means or tree clustering, usually fail to identify groups of data with distinctive inner 

path model estimates (Sarstedt and Ringle, 2010).  Researchers have addressed these 

problems by proposing novel segmentation approaches such as FIMIX-PLS (Hahn et al, 

2002).  Sarstedt (2008) evaluates these techniques and shows that they still suffer from 

deficiencies which relate to, for example, the types of heterogeneity covered or distributional 

assumptions.   

The authors of this paper pursue three important objectives in contributing to data 

segmentation in PLS path modeling.  First, we introduce a new kind of PLS segmentation 

approach that uses a genetic algorithm (GA) to account for heterogeneity in the estimates for 

inner and outer path model relationships.  The resulting PLS genetic algorithm segmentation 

method (PLS-GAS) has been designed to overcome the shortcomings of prior approaches in 

that it does not rely on distributional assumptions.  Consequently, PLS-GAS fits the PLS 

method's non-parametric character, allows for the integration of formative measurement 

models, uncovers highly unbalanced segments, and is not affected by extremely non-normal 

data.  Second, we present the results of a simulation study that assesses the capabilities of 

PLS-GAS.  Third, we test the usefulness of PLS-GAS in respect of one of the best known 

PLS applications in marketing literature: the American Customer Satisfaction Index (ACSI; 

Fornell et al., 1996).   

In the next section, we provide a brief description of the PLS-GAS approach, followed by the 

simulation study and the empirical application.  The paper concludes with a summary, 

limitations as well as future research directions. 

 

Genetic Algorithm-Based Segmentation Methodology for PLS Path Modeling 

 

When segmentation tasks are carried out in PLS path modeling, cases are assigned to a pre-

determined number of clusters to uncover group-specific inner and outer path model 

relationships.  Even small or midsized problems easily reach extremely high numbers of 

combinatorial solutions (Ringle and Schlittgen, 2007).  For example the assignment of 300 

observations into 2 groups entails about 10
90

 different outcomes.  It is therefore normally 

impractical attempting to search for all possible assignments to uncover the best set of group-

specific PLS estimates.  To handle this complexity, the novel procedure applies the principles 

of evolution and natural genetics by using a GA-based clustering approach (Maulik and 

Bandyopadhyay, 2000), which is a randomized technique to search in large and multimodal 

landscapes.  Several studies in different research contexts that entail NP-complete 

optimization problems, such as data clustering and job shop scheduling (Goldberg, 1975), 

have shown that GAs provide solutions which are close to or match the global optimum for an 

optimization problem’s fitness (objective) function.   
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The PLS-GAS approach is a two-stage genetic/hill-climbing clustering hybrid (Cowgill, 

Harvey and Watson, 1999).  In the first stage, a non-deterministic genetic algorithm is used to 

find the best possible starting partition by strolling through the search space and thereby 

approaching many local optima.  This is done by minimizing a fitness criterion which 

considers the inner and outer models’ residuals (Ringle and Schlittgen, 2007).  As there is no 

guarantee that the GA outcome cannot be further improved, the second stage of PLS-GAS 

uses the best partition that was found for a deterministic hill-climbing approach to improve (if 

possible) the local partition for the ultimate best segmentation.   

Each PLS-GAS run uses a fixed number of segments.  The best fitting number of segments is 

usually unknown priori.  Ringle, Sarstedt and Schlittgen (2009) proposed a two-stage 

approach in which FIMIX-PLS is first used on the data.  Based on model selection statistics, 

the researcher decides on the segment number and uses this as input for the PLS-GAS 

analysis.   

 

Simulation Study 

 

To assess the performance of PLS-GAS, we use a simple path model (Figure 1) with two 

exogenous constructs (ξ1 and ξ2) and one endogenous construct (η1) using a two-segment 

solution.  The number of manifest variables is identical in the three outer models.  As the 

analysis focuses on the inner model path relationships, we chose equal loadings for all outer 

models.  The pre-specification of the two inner path model weights for data simulation uses a 

higher ω11 and a lower ω21 value for the first group of data and vice versa for the second 

group.  As the sizes of the coefficients themselves are not important but their distinctiveness 

is, we focus on their alternative levels of difference in the inner model.   

 

 
Figure 1: PLS Path Model 

 

Five data characteristics are manipulated.  The factors and their level are chosen on the 

rationale presented in previous simulation studies on covariance-based structural equations 

modeling (Boomsma and Hoogland, 2001) and PLS segmentation studies (Esposito Vinzi et 

al., 2007): (a) number of observations [100, 200, 600]; (b) identical number of manifest 

variables in the latent constructs’ measurement models [3, 6, 12]; (c) size of the smaller 

segment [10%, 30%, 50%]; (d) differences between the group-specific inner model weights 

[high, high to medium, medium to low, low]; (e) error variance σ² of the endogenous latent 

variable as well as the manifest variables in relation to their respective total variance [0%, 

10%, 20%, 30%].  The design is factorial; with two replications (datasets) per cell, we 

generate a total of 3
3
4

2
=432 experimental datasets for this study.  See the study by Chin, 

Marcolin and Newsted (2003) for more details on the generation of datasets. 

A first important investigation into the results addresses PLS-GAS’s potential to meet the 

global optimum solution.  The results of this analysis reveal that PLS-GAS provides a 100% 

correct assignment in all σ²=0 constellations which provides evidence that PLS-GAS 

consistently achieves the global optimum solution in data constellations not affected by error 
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variance.  Consequently, this method permits a clear-cut assignment of the experimental data 

sets.  In addition, (a) neither the number of observations, (b) nor the number of manifest 

variables per measurement model has a significant effect on PLS-GAS computational results.  

Furthermore, PLS-GAS identifies the segments in accordance with their expected size in (c) 

all systematically changed relative segment size constellations.  The excellent segmentation 

characteristics of this methodology are highly beneficial in practical applications that, for 

example, usually deal with unbalanced groups of observations.  The only two factors that 

reduce the quality of parameter recovery relate to (d) a decrease in group-specific PLS path 

coefficients’ distinctiveness and/or (e) an increased level of σ².  This is shown in Figure 2, 

which incorporates the constellation with 100 observations per segment, six manifest 

variables per measurement model, as well as alternative inner model weight differences and 

levels of σ².  In accordance with our previous findings, these illustrations of the outcomes are 

representative of all constellations in our analytical design, since (a) the sample size, (b) the 

numbers of indicators per measurement model, and (c) the relative segment size do not 

involve significant changes in the PLS-GAS segmentation outcomes.  Whereas Figure 2 (a) 

shows the average path differences for various levels of error variance based on artificially 

generated raw data, Figure 2 (c) illustrates the PLS-GAS analysis results for these 

constellations.  Similarly, Figures 2 (b) and (d) report average R² values. 

 

(a) Artificial Sets of Normal Data

(c) PLS-GAS and Normal Data

(b) Artificial Sets of Normal Data

(d) PLS-GAS and Normal Data  
Figure 2: Average Path Differences and R² Values (Sample Size 100/100) 

 

The finally formed PLS-GAS segments (Figure 2 (c)) exhibit group-specific path differences 

that consistently match the levels expected from the artificially formed data sets (Figure 2 

(a)).  Moreover, Figure 2 ((b) and (d)) illustrates PLS-GAS computations in respect of the 

endogenous construct’s R² values as σ² increases.  On average, all group-specific R² outcomes 

meet the assumptions regarding the a-priori generated sets of data almost exactly.  

Consequently, PLS-GAS offers the capability to constantly perform well in all situations of 

changed factor levels.  Additional analyses using non-normal data and higher numbers of 

segments reveal identical results, underlining the approach’s capabilities. 
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Application of PLS-GAS to the American Customer Satisfaction Index Model 

 

Next, we apply PLS-GAS to the ACSI model by Fornell et al. (1996)
1
 but slightly modified 

the set-up by omitting the “Customer Complaints” construct measured by a binary single 

item.  Parameter estimation is carried out using the statistical software application SmartPLS 

2.0 (Ringle, Wende and Will, 2005).  A systematic evaluation (Henseler, Ringle and 

Sinkovics, 2009) on the aggregate data level shows that the parameter estimates of the ACSI 

model exhibit high degrees of reliability and validity.  For example, the minimum value for 

composite reliability in the ACSI application is .822 across all reflectively measured 

constructs which is clearly above the commonly suggested threshold value of .60. 

To assess whether unobserved heterogeneity significantly affects parameter estimates, we 

apply PLS-GAS to the data.  When applying the method, the researcher has to specifically 

determine the number of segments to be retained from the data set.  Instead of merely 

reverting to proxies, such as the solution's interpretability or acceptable R² values, we used 

FIMIX-PLS (Hahn et al., 2002) on the data to guide this decision.  Unlike competing 

procedures, FIMIX-PLS allows information and classification criteria to be computed.  All 

criteria (AIC, BIC, CAIC, Entropy) uniformly indicate that a two-segment solution is deemed 

appropriate.  Further analyses to determine higher segment numbers clearly indicate that the 

two-segment solution is most appropriate in terms of uncovering differentiable latent 

segments.  Furthermore, the overall R² values are considerably higher than in solutions with 

more segments.  Table 1 presents the global model as well as segment-specific PLS-GAS 

analysis results. 

 

 global PLS-GAS 

  Segment 1 Segment 2 |diff| 

Customer Expectations of Quality � Perceived Quality .556*** .791*** .305*** .486*** 

Customer Expectations of Quality � Perceived Value .072*** .214*** .000 .214*** 

Customer Expectations of Quality � Overall Customer Satisfaction .021*** .152*** -.032*** .185*** 

Perceived Quality � Overall Customer Satisfaction .557*** .505*** .548*** -.043 

Perceived Quality � Perceived Value .619*** .533*** .622*** -.089 

Perceived Value � Overall Customer Satisfaction .394*** .338*** .419*** -.081 

Overall Customer Satisfaction � Customer Loyalty .687*** .677*** .694*** -.018 

Relative segment size 1.000 .549 .451  

R² Perceived Quality .309 .626 .093  

R² Perceived Value .439 .510 .387  

R² Overall Customer Satisfaction .777 .819 .747  

R² Customer Loyalty .471 .458 .482  
*** sig. at .01, ** sig. at .05, * sig. at .10; |diff| = absolute differences between path coefficients;  permutation-based 

multi-group comparison test by Chin and Dibbern (2009) 

Table 1: ACSI Segmentation Results 

 

Segment-specific reliability analyses reveal that all constructs exhibit a high degree of internal 

consistency.  The validity analysis shows that most of the first segment's endogenous 

constructs achieve considerably higher R² values than the global model, thus indicating an 

                                                 

1
 The data were provided by: Fornell, Claes. AMERICAN CUSTOMER SATISFACTION INDEX, 1999 

[Computer file]. ICPSR04436-v1. Ann Arbor, MI: University of Michigan. Ross School of Business, National 

Quality Research Center/Reston, VA: Wirthlin Worldwide [producers], 1999. Ann Arbor, MI: Inter-University 

Consortium for Political and Social Research [distributor], 2006-06-09. We would like to thank Claes Fornell 

and the ICPSR for making the data available. 
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increased model fit.  With the exception of “Perceived Quality,” which has a very low R² 

value of .093, all constructs in the second segment lie at similar levels when compared to the 

aggregate data analysis results.  The weighted sum of R² values across the two segments leads 

to a considerably higher model fit of up to 25%. 

When comparing the global model with the results derived from PLS-GAS, one finds that the 

relative importance of the driver constructs differs quite substantially across the two 

segments.  For example, the global model suggests that customers' expectations of quality 

primarily influences their perception of quality (.556) and only exerts a minor influence on 

perceived value (.072) and overall satisfaction (.021).  Whereas similar findings are possible 

regarding the second PLS-GAS segment, the importance of the customer expectations 

construct is far more pronounced in the first segment.  Here, customers' expectations prior to 

purchase strongly influence all subsequent constructs.  Consequently, customer expectations 

do not only directly influence overall satisfaction, but likewise exert a pronounced indirect 

effect on the model's primary target variable via mediating constructs.  This is reflected in the 

total effect of customers’ expectations of quality on overall satisfaction, which lies 

considerably higher in the first segment (.767) than in the second segment (.215) and the 

global model (.496).  These results clearly suggest that the data are heterogeneous, which the 

PLS-GAS procedure reveals.   

PLS multi-group analyses (Chin and Dibbern, 2009) provide evidence that all paths related to 

the customer expectations construct differ significantly across the two segments.  This reflects 

the varying importance of “Customer Expectations of Quality” in respect of all subsequent 

constructs (most notably overall customer satisfaction).   

 

Summary and Conclusions 

 

This paper contributes to the need for effective segmentation means in PLS path modeling by 

developing and evaluating a novel PLS segmentation methodology which uses a GA to cope 

with previous segmentation procedures’ deficiencies.  PLS path modeling applications in 

marketing do not usually address the critical heterogeneity issue (Sarstedt, 2008).  Rather, 

they relate their results’ presentation and interpretation to the unrealistic assumption that the 

data stem from a homogenous population.  However, uncovering heterogeneity on the 

aggregate data level and compliant segmentation are two key issues in PLS path modeling if 

findings and conclusions are to be complete and valid.  Conventional clustering techniques 

such as k-means or tree clustering usually fail to identify groups of data with distinctive inner 

path model estimates (Sarstedt and Ringle, 2010).  The contribution of this research is to 

present a novel PLS segmentation method which permits homogenous groups of observations 

to be formed that exhibit significantly distinct PLS estimates.  Researchers and practitioners 

require this kind of PLS path modeling method to obtain further differentiated analytical 

outcomes.  Findings, interpretations, and conclusions become more precise with each formed 

segment.   

Notwithstanding the usefulness of the segmentation methodology to further differentiate 

results if heterogeneity significantly affects PLS estimates, this research has some limitations.  

The literature does not as yet offer a means with which to accurately generate data with pre-

specified parameters for formative PLS path models.  This kind of artificial data generation 

method is a key requirement to evaluate PLS-GAS's performance regarding formative outer 

PLS models in future research.  Furthermore, the consideration of other factor levels (such as 

higher segment numbers) and the exploration of potentially compounding effects of specific 

data characteristics such as multicollinearity would be promising to further explore PLS-

GAS’s capabilities.   
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