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Abstract—By augmenting several classes of metamaterial-

inspired near-field resonant parasitic (NFRP) electrically small 
antennas (ESAs) with active (non-Foster) circuits, we have 
achieved performance characteristics surpassing their 

fundamental passive bounds. The designs not only have high 
radiation efficiencies, but they also exhibit large frequency 
bandwidths, large beam widths, large front-to-back ratios, and 

high directivities. Furthermore, the various initially theoretical 
and simulated designs have led to practical realizations. These 
active NFRP ESAs will be reviewed and recently reported 

designs will be introduced and discussed. 

Index Terms—Bandwidth, directivity, electrically small 

antennas, front-to-back ratio, Huygens source, parasitic elements 

I.  INTRODUCTION 

With the enormous economic impact of wireless systems 

and the fervor associated with the anticipation of potential IoT 

(internet of things) and future 5G systems, electrically small 

antennas (ESAs) have remained a topic of intense research 

interest in recent years because of their utility for a wide 

variety of wireless applications. However, because of their 

compact size, ESAs generally are not efficient radiators and 

have narrow bandwidths and low directivities. We review our 

contemporary successes to overcome the conflicting 

performance characteristics of ESAs, including their 

efficiencies, bandwidths, beam widths, directivities, and front-

to-back ratios (FTBRs), by using a variety of meta-structures 

augmented with non-Foster elements. 

II. ORIGINAL THEORETICAL CONCEPT 

The basic idea of coupling an electrically small 

metamaterial-inspired near-field resonant parasitic (NFRP) 

element to a compact driven element to achieve an efficient 

ESA matched to a source with no matching network was 

introduced in [1]. These meta-structure-based ESAs have been 

verified experimentally and many others have since been 

developed and tested that achieve not only high efficiencies, 

but also multi-functionality by incorporating by design, several 

passive NFRP elements into the antenna system [2].   

  

Non-Foster-augmented NFRP ESAs were first considered 

for enhancing their impedance bandwidth [3]. This was 

accomplished by designing a passive NFRP antenna whose 

resonance frequency was tunable simply by changing the value 

of an inductor or capacitor within its NFRP meta-structure and 

whose bandwidth came as close as possible to the Chu limit 

[4]. The specific values of those lumped elements which 

maintained the resonance frequency were first determined. It 

was found that a wide frequency-agile impedance bandwidth 

was obtained. Then a non-Foster circuit element was designed 

that instantaneously recovered those values as closely as 

possible. Replacing the fixed-value lumped component with its 

non-Foster counterpart, a wide impedance bandwidth ESA 

was achieved. This active NFRP element scheme is 

represented by the internal matching circuit concept illustrated 

in Fig. 1. It replaces the traditional approach in which an 

external non-Foster matching network is employed [5]-[7]. 

Because it theoretically only modifies the reactance behavior 

of the input impedance, rather than both its resistance and 

reactance, it removes many of the drawbacks associated with 

the traditional external active-circuit matching approach. 

 
Fig. 1. The electrically small, NIC-augmented, near-field resonant parasitic 

(NFRP) antenna paradigm. The NIC circuit, which provides the required non-

Foster inductance or capacitance behavior to maintain the resonance over a 
broad frequency bandwidth, is internal to the NFRP element and, hence, 

embedded within the antenna rather being external to it.  

 

 

 The canopy antenna design shown in Fig. 2, successfully 

demonstrated the advantage of the non-Foster-augmented 

NFRP antenna approach. The results were rather startling, 



even theoretically. It was very electrically small with ka = 

0.047, a being the radius of the smallest sphere enclosing the 

antenna and k = 2/,  being the free-space wavelength at its 

passive resonance frequency, 300 MHz, and it exhibited 

greater than a 10% -10-dB fractional impedance bandwidth. 

 

 
Fig. 2.  Four-leg canopy antenna. Driven monopole, coax-fed through a ground 
plane, is covered with a copper canopy supported by four non-Foster inductor 

loaded legs. [1] 

III. NON-FOSTER REALIZATION 

To physically demonstrate that one could indeed conquer 

the fundamental passive bound associated with the impedance 

bandwidth, non-Foster elements were introduced into the near-

field resonant parasitic elements of two classes of 

metamaterial-inspired designs: the Egyptian axe dipole (EAD) 

and protractor antennas [8]-[11]. For example, the EAD 

antenna is shown in Fig. 3a. It is tunable by varying the 

inductor value incorporated into the EAD NFRP element. Its 

wide-bandwidth frequency agile response around 300 MHz is 

shown in Fig. 3b. The active non-Foster element of the EAD 

version was realized with a NIC-based inductor element, an L-

NIC. A comparison of its non-Foster behavior with the desired 

one obtained from the results in Fig. 3b is shown in Fig. 3c.  

 
 

The measurement of the impedance behavior of the 

prototype version of the L-NIC-augmented EAD antenna is 

shown in Fig. 3d. A comparison of the measured and predicted 

|S11| values as a function of the source frequency are shown in 

Fig. 3e. The realized impedance bandwidth was 5.77 times 

larger than the passive directivity over quality factor, D/Q, 

upper bound. Similar impedance bandwidth enhancements 

have been reported for related implementations [12], [13]. 

 

 
 
Fig.3. L-NIC augmented EAD ESA. (a) Isotropic view, (b) frequency agile 

behavior, (c) comparison of the ideal and L- NIC inductance values, (d) 
antenna under test, and (e) a comparison of predicted and measured |S11| 

values. [11] 
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IV. NFRP ESA WITH NO TRADE-OFFS 

By introducing more NFRP elements into a metamaterial-

inspired electrically small antenna system, one obtains more 

degrees of freedom which can be used to further enhance the 

characteristics of an ESA. For instance, beam width 

enhancements were achieved with a non-Foster augmented 

design [14].  By augmenting a high FTBR passive design that 

employed two NFRP elements [15] with both C-NIC and L-

NIC non-Foster elements, a non-Foster-augmented ESA which 

has high efficiency, large impedance bandwidth, wide beam 

width, large front-to-back ratio, and high directivity (a 

Huygens source behavior), i.e., it has none of the usual trade-

offs associated with ESAs, has been demonstrated [16]. This 

concept is illustrated in Fig. 4.  

 

 
 

Fig. 4. Electrically small antenna with non-Foster augmented NFRP elements 

to achieve high radiation efficiency, large bandwidth, large FTBR and high 
directivity. (a) Basic configuration, and (b) the E- and H-plane directivity 

patterns at 300 MHz. [16] 

 

  

 The second NFRP element, the meanderline slot-based 

conductive disk was designed and tuned specifically for 

directivity enhancement of the EAD ESA. The EAD NFRP 

element was again augmented with a non-Foster L-NIC to 

enhance its impedance bandwidth. A meanderline-slotted 

metallic NFRP disk was added as shown in Fig. 4a to achieve 

the desired high directivity along with a large FTBR. It has two 

C-NIC elements incorporated into it at the outside ends of the 

slots. These increase the directivity bandwidth. The overall 

size of this particular design [16] was ka = 0.94. It achieved a 

directivity over quality factor more than 10 times the 

fundamental bound:   D/Q > 10  (D/Q)passive ub. As shown in 

Fig. 4b, its far-field has a cardioid directivity pattern. In 

particular, with a center frequency at 300 MHz, it 

simultaneously achieved high radiation efficiencies                

(> 81.63%), high directivities (> 6.25 dB), and large front-to-

back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth. 

V. NON-FOSTER AUGMENTED HUYGENS SOURCE 

The ESA shown in Fig. 4 was not low profile, i.e., its 

height was ~ res / 10. Recall that Huygens equivalence 

principle, as demonstrated in [17], provides yet another means 

to achieve higher directivity with ESA systems. Consider an 

electric dipole source located in a specified plane. Then 

superimpose a magnetic dipole source to lie in the same plane 

and orient it to be orthogonal to the electric dipole.  If their 

radiated field amplitudes are the same and if their phase 

centers are collocated, their combined result will be a Huygens 

source that radiates primarily into one of the half-spaces 

defined by the plane in which both sources are located and in a 

direction broadside to it. With a  phase shift in the excitation 

of either dipole source, this Huygens combination will radiate 

primarily in the opposite direction, i.e., into the other 

hemisphere. Thus, the key design issues are the dipole 

amplitudes, their phase centers, and their orientations. 

A extremely low-profile (height ~  / 80), broadside radiating 

Huygens source ESA has been obtained by combining a 

driven, coax-fed printed dipole with an EAD NFRP element 

and two capacitively loaded loop (CLL) NFRP elements [18]. 

Because of the fine tuning needed to properly overlap the 

resonances of all of the NFRP elements, as well as to obtain 

similar radiated field amplitudes and collocated phase centers, 

its bandwidth was also very narrow. This drawback has been 

overcome with the slightly larger, but still low profile (height ~ 

 / 20) non-Foster augmented NFRP ESA shown in Fig. 5 

[19]. 

 
Fig. 5. Broad bandwidth Huygens source NFRP antenna augmented with four 

C-NICs, one C-NIC embedded in each of its four NFRP elements. [19] 

 

  

This design [20] features a driven coax-fed printed dipole 

antenna combined with two CLL and two EAD meta-

structures. Each of these NFRP elements is augmented with C-
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NICs. When the ideal non-Foster components were 

introduced, the simulated impedance bandwidth witnesses 

approximately a 17-fold enhancement over the passive case. 

Within this -10dB bandwidth, its maximum realized gain, 

radiation efficiency, and front-to-back ratio (FTBR) are, 

respectively, 4.00 dB, 88%, and 26.95 dB. The |S11| values as a 

function of the source frequency and its 3D and 2D directivity 

patterns are shown in Fig. 6. When the anticipated actual 

negative impedance convertor (NIC) circuits are incorporated, 

the impedance bandwidth still sustains more than a 10-fold 

enhancement. The peak realized gain, radiation efficiency, and 

FTBR values of this realistic design are, respectively, 3.74 dB, 

80%, and    28.01 dB, which are very comparable to the ideal 

values. While this non-Foster augmented Huygens source ESA 

has not yet been fabricated and tested, a related passive version 

has been measured [20]. The results have confirmed the 

Huygens source behavior of the design.  

 
Fig. 6. The Huygens source ESA performance characteristics. (a) |S11| values as 

a function of the frequency and the 3-D realized gain pattern at fres, and (b) the 

2-D realized gain patterns in the E- and H- planes at fres = 1.580 GHz. [19] 

VI.  CONCLUSION 

 It has been demonstrated that several combinations of 

meta-structure NFRP elements augmented with non-Foster 

elements can yield ESAs with performance characteristics 

surpassing their known passive bounds. Several of these 

designs have been fabricated and successfully tested. The 

concepts and realized designs will be discusses in our 

presentation. Additional practical issues, such as stability of 

the non-Foster circuits and non-Foster augmented ESAs, will 

also be discussed. 
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