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Abstract
A great deal of contention can be found within the published 
literature on grounding and the symbol grounding problem, 
much of it motivated by appeals to intuition and unfalsifiable 
claims. We seek to define a formal framework of representa-
tion grounding that is independent of any particular opinion, 
but that promotes classification and comparison. To this end, 
we identify a set of fundamental concepts and then formalize 
a hierarchy of six representational system classes that corre-
spond to different perspectives on the representational require-
ments for intelligence, describing a spectrum of systems built 
on representations that range from symbolic through iconic to 
distributed and unconstrained. This framework offers utility 
not only in enriching our understanding of symbol grounding 
and the literature, but also in exposing crucial assumptions to 
be explored by the research community.

Introduction
The symbol grounding problem [1] represents a long standing 
(and often misunderstood) point of contention within the Ar-
tificial Intelligence community (e.g., [2,3,4]) and continues to 
concern researchers exploring Artificial General Intelligence1 
(AGI). The problem, as it is classically conceived, concerns the 
nature of the abstract symbols used in computer systems, how 
they may be seen as having a real-world meaning, and how that 
meaning can be made intrinsic to a system. 

Consider the problem of a knowledge base designed to reason 
about the possible security threats posed by terrorist organiza-
tions. The system may have an internal symbol nuclear_weapon 
that we as humans understand as representing the real-world 
concept of nuclear weapons. However, to a purely symbolic 
computer system, the symbol nuclear_weapon is nothing more 
than an arbitrary token that has no more intrinsic meaning than 
any other symbol in a computer, say waffle_blah. The symbol 
grounding problem concerns the question of how the meaning 
of symbols can be embedded into a system, and grounding is 
said to be the process of ensuring that these abstract symbols 
have meaning.

While there is the philosophical question of whether a ma-
chine really can have intrinsically ground symbols (indeed, this 
is the motivation for Searle’s Chinese Room argument), the 
symbol grounding problem poses the more practical question 
of whether a purely symbolic system could solve problems that 
apparently demand deep intelligence and understanding. Is it 
possible, for example, for a purely symbolic system to under-
stand the nuanced relationship between a nuclear weapon and 
a dirty bomb, or to explain that a zebra is like a horse with 
stripes, or even to determine what other letter of the alphabet 
an upside-down ‘M’ resembles; without requiring the specific 
answers to these questions to be explicitly given to the system 
in advance?

Our objective is not to argue a specific position on the sym-
bol grounding problem, but rather, to provide the first formal 

1 For example, consider recent debate on an AGI email list:  
www.mail-archive.com/agi@v2.listbox.com/msg07857.html

framework for the symbol grounding problem. Our approach 
offers standardized terminology for discussing assumptions 
and ideas and also raises important new research questions. In 
particular, we aim to allow an AI researcher to express their as-
sumptions regarding the symbol grounding problem as elegant-
ly as a computer scientist might use computational complexity 
classes to motivate the need for heuristics in preference to brute 
force search. Furthermore, we hope that our framework will di-
rect future arguments about grounding away from appeals to 
intuition and toward a greater emphasis on formalizable and 
falsifiable claims.

In this paper, we will first define symbol systems and repre-
sentations, and review the problem of grounding such symbols 
and representations. We then introduce our formal notation and 
explore ‘semantic interpretability’. These serve as preliminaries 
for the primary contribution of this paper: the definition of our 
representational system classes and their correspondences with 
the published literature. We then conclude with some observa-
tions about the representational classes and their relevance, in-
cluding a brief overview of future research directions.

Symbol Systems and Symbol Grounding
Harnad [1] first proposed the symbol grounding problem as a 
question concerning semantics: “How can the semantic inter-
pretation of a formal symbol system be made intrinsic to the 
system, rather than just parasitic on the meanings in our heads?” 
While Harnad’s original formulation of the problem is largely 
philosophical, his motivation is clearly of a pragmatic nature: he 
implicitly assumes that the property of ‘intrinsic interpretability’ 
is crucial for intelligence. We therefore prefer to reformulate the 
symbol grounding problem in more straightforward terms: “Is 
it possible to use formal symbolic reasoning to create a system 
that is intelligent?” Of course, this reformulation presupposes a 
definition of what it means to be or to appear intelligent—but 
the reformulation is an improvement in the sense that it brings 
us closer to something objectively measurable.

Harnad saw the mechanisms of an isolated formal symbol 
system as analogous to attempting to learn Chinese as a sec-
ond language from a Chinese-Chinese dictionary. Even though 
characters and words are defined in terms of other characters, 
reading the dictionary would amount to nothing more than a 
‘merry-go-round’ passing endlessly from one symbol string 
(a term) to another (its definition); never coming to a ‘halt on 
what anything meant’ [1]. He therefore argued that since sym-
bols only refer to other symbols in a symbol system, there is no 
place where the symbols themselves are given meaning. The 
consequence of this is that it is impossible for a formal symbol 
system to distinguish between any two symbols except using 
knowledge that has been explicitly provided in symbolic form. 
This, in the view of Harnad, limits the comprehension and capa-
bilities of a symbolic system in the same way that a non-speaker 
armed with a Chinese-Chinese dictionary may manage to utter 
random syntactically correct sentences, but would exhibit ex-
tremely poor performance in understanding real conversation. 
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Of course, Harnad’s argument is not universally accepted by 
computer scientists. One objective of this paper is to explore the 
problem, so we will use our representational system classes to 
outline and classify the diversity of opinions later in this paper. 

The symbol grounding problem concerns symbolic systems, 
but what is a formal symbol system? Harnad [1] provides eight 
criteria:

A symbol system is: (1) a set of arbitrary “physical to-
kens” (scratches on paper, holes on a tape, events in a digi-
tal computer, etc.) that are (2) manipulated on the basis of 
“explicit rules” that are (3) likewise physical tokens and 
strings of tokens. The rule-governed symbol-token ma-
nipulation is based (4) purely on the shape of the symbol 
tokens (not their ‘meaning’), i.e., it is purely syntactic, 
and consists of (5) ‘rulefully combining’ and recombin-
ing symbol tokens. There are (6) primitive atomic symbol 
tokens and (7) composite symbol-token strings. The entire 
system and all its parts—the atomic tokens, the composite 
tokens, the syntactic manipulations both actual and possi-
ble and the rules—are all (8) ‘semantically interpretable’: 
the syntax can be systematically assigned a meaning (e.g., 
as standing for objects, as describing states of affairs).

It is interesting to note that criteria 1–7 can be used to describe 
any universal or Turing-complete language. However, Harnad 
is not claiming that meaning or intelligence is incomputable—
he proposes his own computational framework for solving the 
symbol grounding problem. It is the 8th criterion of a formal 
symbol system that defines the essential point of difference be-
tween his conception of symbolic systems and representations 
used in arbitrary computation. The requirement of interpretabil-
ity in criterion 8 is intended to capture the essence of famil-
iar symbolic systems such as logical theorem proving and rule 
based systems, and to exclude highly distributed, ‘holographic’ 
or connectionist representations that do not behave in a symbol-
ic manner (even though they operate on a digital computer). For 
example, while connectionist approaches to building intelligent 
systems can be framed so as to meet criteria 1–7, connectionist 
methods do not typically allow for a systematic assignment of 
real-world interpretation to hidden layer neurons (i.e., hidden 
neurons learn with a bias towards performance rather than any 
particular ‘meaning’), they therefore do not satisfy criterion 8, 
and are therefore not (directly) subject to Harnad’s criticism.

Harnad’s 8th criteria for a symbol system is essential to un-
derstanding the symbol grounding problem. We will consider 
how changes to this criterion (whether in its phrasing or in com-
prehension) influence an understanding of the symbol ground-
ing problem. Specifically, we further generalize the symbol 
grounding problem as follows: “What kinds of reasoning can 
be performed by systems constrained by different representa-
tional criteria?” In this formulation, we can regard different re-
search groups as working from both different assumptions of 
what constitutes intelligence (i.e., the kind of reasoning) and 
different representational constraints.

Notational Preliminaries
Problems We begin by assuming the existence of a set, P, that 
contains all problems that may be posed to an intelligent sys-
tem. Each problem is a declarative sentence (in some formal 
language) about the world and an agent is said to be able to 
solve a problem if its determination of the truth of that state-
ment matches the ‘real world’ truth. A problem might be a query 

posed by a person to a theorem prover or a question-answering 
system, or it might represent an encoding of the inputs and 
outputs of a robotic system (i.e., “given certain sensory inputs 
x, the appropriate behavior at time t, is to perform action a”). 
While a real life agent may encounter complex situations and 
exhibit nuanced performance that is neither success nor failure, 
we assume that these situations can be analyzed as a large set of 
binary sub-problems, and the agent’s performance is a measure 
of how many of the sub-problems can be successfully solved. If 
an agent, f, believes statement p, we denote2 this as f  p. If an 
agent, f, can correctly solve a problem, p : P , then we denote 
this as f ~ p.
Problem Sets We define a problem-set as a set of problems: 
an object of type (P ). An agent, f, can solve a problem-set, 
ps : (P ), if it can solve all problems within that set. This is 
denoted f ~ ps, and we have f ~ ps ⇔ ∀ p : ps • f ~ p.
Intelligence We use problem-sets to define intelligence. In this 
paper, we do not choose any particular definition of intelligence: 
we assume a range of definitions so that we can not only denote 
the largely subjective and unformalizable ‘I’ll know it when I 
see it’ attitude of many AI researchers towards intelligence, but 
also offer scope for formal definitions of intelligence. As such, 
a given definition, I, of intelligence is a set of problem-sets; i.e., 
I : ((P )). An agent, f, is considered intelligent with respect 
to a definition of intelligence I, if it can solve all problems in 
some problem-set. This is denoted f ~ I, and we therefore have 
f ~ I ⇔ ∃ ps : I  ∀ p : ps • f ~ p.

This approach to representing definitions of intelligence, ad-
mits many definitions beyond that of simple IQ tests or fixed 
checklists of skills. Consider that how one may regard Albert 
Einstein and Elvis Presley as both possessing exceptional intel-
ligence, even though their genius is expressed in different ways. 
Their distinct skills correspond to different problem-sets within 
our common interpretation of ‘genius’.

We allow many definitions of intelligence; for example:
• A set IHarnad : ((P )) for those systems that Harnad would 

regard as exhibiting intelligence,
• A set IIQ=100 : ((P )) to denote sets of problems that a 

person of average Human intelligence would be able to 
solve,

• A set IMarket : ((P )) of buying decisions that a trading 
agent would need to solve successfully in order to exceed 
break-even on a market over a particular time interval,

• Given a formal definition of intelligence with a precise 
threshold, we may have a set IFormal : ((P )) denoting 
those problem-sets that a formally intelligent system 
could solve.

Formal Systems We define F  as the set of all finite formal sys-
tems that satisfy criteria 1–7 of Harnad and are finitely realiz-
able3. We define T  as the universal set of symbols, and assume 

2 Throughout this paper, we use the Z notation per international 
standard ISO/IEC 13568:2002. We treat typing as equivalent to 
membership in a set and denote this with a colon. The power-set 
operator is denoted as , the set of natural numbers as , the set 
of partial functions from A to B as A  B, and the domain and 
range of a function, f, as dom(f) and ran(f) respectively.

3 By finitely realizable, we mean that the systems’s representa-
tions and computational processes that can be described in finite 
space on a Turing machine by a finite agent within the universe, 
and that the corresponding computations of the system in solv-
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that each formal system comprises a set of fixed symbolic tran-
sition rules and a dynamic execution state. We assume (without 
loss of generality) that an execution trace of a formal system, f, 
on a problem, p, is comprised of a two-dimensional grid of sym-
bols. We denote this as t(f, p) :  ×   T. The two axes of the 
grid correspond to the state of the system (analogous to a CPU 
clock) and the position or address of each symbol. The value 
of each grid-cell is the single symbol stored in the ‘address’ in 
that state (be it a byte value stored in RAM, a mark on a tape, a 
neural network weight, or an ‘atom’ in a logical programming 
language).
Representational Units In most non-trivial systems, the indi-
vidual symbols do not convey meaning alone; the intelligent 
behavior stems from the manipulation of entire subsequences 
or subsets of the system’s symbolic state. Furthermore, such in-
telligent behavior stems from the manipulation of only certain 
possible subsets: those subsets of the system state that corre-
spond to legal guards and arguments of the system’s transition 
rules. For example, if the numbers 1, 25 and 334 are denoted as 
the fixed-length sequence of digits <001025334> at a given step 
of the system trace, then a system’s transition rules might only 
accept sequences aligned to three-digit boundaries (i.e., 001, 
025 and 334, but neither 00102 nor 253). For a given formal 
symbolic system f : F, and problem p : P, we define the set of all 
representational units, a(f, p) : ( ×   T ) as the set of all 
subsets of the system trace, t(f, p), that can match part or all of 
a guard or parameter of a transition rule in f.

Semantic Interpretability
‘Semantic interpretability,’ the cornerstone of Harnard’s 8th cri-
teria for a symbol system, presents a challenge to the formaliza-
tion of the symbol grounding problem. Indeed, we believe that 
the philosophical difficulties of the symbol grounding problem 
lie in the elusiveness of ‘semantic interpretability’.

The model-theoretic approach to defining semantic inter-
pretability would be to assume some valuation function, m, 
that maps from symbols to ‘real world’ counterparts so that the 
problems that a formal system believes to be true correspond 
to truths that follow from their real world valuations. That is, if 
we assume the existence of a universal set, U , containing the 
complete universe of actual, possible, conjectured and imagi-
nary objects, actions, categories, relations and concepts in the 
‘real world,’ then given a formal system, f, we may attempt to 
formalize semantic interpretability in a manner such as the fol-
lowing4:

∃ m : P  U  ∀ p : P  • f  p ⇒ m(p)  p
However, such a definition is clearly not what was intended by 
Harnad; it merely states that the agent has true beliefs for every 
problem it can solve. Model theoretic methods do not directly 
apply because problems of intelligence are already assumed to 
be statements about the ‘real world’. Semantic interpretability 
of a formal system demands inspection of not only its internal 
symbols, but also the use of the symbols. For example, a system 
that uses both constructive proof and proof-by-contradiction 
may use the same symbol to denote a concept and its negation: 
it the use of the symbol in reasoning that reveals the true mean-
ing of the symbol.

ing a problem occur in finite time.
4 We introduce the semantic entailment operator, u  p, to denote 

that proposition, p, is (or would be) true in every universe con-
sistent with the set u.

Unfortunately, it is impossible to analyze use without defin-
ing a particular computational model (and our goal is to retain 
a level of abstraction from such particulars). In future works, 
we intend to explore such philosophical challenges of defining 
semantic interpretability, especially given symbol use. We pro-
pose here a working definition.

Let SI denote the type of semantic interpretations of rep-
resentational units SI = ( ×   T )  U. Then, given 
a (model-theoretic) semantic interpretation m : SI, that maps 
from a set of representational units, r : ( ×   T ), to ele-
ments of U ; we say that a formal system, f, in solving a prob-
lem, p, is semantically interpretable if syntactic entailment (i.e., 
computation) corresponds to semantic entailment from the 
model implied by the conjunction of the semantic mapping of 
the system’s entire execution trace. i.e.;

si(m, f, p) 
⇔
(f  p ⇔ t(f, p) ⊆ (dom(m)) ∧
    { u  e : m  u ⊆ t(f, p) • e}  p )

While this working definition ignores the internal use of sym-
bols and may be overly stringent for any particular system, we 
do not believe it limits the generality of our work. Representa-
tional units with different purposes may be expanded to include 
the neighboring section markers, delimiters, type definitions, 
annotations or positional information that indicates their pur-
pose: thereby embedding the use of a representational unit in 
the formal system into its surface structure.

The nature and existence of ‘real world’ concepts, and conse-
quently, the membership of the set U  remains an open question 
that bears upon the symbol grounding problem and the work we 
describe here. We have assumed that the ‘real world’ universe 
includes concepts such as historical, hypothetical and imaginary 
entities, as well as attributes, verbs and abstract nouns like up, 
walk, happy and beauty. However, one could trivially ‘solve’ 
the symbol grounding problem on a technicality by excessively 
generalizing U , so that the ‘real world’ concept of any symbol 
can be taken as “those situations, entities and environments that 
stimulate the generation of the symbol”. Such contrived entities 
would seem absurd to a human-observer and are also highly 
context dependent, so therefore do not correspond to our intu-
itions of meaningful ‘real world’ entities that belong in U . The 
relationship between the nature of U  and symbol grounding is 
an interesting problem, that we plan to explore in future work.

Representational System Classes
We can now use our notions of and notation for semantic in-
terpretability to formalize the differences between attitudes to-
ward the symbol grounding problem. Our goal is to analyze the 
space of finite formal systems, F, and categorize these into a 
hierarchy based on the semantic interpretability of their repre-
sentations. That is, we assume Harnad’s criteria 1–7, and build a 
hierarchy from specializations and generalizations of Harnad’s 
8th criteria. 

For example, SIR  is one such class intended to denote the 
set of systems with fully Semantically Interpretable Represen-
tations. We can use this class to restate Harnad’s thesis that a 
symbolic system cannot be intelligent as follows:

∀ f : SIR  • ¬ (f ~ IHarnad)
Or, if we extend the ‘solves’ operator to representational classes 
so that c ~ i ⇔ ∃ f : c • f ~ i, then we have Harnad’s thesis as:

¬ SIR  ~ IHarnad
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By exploring variations of Harnad’s definition of symbolic 
systems, we have identified a range of representational system 
classes beyond SIR . In particular, we have identified six repre-
sentational system classes that appear to capture the philosophi-
cal position of many AI researchers, and that form (by their 
definition) a hierarchy of representational expressiveness. Each 
class represents a set of formal systems and is therefore of the 
type (F ).

The following subsections describe the classes ordered from 
most restrictive to most general. Each class has been defined 
so that it subsumes (i.e., is a super-set of) those classes that 
have been presented before it. The subsumption property can be 
proven syntactically from the formal definitions in this work, 
and holds irrespective of the foundational assumptions of this 
work.

3.1 Context-Free Semantically Interpretable Repre-
sentation
CFSIR : Every symbol must have a unique semantic interpre-
tation.
CFSIR  = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧ 
                               ∀ r : dom(m) • #r = 1}
Systems in CFSIR  are those in which every single symbol has 
some meaning (given by valuation function, m): symbols do not 
acquire meaning from their context in some larger representa-
tional unit such as a sentence or structure.

A system that, for example, uses the symbol Mouse to repre-
sent the common house mouse, but also uses that same symbol 
in the context of a Disney movie to state that Mickey Mouse 
is a mouse could not be regarded as making use of symbols 
with universal and unambiguous meanings (consider, for ex-
ample, posing the system the question of whether a mouse 
can speak English). In a symbolic system with context-free 
semantic interpretations, such distinctions would first need to 
be translated into separate symbols: e.g., Natural_Mouse and 
Cartoon_Mouse. Whether complete translations are possible 
for all symbolic systems remains an open question, and is, in 
fact, the question of whether SIR  = CFSIR .

Systems in CFSIR  include:
1. Semantic web systems based on RDF: every resource 

is denoted by a globally unique URL that is intended to 
capture some unique context-free interpretation. RDF 
provides no facility to contextualize the truth of an RDF 
triple without complex reification [5].

2. Traditional database systems: in typical database designs, 
each record is intended to have a unique and context-free 
interpretation.

3. Internal representations of industrial robotic systems: ev-
ery variable in the control system of an industrial robot 
can be assigned a unique meaning (e.g., joint position, 
current distance sensor reading, x-coordinate of a recog-
nized widget).

3.2 Semantically Interpretable Representation
SIR : Every representational unit must have a semantic inter-
pretation.
SIR  = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧
                             dom(m) ⊆ a(f, p)}
The set SIR  corresponds to those systems that match Harnad’s 
original definition of formal symbolic systems. Every represen-

tational unit in the system must have a semantic interpretation, 
and every symbol used by the system belongs to a representa-
tional unit.

Systems in SIR  (but not CFSIR ) include:
1. John McCarthy’s early proposal to incorporate context 

into formal symbolic systems [6], and related efforts that 
have arisen from this, such as PLC and MCS [7].

2. The CYC project’s symbolic engineering wherein sym-
bols have meaning, and that meaning is given within con-
text spaces [8].

3.3 Iconic and Symbolic Representation
ISR : Representational units may have semantic interpretation. 
Non-interpretable representational units must be composable 
as sets that in aggregate have semantic interpretation and re-
semble their meaning.
ISR  = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧ 
                             iconic(dom(m)  a(f, p))}
In ISR , individual representational units need not have a se-
mantic interpretation, but may be part of an aggregate that is 
semantically interpretable as a whole. Such aggregations in 
ISR  must have a structure that somehow resembles the mean-
ing of their referent (e.g., by projection or analogy)—they must 
be iconic.

For example, the individual pixels of a high-resolution 
image could not typically be regarded as having a particular 
meaning when considered individually, but in aggregate may 
be understood as denoting the object that they depict. A sys-
tem with hybrid visual/symbolic representations could refer to 
its symbolic knowledge to answer factual queries, but use high 
resolution images to compute answers to queries about nuanced 
physical traits or to compare the appearances of different peo-
ple. Iconic representations in some way resemble their mean-
ing: be they low-level resemblances such as images, 3D models 
and perspective invariant features, or more abstract forms such 
as graphs representing the social networks in an organization or 
the functional connections of components.

Precisely what, then, does it mean for a symbol to resemble 
its meaning? If a system resembles its meaning, then a small 
representational change should correspond to a small seman-
tic change. That is, for a set of iconic representations, i, there 
should exist a computable representational distance function, 
rdist, and a semantic distance function (with some real world 
meaning, and therefore a member of U), sdist, and error limit, 
ε, such that:

iconic(i) 
⇔
∀ i1, i2 : i • |rdist(i1,i2) - sdist(m(i1),m(i2))| ≤ ε

Systems in ISR  include:
1. Harnad’s [1] proposed ‘solution’ to the symbol grounding 

problem via the use of visual icons.
2. The Comirit project that combines ‘imaginative’ graph-

based iconic representation and reasoning with the deduc-
tive reasoning of a logical theorem prover [9].

3. Reasoning performed within Gärdenfors’ conceptual 
spaces framework, especially as a mechanism for embed-
ding greater ‘semantics’ into symbolic systems such as 
the Semantic Web [10]. The cases or prototypes of a case-
based reasoner may also be regarded as a similar form of 
iconic representation.

4. Setchi, Lagos and Froud’s [11] proposed agenda for com-
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putational imagination.

3.4 Distributed Representation
DR : Representational units may have semantic interpretation. 
Non-interpretable representational units must be composable 
as sets that in aggregate have semantic interpretation.
DR = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p)}
Every element of the set DR  is a finite system that makes use 
of two kinds of representations: those that can be systemati-
cally assigned meaning, and those that only have meaning in 
aggregate (and may be of arbitrary form). That is, DR  requires 
semantic interpretability, but does not require that the units of 
semantic interpretation correspond to the same representational 
units that are manipulated by the rules of the formal system.

Consider, for example, a neural network that has been trained 
to identify the gender of a human face. Some of the network’s 
output nodes may be specifically trained to activate in the pres-
ence of masculine features: these output nodes, in addition to 
the hidden layer neurons that feed into the output nodes, may in 
aggregate be seen as meaning ‘facial masculinity’. Even though 
it may be impossible to assign a coherent semantic interpreta-
tion to the representations and values of the hidden layer neu-
rons that the formal system manipulates, the aggregated net-
work can be seen as capturing specific real-world meaning.

Examples of systems that make representational assump-
tions or restrictions consistent with DR  include:

1. Hybrid systems wherein neural networks have been 
trained under supervised learning to recognize symbols 
of a higher level symbolic reasoning processes. Indeed, 
all forms of supervised machine learning where the inter-
nal structure of the induced representations are regarded 
as a black box would be consistent with the restrictions of 
DR . 

2. Neural-symbolic systems that, for example, perform sym-
bolic reasoning within connectionist mechanisms (e.g., 
[12]).

3.5 Unconstrained Representation
UR : Representational units may or may not have any particu-
lar semantic interpretation.
UR  = F
Every element of the set UR  corresponds to a problem-set that 
may be solved by a finite formal system (i.e., a Turing-complete 
machine). The set UR  therefore corresponds to the capabilities 
of computational systems, irrespective of whether their internal 
representations can be assigned particular semantic interpreta-
tions.
Examples of systems that make representational assumptions or 
restrictions consistent with UR  include:

1. Neural-network-based systems, in which output or activity 
is triggered entirely by arbitrary connectionist processes 
(e.g., [13,14]). In such systems, input nodes correspond 
to raw sensory data, output nodes are motor commands 
corresponding to actions, and internal hidden nodes are 
trained without regard to the development of meaningful 
cognitive symbols (i.e., black-box intelligence): none of 
these nodes can be seen as capturing meaningful semantic 
interpretations.

2. Universal computable models of intelligence such as AIξtl 
[15]. Such approaches emphasise computation or mod-
elling that maximizes a reward function without regard 

for the semantic interpretability of the computational 
processes (though there is an implicit assumption that the 
most successful representations are likely to be those that 
best capture the environment and therefore are likely to 
acquire semantic interpretability in the limit).

3. Reactive systems, such as those concrete implementations 
of Brooks [16]. Such systems do not attempt to explicitly 
model the world (or may only partially model the world), 
and so lack semantic interpretability.

3.6 Non-Formal
NF : Representation units may or may not have any particular 
semantic interpretation, and may be manipulated by rules (such 
as interaction with the environment or hyper-computational 
systems) that are beyond formal definition.
NF = F   F *

The class NF  extends UR  with a set of ‘enhanced’ formal 
symbolic systems, F *—systems with distinguished symbols 
that are connected to the environment5. While problems associ-
ated with action in the physical environment may already be 
found in the set P, and these may already be solved by systems 
of other representational system classes (such as UR ), the set 
NF  includes those systems that use embodiment directly as 
part of its deductive processes: systems where the environment 
is ‘part’ of the reasoning, rather than merely the ‘object’ of a 
solution. NF  encompasses systems that, for example, need the 
environment to generate truly random sequences, to perform 
computations that aren’t finitely computable on a Turing ma-
chine but may be solved by physical systems, to exploit some 
as-yet-unknown quantum effects, to build physical prototypes, 
or more simply, to solve problems about objects and complex 
systems that simply cannot be described or modelled in suffi-
cient detail on a realizable computer system.

Examples of systems and research that make representation-
al assumptions or restrictions consistent with NF  include:

1. Embodied robotics in the true spirit of Brooks’ vision, 
that treat ‘the world [as] its own best model’ and that 
refute the possibility of a disembodied mind [16]. Such 
work regards direct sensory experience and manipulation 
of the physical environment throughout problem solving 
as an essential part of the intelligent thought: that intel-
ligence has co-evolved with the environment and sensory 
abilities; that it is not sufficient merely to have a reactive 
system; but that higher order intelligence arises from the 
complex interactions between reactivity and the environ-
ment. Note however, actual reactive robots/systems to 
date would, in fact, be better classified in UR  (as we 
have done) because they do not yet operate at a level of 
interaction beyond primitive reactivity.

2. Models of intelligence and consciousness that are not 
Turing-computable or constrained by Gödel’s incom-
pleteness theorem. Examples of these may be found in 
work such as that of Penrose [17] postulating significant 
(but currently unspecified) quantum effects on intelligent 
thought and consciousness.

5 For example, we can allow a Turing machine to interact with 
the environment by reserving a segment of its tape as ‘memory 
mapped’ I/O. Symbols written to this segment of the tape will 
manipulate actuators and sensory feedback is itself achieved by 
a direct mapping back onto symbols of the I/O segment of the 
tape.
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Discussion
The representational system classes not only serve to clarify 
many of the loose and ambiguous concepts that appear in de-
bate on symbol grounding, but offer many other benefits: a 
language for rapidly communicating assumptions; a tool for 
analyzing the symbol grounding problem and generating new 
research assumptions; and a framework for better understand-
ing underlying assumptions and the inter-relationships between 
assumptions. For example, Harnad’s claims may be succinctly 
summarized as ¬ SIR  ~ IHarnad ∧ ISR  ~ IHarnad.

Simple proof techniques can show that the representational 
classes form a hierarchy (i.e., CFSIR  ⊆ SIR  ⊆ ISR  ⊆ DR  ⊆ 
UR  ⊆ NF ), and it follows that the combined sets of problems 
that each class may solve also forms a hierarchy (i.e., we have 
a hierarchy of intelligence). However, it remains an interesting 
question whether this hierarchy is strict: are there classes of rep-
resentational systems C1 and C2 such that C1 ⊆ C2 but there ex-
ists some definition of intelligence I where ¬ C1 ~ I, and C2 ~ I 
(we denote this, C1 < C2). i.e., is C2 strictly more intelligent than 
C1? Our intuitions are that this is indeed the case for our hierar-
chy, and we plan to show this in future work. Here, we briefly 
outline our reasons for believing so:

• CFSIR  < SIR , because even though the context-sen-
sitive symbols of SIR  could be systematically mapped 
into sets of context-free symbols in CFSIR  (e.g., Mouse 
→ Cartoon_Mouse), the potentially unbounded regress 
of contexts may make it impossible to ensure that this 
mapping remains finite when problem-sets are unbound-
ed (i.e., it can be done for any particular problem, but not 
in general, in advance of knowledge of the problem).

• SIR  < ISR , following the arguments of Harnad.
• ISR  < DR , because we believe that there are pathologi-

cal concepts that emerge from complex chaotic systems 
so that iconic representations of structure or appearance 
hinder rather than enhance performance (i.e., systems in 
which emergence is crucial to understanding the global 
system behavior, but for which properties of emergence 
cannot be predicted from local or structural analysis).

• DR  < UR , because we believe that there are pathologi-
cal situations where an attempt to analyze the situation 
into concepts diminishes the ability to learn appropriate 
behaviors (compare this to the manner in which human 
beings ‘discover’ false patterns in randomized data, hin-
dering their ability to make optimal decisions using that 
data).

• UR  < NF , because even though the universe may be 
formally computable, it may not be possible for any agent 
situated within the universe to describe the universe in 
sufficient detail such that a Turing machine could com-
pute the solution to all ‘intelligent’ problems.

Finally, we are careful to emphasise again that we do not claim 
to have solved the problem. Instead, our framework reduces 
the symbol grounding to two long-standing philosophical chal-
lenges: the selection and definition of intelligence, I, and the 
problem of the nature of ‘meaningful’ entities in the universe 
(i.e., the set U, and consequently how to define si(m, f, p)). 
While our framework does not yet offer precise guidance to-
wards solving these sub-problems, it provides straightforward 
machinery by which the symbol grounding problem can be un-
derstood in such terms. Our contribution lies in formalizing the 

connections between sub-problems, and thereby narrowing the 
ambiguity in the problem and closing opportunities for circular 
reasoning.

Conclusion
By defining a formal framework of representation ground-

ing, we help clarify the contention in important work on symbol 
grounding as stemming from arguments about different kinds of 
representational system classes. We have proposed six classes to 
this end: CFSIR  ⊆ SIR  ⊆ ISR  ⊆ DR  ⊆ UR  ⊆ NF .  These 
capture many perspectives on the symbol grounding problem: 
the classes have significant power both for explanation and in-
vestigation. Not only can future research use these classes to 
quickly express assumptions, but the abstractions assist in the 
exploration of the problem, the classification and comparison 
of existing work, and provide machinery for the development 
of novel conjectures and research questions.
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