
1 
 

On the scattering of elastic waves from a non-axisymmetric defect in a 

coated pipe 

 

Wenbo Duan
a
*, Ray Kirby

b
, Peter Mudge

c
 

 
a
Brunel Innovation Centre, Brunel University, Uxbridge, Middlesex, UK, UB8 3PH 

 

b
School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UK, UB8 

3PH 

 

c
NDT Technology Group, TWI Ltd, Cambridge, UK, CB21 6AL  

 

 

 

 

* Corresponding author.  



2 
 

ABSTRACT 

 

Viscoelastic coatings are often used to protect pipelines in the oil and gas industry.  However, 

over time defects and areas of corrosion often form in these pipelines and so it is desirable to 

monitor the structural integrity of these coated pipes using techniques similar to those used on 

uncoated pipelines. A common approach is to use ultrasonic guided waves that work on the 

pulse-echo principle; however, the energy in the guided waves can be heavily attenuated by 

the coating and so significantly reduce the effective range of these techniques.  Accordingly, 

it is desirable to develop a better understanding of how these waves propagate in coated pipes 

with a view to optimising test methodologies, and so this article uses a hybrid SAFE-finite 

element approach to model scattering from non-axisymmetric defects in coated pipes.  

Predictions are generated in the time and frequency domain and it is shown that the 

longitudinal family of modes is likely to have a longer range in coated pipes when compared 

to torsional modes.  Moreover, it is observed that the energy velocity of modes in a coated 

pipe is very similar to the group velocity of equivalent modes in uncoated pipes.  It is also 

observed that the coating does not induce any additional mode conversion over and above 

that seen for an uncoated pipe when an incident wave is scattered by a defect.  Accordingly, it 

is shown that when studying coated pipes one need account only for the attenuation imparted 

by the coating so that one may normally neglect the effect of coating on modal dispersion and 

scattering. 

 

Key words: Guided wave; Non-axisymmetric defect; Hybrid finite element method; 

Dispersion and scattering analysis. 
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1. INTRODUCTION 

 

Viscoelastic materials are often used as coatings on the outer surface of pipelines in order to 

protect the pipe from external damage and corrosion.  However, over time it is possible for 

these coatings to degrade and for regions of corrosion or other defects to form within the pipe 

substrate.  Accordingly, it is desirable to monitor the integrity of the pipe and a fast and 

efficient way to do this is through the use of non-destructive testing (NDT) techniques such 

as long range ultrasonic testing (LRUT) [1, 2].  The application of LRUT to coated pipes 

involves sending a guided wave along the pipe wall, but this technique is less successful for 

coated pipes because the viscoelastic coating attenuates the ultrasonic wave as it travels along 

the pipe wall.  This has the effect of significantly reducing the range over which LRUT can 

be successfully used in the location of defects such as corrosion.  This presents a significant 

problem because LRUT is an important tool for interrogating pipelines and the use of 

viscoelastic coatings is relatively widespread.  It is desirable, therefore, to try and develop a 

better understanding of the way in which a coating attenuates an ultrasonic wave, as well as 

how it affects the scattering of waves from defects.  One approach to achieving a better 

understanding is through the development of theoretical models, however there are very few 

articles in the literature that use theoretical models to analyse scattering from defects in a 

pipeline coated with a viscoelastic material. Accordingly, this article utilises a three 

dimensional model that is suitable for analysing scattering from defects of arbitrary shape in a 

pipe of arbitrary length coated with a viscoelastic material.  In doing so this model moves 

away from relying on dispersion curves in order to analyse a scattering problem that is more 

representative of problems found in the field. 
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A typical pipeline consists of a long and uniform pipe in which the defect, or region of 

corrosion, forms only over a short section of the pipe.  LRUT works by sending an incident 

pulse down the pipe and then recording the reflected pulse scattered by the defect.  The 

energy contained within the incident and reflected pulse travels as a series of eigenmodes and 

so one must be careful to excite the appropriate mode, or modes, as well as to retain some 

understanding of the characteristics of each mode when interpreting the returning pulse, and 

here a knowledge of group velocity is important when distinguishing modal content.  

Therefore, understanding the properties of the pipe eigenmodes is very important in the 

practical application of LRUT and so a common starting point for a theoretical analysis of 

coated pipes is to find the pipe eigenmodes, or dispersion curves as they are known.  This 

approach is illustrated for coated pipes by Barshinger and Rose [3], who applied a global 

transfer matrix method to compute the phase and attenuation of axisymmetric longitudinal 

modes.  The global matrix method derives an analytic expression for the governing dispersion 

relation and so numerical routines are necessary to find the complex roots of this equation.  

Root finding in the complex plane is often difficult and time consuming, especially at higher 

frequencies [3] and so it is advantageous to use alternative methods.  Accordingly, numerical 

techniques are becoming increasingly popular and one of the most reliable and efficient 

methods for obtaining the eigenmodes of a uniform structure is the semi analytic finite 

element (SAFE) method.  This approach substitutes an analytic expression for the 

displacement in the axial direction into Navier’s governing equation and then uses the finite 

element method to solve the resulting two dimensional eigenequation. Thus, one only needs 

to mesh the cross section of the structure, and the SAFE method may be applied to structures 

with an arbitrary cross-section provided they are uniform in the axial direction. A rigorous 

introduction to the SAFE method is provided by Bartoli et al [4], who proceed to apply the 

method to a waveguide of arbitrary cross-section, as well as a viscoelastic plate; for other 
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examples of the application of the SAFE method see [5-9].  Mu and Rose [10] also applied 

the SAFE method to pipes with a viscoelastic coating, and by using an analytic expansion for 

the circumferential direction they were able to further reduce the problem to one dimension.  

Moreover, through the use of an orthogonality relation for the pipe eigenmodes, Mu and Rose 

were able to sort values for phase velocity and attenuation for a large number of propagating 

eigenmodes.  Further applications of the SAFE method to problems involving energy 

dissipation include the work of Castaings and Lowe [11], who calculate the eigenmodes for a 

waveguide of arbitrary cross-section that is surrounded by an absorbing region, and Marzani 

et al. [12] who examined multi-layered structures and computed the energy velocity for the 

eigenmodes, which is generally more appropriate than group velocity for structures in which 

material damping is present [13]. Thus, the SAFE method has now been shown to deliver a 

reliable and efficient means for finding the eigenmodes in a waveguide containing material 

damping and so this method is well suited to studying coated pipes.  Accordingly, this article 

will make use of the SAFE method to calculate eigenmodes for uniform regions of a coated 

pipe and in the section that follows the SAFE method is applied to a two dimensional 

problem. 

 

The SAFE method is very useful for finding the eigenmodes in an infinitely long structure, 

however the eigenexpansion assumes that the structure is uniform.  If one is also to model the 

scattering from a defect then this adds considerable additional complexity, especially if one 

also wishes to study a non-axisymmetric defect.  Modelling difficulties are caused by the 

non-uniformities in the structure and whilst it is possible simply to numerically discretise an 

entire pipe this likely to require extremely high numbers of degrees of freedom even for 

modest pipe lengths.  Moreover, discretising the entire pipe obviously cannot be achieved if 

the pipe is infinite, and so this approach normally requires some form of non-reflecting 
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boundary in order to close the problem for an equivalent finite length of pipe. An example of 

the finite element method was presented by Hua and Rose [14], who studied a short length of 

coated pipe.  Hua and Rose used commercial software and studied the attenuation of guided 

waves in a uniform pipe where there is no additional mode conversion at the end of the pipe, 

however this method will quickly generate excessive degrees of freedom if one moves to 

more representative geometries.  Predoi et al. [15] used an absorbing boundary layer method 

to study scattering from a defect in a two dimensional viscoelastic plate and it is clear that 

extension to three dimensions is likely to become computationally expensive. It is also 

possible to reduce computational expenditure by introducing higher order finite elements and 

Żak [16] demonstrates the application of the spectral element method to wave propagation in 

a plate.  The spectral finite element is now well developed for structural health monitoring 

and the increase in computational efficiency that this provides means that it is now capable of 

being applied to relatively large structures [17], however one must still mesh the entire 

structure and this is not always the most attractive option, especially for structures such as 

pipelines that are long and slender.  Moreover, structures such as pipelines also have a 

relatively simple geometry and it is possible to take advantage of this when developing a 

numerical model.  This is achieved by using alternative methods for modelling wave 

propagation in the long uniform sections found in pipe installations, or similar guided wave 

applications.  For example, Galán and Abascal [18] used a hybrid boundary element - finite 

element approach to study scattering from a defect in a plate coated with a viscoelastic 

material; this approach then reduces the degrees of freedom required in the uniform section 

through the use of a boundary element discretisation.  An alternative approach that is 

potentially even more efficient is to use a modal expansion for the uniform section of pipe 

and to couple this to a numerical discretisation that surrounds only the defect being studied.  

This will radically reduce the number of degrees of freedom required when compared to a 

http://www.sciencedirect.com/science/article/pii/S0168874X14001073
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full discretisation and in principle it can be used for any length of pipe without incurring 

additional computational costs.  A relevant example of this approach for uncoated pipes is the 

method of Zhou et al. [19], who used the wave finite element method to solve the 

eigenequation in the uniform section, and then coupled this to a finite element discretisation 

surrounding the defect. Recently Benmeddour et al. [20] used a hybrid SAFE - finite element 

(FE) method to analyse elastic wave propagation in a solid cylinder, and Duan and Kirby [21] 

used a similar method to analyse elastic wave propagation in an uncoated pipe.  The article 

by Duan and Kirby contains a more detailed discussion about these and other alternative 

numerical approaches and so these will not be discussed further here.  However, it is 

noticeable that in the literature the only application of a hybrid SAFE-FE approach to coated 

pipes was that reported by Kirby et al. [22, 23].  The models developed by Kirby et al. were 

used primarily to deduce the bulk shear and longitudinal properties of the viscoelastic coating, 

and to do this it was necessary only to study the axisymmetric problem.  Therefore, Kirby et 

al. restricted their analysis to either torsional [22] or longitudinal [23] modes, and so these 

approaches are not suitable for studying the more general problem of scattering from non-

axisymmetric defects.   

 

The aim of this article is to analyse scattering from non-axisymmetric defects in coated pipes 

using the hybrid SAFE-FE method.  Relevant examples of the application of this method to 

elastic wave propagation in circular geometries include the articles by Benmeddour et al. [20], 

and Duan and Kirby [21].  Note that Benmeddour et al. use a variational formulation, whilst 

Duan and Kirby use a weighted residual formulation to derive the final system of equations.  

Thus, in section 2 a weighted residual formulation is adopted for the three dimensional 

problem.  In section 3 predictions generated using a three dimensional model are validated 

against two dimensional predictions and measurements.  In sections 4 and 5 predictions are 
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generated that quantify scattering from a non-axisymmetric defect representative of corrosion 

in a coated pipe, and here predictions are presented in the frequency and time domain.  

Parametric studies are also undertaken and conclusions drawn regarding the influence of the 

coating and on the choice of excitation when undertaking LRUT in coated pipes. 

 

2. THEORY 

The theory reported in this section is based on the hybrid SAFE-FE method described by 

Duan and Kirby [21].  However, the analysis of a coated pipe requires the addition of an extra 

layer when compared to the analysis reported by Duan and Kirby [21].  Accordingly, when 

adding an additional layer it is convenient to use a normalisation procedure that is different to 

that used by Duan and Kirby, as this facilitates the writing of the final governing equations in 

a computationally efficient way.  The governing equation for wave propagation in an elastic 

or viscoelastic medium is Navier’s equation, which is written as 

 

(𝜆p,c + 𝜇p,c)∇(∇ ∙ 𝒖p,c
′ ) + 𝜇p,c∇

2𝒖p,c
′ = 𝜌p,c

𝜕2𝒖p,c
′

𝜕𝑡2
, (1) 

 

where 𝜆 and 𝜇 are the Lamé constants, 𝒖′ is the displacement vector, 𝜌 is density and 𝑡 is time.  

A time dependence of 𝑒i𝜔𝑡 is assumed throughout this article, where 𝜔 is the radian 

frequency and i = √−1. The subscripts 𝑝 and 𝑐 denote pipe and coating respectively.  

Navier’s equation is applied here to an infinite pipe coated with a viscoelastic material, see 

Fig. 1, with the coating applied to the outer surface.  The pipe also contains a single defect 

that is arbitrary in shape and which penetrates both the coating and the pipe substrate. The 

boundary condition for this problem is assumed to be traction free on the outer surface of the 

coating and the inner surface of the pipe. On the interface between the pipe and the coating, 
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the displacement and traction forces are equal. A hybrid SAFE-finite element approach is 

adopted so that a numerical discretisation is used for a region surrounding the defect (this is 

Ω2 in Fig. 1), and for those uniform sections abutting this region a modal expansion is 

adopted (regions Ω1 and Ω3).  Thus, for the uniform sections the SAFE method is applied to 

find the pipe eigenmodes and this is discussed in the following section; a full finite element 

discretisation of Ω2 is then discussed in section 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of coated pipe containing arbitrary defect. 

 

2.1 SAFE method for a coated pipe 

The displacements 𝑢1𝑞
′  in region Ω1 of the pipe are expanded over the pipe eigenmodes to 

give 

𝑢1𝑞
′ (𝑥, 𝑦, 𝑧) =∑𝑢1𝑞

𝑛 (𝑥, 𝑦)𝑒−𝑖𝑘𝛾
𝑛𝑧

∞

𝑛=0

, (2) 
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where the subscript 𝑞 = 𝑥, 𝑦 or 𝑧, and 𝑢1𝑞(𝑥, 𝑦) are the eigenvectors in region Ω1, where 

𝑘 = 𝜔 𝑐Tp⁄  so that 𝛾 is a (coupled) dimensionless wavenumber.  In addition, 𝑐Tp and 𝑐Lp are 

the shear (torsional) and compressional (longitudinal) bulk wave velocities in the pipe 

substrate, respectively.  Further,  𝑐Tc and 𝑐Lc are the shear (torsional) and compressional 

(longitudinal) bulk wave velocities in the viscoelastic coating, respectively. The finite 

element analysis proceeds by discretising the displacements of any mode 𝑛 over the pipe 

cross-section to give 

𝑢1𝑞(𝑥, 𝑦) =∑N𝑞𝑗(𝑥, 𝑦)𝑢1𝑞𝑗 = 𝐍𝑞𝐮1𝑞,

𝑝1𝑞

𝑗=1

 (3) 

 

where N𝑞𝑗 is a global trial (or shape) function, 𝑢1𝑞𝑗 is the value of 𝑢1𝑞 at node 𝑗, and 𝑝1𝑞 is 

the number of nodes (or degrees of freedom) for the displacements in direction 𝑞.  In addition, 

𝐍q and 𝐮1q are row and column vectors of length 𝑝1𝑞, respectively, and it is convenient to 

choose 𝐍𝑥 = 𝐍𝑦 = 𝐍𝑧 so that one only needs to generate one finite element mesh.  The 

displacement can be further divided as 𝐮1𝑞 = [𝐮1𝑞p 𝐮1𝑞c]
T , where 𝐮1𝑞p and 𝐮1𝑞c denote nodal 

displacements in the pipe and in the coating, respectively. This also facilitates the application 

of continuity of displacement and traction forces over the interface between the pipe and the 

coating, and after applying these continuity conditions and enforcing zero traction on the 

internal surface of the pipe and the outer edge of the coating [21], the substitution of Eq. 3 

into Eq. (1) yields the following eigenequation: 

𝐏𝐮1 = γ𝐒𝐮1, (4) 
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where 𝐮1 = [𝐮1𝑥 𝐮1𝑦 𝐮1𝑧 γ𝐮1𝑥 γ𝐮1𝑦 γ𝐮1𝑧]
T
.  It is convenient to split up matrices 𝐏 

and 𝐒 so that 

𝐏𝐮1 = 𝐏p𝐮1p + 𝐏c𝐮1c (5) 

𝐒𝐮1 = 𝐒p𝐮1p + 𝐒c𝐮1c (6) 

 

where 𝐮1p,c = [𝐮1𝑥p,c 𝐮1𝑦p,c 𝐮1𝑧p,c γ𝐮1𝑥p,c γ𝐮1𝑦p,c γ𝐮1𝑧p,c]
T
, and the constituents of 

matrices 𝐏p,c and 𝐒p,c are given in Appendix 1.  Equation (4) is a sparse symmetric 

eigenequation that is solved for the eigenmodes in the coated pipe.  The method for solving 

this equation and for sorting the eigenmodes that are obtained is described by Duan and 

Kirby [21].  This solution delivers 𝑝1 = 𝑝3 = 𝑝1𝑥 + 𝑝1𝑦 + 𝑝1𝑧 eigenmodes. 

 

Modal attenuation and energy velocity are two of the most important factors to be considered 

when examining wave propagation in a coated pipe.  Attenuation quantifies the reduction in 

amplitude of the wave, whereas the energy velocity determines the velocity of the “centre of 

gravity” of a wave as it propagates along the pipe wall [24].  For attenuative waves in coated 

pipes, energy velocity more accurately represents the velocity of a wave package, although of 

course the energy velocity reduces to the group velocity for an uncoated pipe. The attenuation 

(∆) is defined in the usual way: 

∆= −20 ℑ(𝑘) × log10(𝑒). (7) 

 

The energy velocity is defined as the ratio of the average power flow to the average stored 

energy per unit length of the waveguide [24] to give 



12 
 

𝑉𝑒 =
2Re {∑ ∫ [−𝜎1𝑧𝑞− ∙ 𝑢1𝑞−

∗ ]𝑑Γ𝐴𝜏Γ𝐴𝜏
𝜏=𝑝,𝑐 }

Re {∑ ∫ [𝜌τ𝑢1𝑞− ∙ 𝑢1𝑞−
∗ + 𝜎1𝑞𝑙− ∶ 𝜀1𝑞𝑙−

∗ ]𝑑Γ𝐴𝜏Γ𝐴𝜏
𝜏=𝑝,𝑐 }

. (8) 

 

Here, the superscript * indicates the complex conjugate, and 𝑞 and 𝑙 take on values of 𝑥, 𝑦 

and 𝑧, with the summation convention applying to repeated indices of 𝑞 and 𝑙. In addition, 

 𝑢1𝑞−, 𝜎1𝑞𝑙− and 𝜀1𝑞𝑙− are the incident displacements, stress and strain tensors in region Ω1. 

The first term in the denominator represents the kinetic energy density and the second term 

the strain energy density.  

2.2 A hybrid SAFE-FE approach for a coated pipe 

A three dimensional finite element discretisation is used for the non-uniform section of the 

pipe, Ω2, which is assumed to contain a defect of arbitrary shape, see Fig. 1.  The 

displacements 𝑢2𝑞
′ (𝑥, 𝑦, 𝑧) in Ω2 are discretised to give 

𝑢2𝑞
′ (𝑥, 𝑦, 𝑧) =∑W𝑞𝑗(𝑥, 𝑦, 𝑧)𝑢2𝑞𝑗 = 𝐖𝑞𝐮2𝑞

𝑝2𝑞

𝑗=1

, (9) 

 

where W𝑞𝑗 is a global shape function, and 𝑢2𝑞𝑗 is the value of 𝑢2𝑞
′  at node j, and 𝑝2𝑞 is the 

number of nodes in the q direction.  For convenience when matching with the inlet and outlet 

regions, we choose 𝐖𝑥 = 𝐖𝑦 = 𝐖𝑧 = 𝐖 so that the weak forms of Eq. (1) yields 
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∫ {[(𝜆p,c + 𝜇p,c)
𝜕𝐖T

𝜕𝑥

𝜕𝐖

𝜕𝑥
+ 𝜇p,c∇𝐖

T∇𝐖− 𝜌𝜔2𝐖T𝐖]𝐮2𝑥p,c
Ω2

+ [𝜆p,c
𝜕𝐖T

𝜕𝑥

𝜕𝐖

𝜕𝑦
+ 𝜇p,c

𝜕𝐖T

𝜕𝑦

𝜕𝐖

𝜕𝑥
]𝐮2𝑦p,c

+ [𝜆p,c
𝜕𝐖T

𝜕𝑥

𝜕𝐖

𝜕𝑧
+ 𝜇p,c

𝜕𝐖T

𝜕𝑧

𝜕𝐖

𝜕𝑥
]𝐮2𝑧p,c} 𝑑Ω2 = ∫ 𝐖Tℎ2𝑥p,c

Γ2

𝑑Γ2, 

(10a) 

 

∫ {[𝜆p,c
𝜕𝐖T

𝜕𝑦

𝜕𝐖

𝜕𝑥
+ 𝜇p,c

𝜕𝐖T

𝜕𝑥

𝜕𝐖

𝜕𝑦
]𝐮2𝑥p,c

Ω2

+ [(𝜆p,c + 𝜇p,c)
𝜕𝐖T

𝜕𝑦

𝜕𝐖

𝜕𝑦
+ 𝜇p,c∇𝐖

T∇𝐖− 𝜌𝜔2𝐖T𝐖]𝐮2𝑦p,c

+ [𝜆p,c
𝜕𝐖T

𝜕𝑦

𝜕𝐖

𝜕𝑧
+ 𝜇p,c

𝜕𝐖T

𝜕𝑧

𝜕𝐖

𝜕𝑦
]𝐮2𝑧p,c}𝑑Ω2 = ∫ 𝐖Tℎ2𝑦p,c

Γ2

𝑑Γ2, 

(10b) 

 

∫ {[𝜆p,c
𝜕𝐖T

𝜕𝑧

𝜕𝐖

𝜕𝑥
+ 𝜇p,c

𝜕𝐖T

𝜕𝑥

𝜕𝐖

𝜕𝑧
]𝐮2𝑥p,c

Ω2

+ [𝜆p,c
𝜕𝐖T

𝜕𝑧

𝜕𝐖

𝜕𝑦
+ 𝜇p,c

𝜕𝐖T

𝜕𝑦

𝜕𝐖

𝜕𝑧
]𝐮2𝑦p,c

+ [(𝜆p,c + 𝜇p,c)
𝜕𝐖T

𝜕𝑧

𝜕𝐖

𝜕𝑧
+ 𝜇p,c∇𝐖

T∇𝐖

− 𝜌𝜔2𝐖T𝐖]𝐮2𝑧p,c} 𝑑Ω2 = ∫ 𝐖Tℎ2𝑧p,c
Γ2

𝑑Γ2. 

(10c) 

 

Here, the notation for the pipe substrate and coating regions follows the conventions used in 

the previous section.  Similarly, it is necessary also to enforce continuity of displacement and 

traction force between the coating and the pipe, as well as enforce zero traction force over the 

outer surface of Ω2, apart from the surfaces ΓA  and ΓB , so that  

ℎ2𝑞p,c = 𝜎2𝑞𝑙p,c𝑛𝑙 = 0, (11) 
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where the indices 𝑞 and 𝑙 take on values of 𝑥, 𝑦 and 𝑧, and the summation convention applies 

to repeated indices of 𝑙 only.  In Eq. (11), 𝜎𝑞𝑙 denotes the Cauchy stress tensor and 𝑛𝑙 is the 

unit outward normal vector to the surface of the pipe so that 

 

ℎ𝑥p,c = 𝜆p,c (
𝜕𝑢2𝑥p,c

′

𝜕𝑥
+
𝜕𝑢2𝑦p,c

′

𝜕𝑦
+
𝜕𝑢2𝑧p,c

′

𝜕𝑧
)𝑛𝑥 + 2𝜇p,c

𝜕𝑢2𝑥p,c
′

𝜕𝑥
𝑛𝑥

+ 𝜇p,c (
𝜕𝑢2𝑥p,c

′

𝜕𝑦
+
𝜕𝑢2𝑦p,c

′

𝜕𝑥
)𝑛𝑦 + 𝜇p,c (

𝜕𝑢2𝑥p,c
′

𝜕𝑧
+
𝜕𝑢2𝑧p,c

′

𝜕𝑥
)𝑛𝑧 , 

(12a) 

ℎ𝑦p,c = 𝜇p,c (
𝜕𝑢2𝑦p,c

′

𝜕𝑥
+
𝜕𝑢2𝑥p,c

′

𝜕𝑦
)𝑛𝑥 + 𝜆p,c (

𝜕𝑢2𝑥p,c
′

𝜕𝑥
+
𝜕𝑢2𝑦p,c

′

𝜕𝑦
+
𝜕𝑢2𝑧p,c

′

𝜕𝑧
)𝑛𝑦

+ 2𝜇p,c
𝜕𝑢2𝑦p,c

′

𝜕𝑦
𝑛𝑦 + 𝜇p,c (

𝜕𝑢2𝑦p,c
′

𝜕𝑧
+
𝜕𝑢2𝑧p,c

′

𝜕𝑦
)𝑛𝑧 , 

(12b) 

ℎ𝑧p,c = 𝜇p,c (
𝜕𝑢2𝑧p,c

′

𝜕𝑥
+
𝜕𝑢2𝑥p,c

′

𝜕𝑧
)𝑛𝑥 + 𝜇p,c (

𝜕𝑢2𝑧p,c
′

𝜕𝑦
+
𝜕𝑢2𝑦p,c

′

𝜕𝑧
)𝑛𝑦

+ 𝜆p,c (
𝜕𝑢2𝑥p,c

′

𝜕𝑥
+
𝜕𝑢2𝑦p,c

′

𝜕𝑦
+
𝜕𝑢2𝑧p,c

′

𝜕𝑧
)𝑛𝑧 + 2𝜇p,c

𝜕𝑢2𝑧p,c
′

𝜕𝑧
𝑛𝑧 . 

(12c) 

 

Continuity of displacement and traction force between the coating and the pipe is 

implemented naturally in region 2 once the region is discretised appropriately.   

 

The displacements in regions Ω1 and Ω3 are written as modal expansions using solutions 

from the previous section, so that 

 

𝑢1q
′ (𝑥, 𝑦, 𝑧) = ∑A𝑛𝑢1𝑞+

𝑛

𝑚1

𝑛=0

(𝑥, 𝑦)𝑒−i𝑘𝛾
𝑛𝑧 +∑B𝑛

𝑚1

𝑛=0

𝑢1𝑞−
𝑛 (𝑥, 𝑦)𝑒i𝑘𝛾

𝑛𝑧 , (13) 

and 
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𝑢3q
′ (𝑥, 𝑦, 𝑧′) = ∑C𝑛𝑢1𝑞+

𝑛 (𝑥, 𝑦)

𝑚1

𝑛=0

𝑒−i𝑘𝛾
𝑛𝑧′ . (14) 

 

Here, A𝑛, B𝑛 and C𝑛 are modal amplitudes, and 𝑢1𝑞+
𝑛  and 𝑢1𝑞−

𝑛  are eigenvectors for the 

incident and reflected waves, respectively.  The number of modes used in the analysis for 

regions Ω1 and Ω3 is 𝑚1, where 𝑚1 ≤ 𝑝1.  It is assumed that the pipe extends to infinity in 

region Ω3 so that no reflected waves are present in this region.  In addition, Eq. (13) allows 

for a general incident sound field, although in the analysis that follows this will be restricted 

either to torsional T(0,1) or longitudinal L(0,2) excitation as this best reflects experimental 

practice.  

 

The problem is solved by enforcing continuity of displacement and traction forces in the axial 

direction over the interface between the uniform pipe sections and the central finite element 

based solution.  Each continuity condition is weighted using the method described by Duan 

and Kirby in [21] and this delivers a final system equation of the form: 

[
 
 
 
 
 
−𝐆11− 𝐆21

T 𝐆31
T 𝐆41−

T 𝟎

𝐆21 𝐆22 𝐆32
T 𝐆42

T 𝐆25
𝐆31 𝐆32 𝐆33 𝐆43

T 𝐆35
𝐆41− 𝐆42 𝐆43 𝐆44 𝐆45
𝟎 𝐆25

T 𝐆35
T 𝐆45

T 𝐆55]
 
 
 
 
 

{
 
 

 
 
𝐁
𝐮2x
𝐮2y
𝐮2z
𝐂 }
 
 

 
 

=

{
 
 

 
 

𝐆11+𝐀

𝜌𝑐𝑠
2[𝐐1x+ − 𝐐1zx+]𝐀

𝜌𝑐𝑠
2[𝐐1y+ − 𝐐1zy+]𝐀

−𝐆41+𝐀
𝟎 }

 
 

 
 

. (15) 

 

Equation (15) is a set of 𝑛𝑡 (= 2𝑚1+𝑝2) linear equations, where 𝑝2 is the number of degrees 

of freedom in region Ω2 and 𝑚1 is the number of modes in regions Ω1 and Ω3 respectively.  

The vectors 𝐀, 𝐁 and 𝐂 hold the modal amplitudes A𝑛, B𝑛 and C𝑛 respectively, and the other 

matrices are given in Appendix 2.  The modal amplitudes in Ω1 and Ω3, and the 
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displacements in region Ω2 are therefore found on the solution of Eq. (15).  The 

displacements in Ω1 and Ω3 are then obtained from Eqs. (13) and (14).   

The modal amplitudes defined in Eqs. (13) and (14) are independent of location in region Ω1. 

However, the displacement amplitude is dependent on location because the coating attenuates 

energy.  Therefore, in order to study wave scattering from a defect without the influence of 

location, the reflection coefficient is defined here using a plane that is immediately adjacent 

to the left hand side of the defect.  Thus, if we denote the distance between plane ΓA  and the 

left side of the defect as 𝑧𝑙 then the reflection coefficient Λ for mode (𝑚, 𝑛) [in the frequency 

domain only] is defined as  

 

 Λ(𝑚,𝑛) =
|B(𝑚,𝑛)𝑢1𝑞−

(𝑚,𝑛)𝑒i𝑘𝛾
(𝑚,𝑛)𝑧𝑙|

|A(𝑚I,𝑛I)𝑢1𝑞+
(𝑚I,𝑛I)𝑒−i𝑘𝛾

(𝑚,𝑛)𝑧𝑙|
,    𝑞 = 𝜃 or 𝑧. (16) 

 

The reflection coefficient Λ is thus defined by normalising a reflected mode (𝑚, 𝑛) by an 

incident mode (𝑚I, 𝑛I), where the incident mode is determined by the choice of excitation, 

which will be either torsional (𝜃) or longitudinal (𝑧).  That is, if the incident mode is T(0,1) 

then 𝑞 = 𝜃, and if it is L(0,2) then 𝑞 = 𝑧.  Building in the appropriate torsional or 

longitudinal displacements into Eq. (16) thus permits the comparison with measurements 

taken with T(0,1) and L(0,2) incident modes.   

 

3. MODEL VALIDATION 

The three dimensional model is validated here by comparing predictions against those 

available for two dimensional problems.  Accordingly, the SAFE method is validated first, 



17 
 

and then predictions obtained using the hybrid method for a coated pipe are compared against 

those in the literature for an axisymmetric defect.  In the validation that follows, as well as 

the results presented in following sections, six noded triangular isoparametric elements are 

used for planes Γ𝐴 and Γ𝐵, and ten noded tetrahedral isoparametric elements are used for Ω2.  

The numerical model is programmed in MATLAB and executed on a computer with 12 CPU 

cores and a total accessible RAM of 128 GB. Parallelisation techniques are used so that the 

problem is solved in parallel for 12 frequencies at a time.  Further, the properties of the 

coating follow the definition of Barshinger and Rose [3], so that the shear torsional and 

longitudinal bulk wave velocities are given as 𝑐Tc = 1 [1 𝑐̃T − 𝑖𝛼̃T⁄ ]⁄  and 𝑐Lc =

1 [1 𝑐̃L − 𝑖𝛼̃L⁄ ]⁄ , respectively.  Here, 𝑐̃T and 𝑐̃L denote the shear and longitudinal phase 

velocities, and 𝛼̃T and 𝛼̃L represent attenuation in the coating. 

 

3.1 SAFE method for a coated pipe 

The two dimensional SAFE method presented here is valid for a waveguide of any cross-

sectional geometry, although in this article we restrict application to an axisymmetric pipe.  A 

two dimensional solution is used as this makes the application of the hybrid method that 

follows more straightforward, especially when using flexural modes to enforce the matching 

conditions over ΓA and ΓB.  Accordingly, the two dimensional SAFE solution is validated first 

by comparison against the independent one dimensional predictions for an axisymmetric pipe 

reported by Marzani et al. [12].  The pipe studied by Marzani et al. was filled with a 

viscoelastic material, rather than coated on the outside, and the pipe had an inner radius of 6.8 

mm and an outer radius of 7.5 mm.  The properties of the copper substrate are 𝑐Tp =

2240 m/s, with a density 𝜌p = 8900 kg/m
3.  For the viscoelastic filling, 𝑐̃T = 430 m/s, 

𝛼̃T = 0.5 × 10
−3 s/m and 𝜌C = 970 kg/m3.  For the purposes of comparison, the two 



18 
 

dimensional SAFE predictions are generated using 1288 nodes in the copper substrate and 

3261 nodes in the viscoelastic filling, so that 𝑝1𝑥 = 𝑝1𝑦 = 𝑝1𝑧 = 4357 and the total degrees 

of freedom 𝑝1 = 13,071.  In Fig. 2 predictions are compared against those found by Marzani 

et al. [12] for the T(0,1) mode only, and it is seen that the current method delivers predictions 

that overlay those of Marzani et al.  This provides evidence that the two dimensional SAFE 

method is working correctly, at least for this problem.  Further validation was obtained by 

comparing predictions against the one dimensional model of Kirby et al. [22, 23] and similar 

levels of agreement for longitudinal modes were also observed (not shown here), provided of 

course that sufficient nodes were included in the two dimensional model. 
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Fig. 2.  Comparison between two dimensional SAFE predictions and those of Marzani et al 

[12] for T(0,1): ───, current SAFE model, ─ ─ ─, one dimensional SAFE model of Marzani 

et al; (a) energy velocity, (b) attenuation; (solutions overlay one another).  

 

3.2 Hybrid method for a coated pipe 

There are far fewer results in the literature for pipes containing discontinuities and so 

validation against existing predictions is much more difficult for the hybrid method.  The 

only suitable studies for coated pipes are the axisymmetric investigations of Kirby et al. [22, 

23], and so the three dimensional hybrid model is validated here by comparing predictions 

against a two dimensional model for an axisymmetric defect.  Accordingly, the square defect 

used by Kirby et al. [22, 23] is chosen, which is axisymmetric and uniform in the axial 

direction with a length of 15 mm, so that it cuts through the coating and penetrates 2.8 mm 

into the steel pipe substrate.  The inner radius of the steel pipe is 39 mm and the outer radius 

of pipe substrate is 44.65 mm, with a coating thickness of 1.5 mm.  The properties of the steel 

substrate are 𝑐Tp = 3260 m/s, 𝑐Lp = 5960 m/s, with a density 𝜌p = 8030 kg/m
3.  For the 

coating, 𝑐̃T =  750 m/s, 𝑐̃L = 1860 m/s, 𝛼̃T = 3.9 × 10−3 s/m and 𝛼̃L = 0.023 × 10−3 s/m, 

and 𝜌C = 1200  kg/m3.  At each frequency, the two dimensional SAFE predictions for this 
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problem are generated using 6680 nodes in the steel substrate and 3892 nodes in the 

viscoelastic coating, so that 𝑝1𝑥 = 𝑝1𝑦 = 𝑝1𝑧 = 9820 and 𝑝1 = 29, 460.  The hybrid model 

then uses 200 of those modes found in the SAFE solution, so that 𝑚1 = 200 and for the finite 

element mesh in region Ω2, 𝑝2 = 489, 228.  

 

In Figs. 3(a) and (b) the reflection coefficients for an axisymmetric defect are compared for 

excitation by T(0,1) and L(0,2) incident modes, respectively. The reflection coefficient used 

in these figures is the one defined in the article by Duan and Kirby [21].  It is seen in Figs. 

3(a) and (b) that the agreement between the two and three dimensional approach is very good, 

and agreement was achieved to an accuracy of at least two decimal places over the frequency 

range shown.  Of course, these two models should agree very well as they are solving the 

same problem, however the results in Fig. 3 illustrate that it is possible to implement a three 

dimensional model and deliver accurate predictions over a wide frequency range in a 

reasonable computational time.  
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Fig. 3. Reflection coefficients for (a) the T(0,1) mode and (b) the L(0,2) mode incident upon 

an axisymmetric defect: ───, current three dimensional model;  ─ ─ ─, two dimensional 

axisymmetric models of Kirby et al. [22, 23]; ▲, Experiment [22, 23]. 

 

4. FREQUENCY DOMAIN: RESULTS AND DISCUSSION 

The hybrid method reported in the previous sections is designed to allow a more detailed 

investigation into wave propagation in a coated pipe with a view to optimising the 

performance of commercial LRUT devices.  The most significant problem encountered in 

experimental testing is that the coating attenuates the incident and reflected signal and so one 

finds it difficult to detect defects that are a relatively long distance from the source of 

excitation.  However, it is not known if the coating significantly affects the way in which the 

waves are scattered by a defect, or how the coating affects the interpretation of the returning 

pulse in the time domain.  Accordingly, the following sections address these questions and 

attempt to guide LRUT in coated pipes towards a more optimal approach.  This is best 

achieved by first analysing the influence of the coating in the frequency domain, which is 
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then followed in the next section by an investigation in the time domain.  The frequency 

domain analysis that follows splits into two parts, the first examines the behaviour of the 

coated pipe eigenmodes, whereas the second part examines scattering from a defect.  In the 

example that follows the coated section of the pipe has the following properties (unless 

otherwise specified): the pipe substrate is made from steel and the coating is the same 

viscoelastic material as that described in section 3.2.  The inner radius of the pipe is 39 mm, 

the outer radius of the steel substrate is 44.65 mm, and a reference coating with a thickness of 

1.5 mm is chosen. 

 

4.1 Mode shapes for a coated pipe 

To gain an insight into the way in which each mode propagates in a coated pipe it is helpful 

to start by examining the shape of each eigenmode, and in particular the effect the coating has 

on each mode shape.  Accordingly, in Figs. 4 (a)-(c) the mode shape for a number of different 

modes is presented.  Note that only a finite number of least attenuated modes are analysed 

here so that those modes with high levels of attenuation over the frequency range of interest 

in LRUT (roughly 20 – 100 kHz) are neglected.  Moreover, in Fig. 4 these modes are grouped 

together according to their mode shape so that three different families of modes are presented.  

Thus, in Fig. 4(a) the family containing T(0,1), F(1,2), F(2,2) and F(3,2) is presented 

[hereafter referred to as the T(0,1) family]; Fig. 4(b) contains L(0,2), F(1,3), F(2,3) and F(3,3) 

[the L(0,2) family]; and Fig. 4(c) contains L(0,1), F(1,1), F(2,1) and F(3,1) [the L(0,1) 

family]. Note that at 70kHz, T(0,1) overlays F(1,2) and L(0,1) overlays F(1,1) in Fig.4. The 

modes shapes illustrated in Fig. 4 are important in understanding how each mode behaves 

when a coating is added.  This is most apparent with the large displacement drop seen within 

the coating for the circumferential eigenvector in Fig. 4(a).  This has important ramifications 
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for the use of torsional modes in LRUT because these modes require excitation in the 

circumferential direction. Furthermore, if one attaches a commercial LRUT device directly 

onto the outside of the coating and attempts to drive the T(0,1) family, then the device is 

likely to find it difficult to transfer significant levels of energy into this family of modes and 

so there will be only a limited range over which the technique will work.  Thus, if one insists 

on using the T(0,1) family to find defects in coated pipes one must at least remove the coating 

before attaching the test equipment. 

 

In Fig. 4(b) it is seen that for the L(0,2) family the displacement drop in the coating region is 

smaller than that seen for the T(0,1) family.  It is significant that this is observed also for 

L(0,2), which is normally the excitation mode of choice if one is using longitudinal modes, 

and this drop is not as severe as that seen for T(0,1).  Therefore, these figures illustrate that 

L(0,2) is likely to be a better choice for LRUT when compared to T(0,1), although the 

attenuation for the L(0,2) family is still significant and it appears prudent also to remove the 

coating when attempting to test sections of coated pipe.  It is interesting to note that in Fig. 

4(c) the L(0,1) family is actually the best choice for the study of coated pipes.  However, 

there are known to be practical difficulties when attempting to excite L(0,1), as it is harder to 

focus the energy into this mode when compared to L(0,2).  Moreover, in the frequency range 

of interest L(0,1) is also more dispersive than L(0,2) (see also Fig. 6(a) in section 4.3) and so 

it is not normally favoured.  Nevertheless, the results presented in Fig. 4 indicate that if these 

practical problems could be overcome, the L(0,1) family is the most attractive alternative for 

studying scattering from defects in coated pipes. 
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Fig. 4. Mode shapes for 3 inch schedule 40 coated pipe at 70 kHz. 

(a) ────, T(0,1); ────, F(1,2); – – –, F(2,2); ·······, F(3,2).  

(b) ────, L(0,2); ────, F(1,3); – – –, F(2,3); ·······, F(3,3). 

(c) ────, L(0,1); ────, F(1,1);  – – –, F(2,1); ·······, F(3,1). 

 

4.2 Attenuation in a coated pipe 

The influence of the coating on mode shape seen in Fig. 4 may also be observed in the 

relative attenuation of each mode, and this is shown in Figs. 5 (a)-(d) for coating thicknesses 

of 1.5 mm, 3 mm and 5 mm.  It can be seen in Fig. 5 that the attenuation of modes that sit 

within each family is similar to one another, especially as one moves away from the 

equivalent modal cut-on frequency for an uncoated pipe.  This similarity in attenuation is 

caused by the similarity in mode shape seen in Fig. 4.  It is interesting also to observe the 

effect of changing the coating thickness and here the T(0,1) family is seen to be especially 

sensitive to coating thickness at lower frequencies.  This behaviour indicates that the T(0,1) 

family is potentially more sensitive to changes in material properties in the low frequency 
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region, and this coincides with the frequency range where one may wish to attempt 

measurements on coated pipes (on the basis that one would expect lower levels of attenuation 

at lower frequencies).  Moreover, the sensitivity of T(0,1) is seen to be greater than that for  

L(0,2), which exhibits consistently lower levels of attenuation, especially at low frequencies.  

This provides further evidence to support the use of longitudinal modes in LRUT on coated 

pipes. 
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Fig. 5. Attenuation in pipe coated with viscoelastic bitumen. ───, 1.5mm coating thickness; 

─ ─ ─, 3mm coating thickness; ······, 5mm coating thickness. 

4.3 Energy velocity in coated pipes 

The relative attenuation of each mode is clearly very important when choosing the optimum 

strategy for LRUT in coated pipes.  Another important quantity is the energy velocity of the 

wave as it travels along the pipe.  The energy velocity is used extensively in uncoated pipes, 

where it is known as the group velocity.  Energy velocity is used in the time domain to aid in 

separating different modes, as it enables one to calculate the time of flight of the propagating 

mode of interest.  The energy velocity is defined in Eq. (8), and in Fig. 6 the energy velocity 

with and without a coating is compared for the three modal families.  To further investigate 

the effects of a coating, the energy velocity is also plotted for three different coating 

thicknesses, and here it is evident that the energy velocity of each mode remains largely 

unaffected by the presence of the coating, at least over the frequency range covered here.  

This demonstrates that the action of the coating is largely restricted to damping the energy 
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carried by the wave and that it does not add significant levels of mass or stiffness to the 

system.  Furthermore, one may see that T(0,1) and L(0,2) retain their non-dispersive 

characteristics over the frequency range of interest here, and so one may conclude that for 

LRUT the time of flight techniques used to separate modes in uncoated pipes are applicable 

also to coated pipes.  Of course, the time domain response seen for a coated pipe will be 

different because of modal attenuation, and this is investigated in the next section. 
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Fig. 6.  Comparison between energy velocities for an uncoated and coated pipe. ───, 

uncoated pipe; ───, 1.5mm coating thickness; ─ ─ ─, 3mm coating thickness; ······, 5mm 

coating thickness.  

 

 

4.4 Scattering from a non-axisymmetric defect 

The analysis undertaken so far investigates the influence of the coating on the properties of 

individual modes.  This includes the mode shape and wavenumber, so that if one returns to 

Eqs. (13) and (14) this relates to the eigenvector 𝑢1, and the eigenvalue 𝛾.  However, this 

article is also interested in the effect of the coating on the way in which a wave scatters from 

a defect.  In terms of Eqs. (13) and (14) this translates into the effect of the coating on the 

modal amplitudes 𝐴, 𝐵 and 𝐶.  To do this, the scattering from a non-axisymmetric defect is 

investigated, as this is more representative of actual defects found in the field when compared, 

say, to the axisymmetric defects studied by Kirby et al. [22, 23].  To investigate the influence 
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of the coating on the way in which a defect scatters the incident wave, scattering from a non-

axisymmetric defect is studied here by comparing reflection coefficients obtained with and 

without a coating at a location immediately adjacent to the start of the defect.  This choice of 

location is convenient because it avoids the additional attenuation imparted by the coating as 

one moves away from the defect, and so isolates the effect of the coating on the modal 

amplitudes.  For this problem the properties of the coating and the substrate are the same as 

those described at the start of this section; the non-axisymmetric defect then extends 10% 

around the circumferential direction of the pipe, penetrates the coating and goes 50% into the 

pipe wall (2.8mm), and has a length of 2.5mm. The area ratio of the defect (cross-sectional 

area of the defect compared to cross-sectional area of the pipe without coating) is 

approximately 5%.  

 

Figures 7 (a) and (b) show the reflection coefficients for the T(0,1) and L(0,2) family of 

modes with excitation from T(0,1) and L(0,2) modes, respectively.  The reflection 

coefficients of flexural modes are calculated using the maximum displacement values around 

the circumference of the pipe.  In Figures 8 (a) and (b) a similar comparison is also made but 

this time for a different defect, which has the same length and depth as the defect in Fig. 7, 

but in Fig. 8 the defect extends around 50% of the pipe circumference. The area ratio of the 

defect shown in Fig. 8 is therefore 25%. It is clear in both figures that the reflection 

coefficients with and without a coating are very similar, and this means that the modal 

amplitudes are very similar as well.  Thus, the coating does not affect the way in which the 

wave is scattered by the defect, apart from the additional change in geometry caused by the 

thickness of the coating itself.  That is, there is no additional mode conversion taking place 

because of the presence of the coating, and the influence of the coating is restricted to the 

attenuation of energy as the wave propagates down the pipe.  This is an important result as it 
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means that when undertaking experimental measurements one need only account for the 

effect of the coating on modal attenuation, without the need to consider additional 

complexities such a change in mode conversion and/or energy velocity.  Thus, one does not 

need to model a three dimensional coated pipe if the coating is relatively thin, instead it is 

necessary only to model an uncoated pipe and simply to factor in modal attenuation after 

undertaking a SAFE solution for a coated pipe. 

 

It is also observed in Figs. 7 and 8 that the reflection coefficient for flexural modes is stronger 

than for the equivalent T(0,1) or L(0,2) mode. However, it should be remembered that 

flexural modes are normally more dispersive than axisymmetric modes (see Figs. 5 and 6) 

and so in the time domain their modal amplitude will be reduced by dispersion as they 

propagate along the pipe, which means that the reflection coefficient for flexural modes is 

likely to be significantly reduced at locations well away from the defect. Note also that the 

sharp spikes seen in Figs. 7 and 8 are caused by modal cut-on in the uncoated pipe; the 

additional damping provided by the coating is seen to reduce the amplitude of these peaks 

and in experiments one may expect to see this amplitude reduced still further by additional 

damping in the steel substrate that is not accounted for in this model.  Figs. 7 and 8 also 

illustrate how a change in shape of this type of defect significantly alters the energy 

distribution among flexural modes.  
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Fig. 7. Reflection coefficients for (a) the T(0,1) mode and (b) the L(0,2) mode incident upon 

a 5% area ratio non-axisymmetric defect: ───, coated pipe;  ─ ─ ─, uncoated pipe. 
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Fig. 8. Reflection coefficients for (a) the T(0,1) mode and (b) the L(0,2) mode incident upon 

a 25% area ratio non-axisymmetric defect: ───, coated pipe;  ─ ─ ─, uncoated pipe.  
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5. TIME DOMAIN: RESULTS AND DISCUSSION 

 

The previous section investigated wave propagation in the frequency domain; however, 

LRUT is normally undertaken in the time domain because this is a convenient way to analyse 

scattering from a defect.  Operating in the time domain does, however, mean that the user is 

faced with the task of interpreting a complex signal and understanding these signals is often a 

significant challenge.  To investigate the interpretation of these signals it is important to 

generate predictions in the time domain, and here we will follow the method of Duan and 

Kirby [21].  Moreover, time domain predictions have yet to appear for coated pipes and so in 

view of the practical importance of time domain signatures this article also shows how time 

domain predictions may be generated and reviews the way in which the coating is likely to 

influence the interpretation of time domain data. 

 

Time domain predictions are generated here using an incident pulse consisting of a 10 cycle 

Hanning windowed sinusoidal wave with a centre frequency of 70 kHz.  This pulse is then 

transformed into the frequency domain using a discretised Fourier transform with 1836 

discrete frequencies extending from 35 kHz to 105 kHz in increments of 38.15 Hz.  The 

complex amplitude obtained for the pulse at each frequency is then used as the incident 

modal amplitude in Eq. (15).  Following the solution of Eq. (15) at each discrete frequency, 

an inverse Fourier transform is used to generate the time domain predictions.  The number of 

discrete frequencies chosen, as well as the size of these frequency increments, are designed to 

minimise numerical noise whilst at the same time maintaining an acceptable solution time. 



37 
 

The sample problem investigated in this section is based on the non-axisymmetric scattering 

problem studied in the previous section.  Thus, the defect extends around 20% of the 

circumference and penetrates through the steel substrate and has a length of 2.5 mm.  All 

other parameters for the pipe and the coating remain the same as those detailed at the start of 

section 3.2.  Analysing scattering from a defect in the time domain is complicated by modes 

traveling at similar energy velocities so that they overlap one another.  Therefore, in order to 

separate out modes in the figures that follow, the scattered signal is calculated at a distance of 

5 m from the defect and at two separate circumferential locations, 𝑥 = 𝑅, 𝑦 = 0 and 𝑥 =

0, 𝑦 = 𝑅, where 𝑅 is the outer radius of the uncoated pipe. Note that 𝑦 = 𝑅 is directly 

opposite to the defect, see Fig. 1. These two circumferential locations are also referred to as 

‘𝑥 direction’ and ‘𝑦 direction’ in Figs. 6 and 7 of Ref. [21]. Accordingly, in Fig. 9 the 

predicted displacement at 𝑥 = 𝑅 and 𝑦 = 𝑅 is shown for scattering by the non-axisymmetric 

defect in a coated and uncoated pipe at a distance of 5 m from the defect. The defect is 

excited using T(0,1) and so only the circumferential displacement is shown in Fig. 9.  In this 

figure, the amplitude of the reflected pulse is seen to significantly reduce following the 

addition of the coating, which is what one would expect to see following the analysis in the 

previous section.  Of course, the size of this reduction is largely dictated by the effective 

distance between source and receiver, which in this case is 10 m.  However, it is noted that 

the results in the previous section indicate that no additional mode conversion takes place 

because of the presence of the coating and so one may infer that the drop in amplitude seen in 

Fig. 9 is solely caused by modal attenuation.  For example, in this problem the attenuation of 

T(0,1) at 70 kHz is 3.44 dB/m, which gives a sound power reduction of 34.4 dB over 10 m.  

If one reads the attenuation directly from Fig. 9 then the value obtained for T(0,1) is 32.3 dB.  

Thus the two figures are close enough to one another to support previous observations 

regarding the influence of the coating on mode conversion, with the small difference seen 
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here likely to be caused by truncation and discretisation errors in the discrete Fourier 

transform. 
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Fig. 9. Predicted circumferential displacement for the T(0,1) mode incident upon a non-

axisymmetric defect. (a) x = R; (b) y = R, coated; (c) x = R; (d) y = R, uncoated. 
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It is well known that problems are found when attempting to detect defects in coated pipes, 

and these problems are clearly evident in Fig. 9.  Whilst the dispersive behaviour of each 

mode changes very little after adding the coating, at least within this frequency range, the 

amplitude of each mode reduces significantly and this is why the use of T(0,1) on coated 

pipes is likely to be very difficult.  However, it was shown in the previous section that L(0,2) 

may be more useful and so in Fig. 10 the equivalent response of a pipe excited by L(0,2) is 

shown.  Again, the amplitude of each mode is seen to reduce following the addition of the 

coating, although it is noticeable that this also means that the noisy “tail” is also damped 

down.  Clearly, the reflected amplitude of the L(0,2) family is higher than that seen for T(0,1), 

and here the attenuation of L(0,2) is now 17.2 dB when compared to 32.3 dB for T(0,1).  This 

difference in amplitude is significant in the context of real experimental measurements, 

although the figures seen here are of course relevant only to this type of problem.  Obviously, 

if one changes the type of defect, the coating and/or the distance between the defect and the 

receiver then these figures will change, however the results obtained in the previous section 

illustrate that the properties of the L(0,2) mode should normally deliver lower levels of 

attenuation, at least over the frequency range typically associated with LRUT. 
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Fig. 10. Predicted axial displacement for the L(0,2) mode incident upon a non-axisymmetric 

defect. (a) x = R; (b) y = R, coated; (c) x = R; (d) y = R, uncoated. 
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have been in situ for a number of years.  It is likely, therefore, that additional levels of 

complexity are caused by an increase in noise that arises from the coating itself.  For example, 

it is possible that over time most coatings in real applications will start to degrade, so that 

small inhomogeneities appear, as well as delamination and/or de-bonding from the pipe.  

These imperfections will impart additional levels of attenuation, as well as introduce 

additional scattering.  Thus, it is these imperfections that are likely to be the cause of 

additional problems with LRUT in coated pipes and not issues such as mode conversion or 

additional dispersion.  Accordingly, it remains to be seen how the suggested improvements 

identified in this article are affected by imperfections within the coating of real pipe systems. 

 

6. CONCLUSIONS 

This article has used a hybrid SAFE-finite element based method to analyse the scattering of 

guided waves from non-axisymmetric defects in coated pipes.  It is shown that predictions in 

the time and frequency domain can be generated for an infinite pipe using relatively modest 

computational facilities.  The predictions obtained from this model indicate that the torsional 

[T(0,1)] family of modes have high levels of attenuation for the frequency range normally 

used in LRUT (20 -120 kHz); moreover, the levels of attenuation for torsional modes are very 

sensitive to the thickness of the coating in the low frequency region.  The longitudinal family 

of modes [L(0,2)] are seen to have lower levels of attenuation and so it is observed that for 

the viscoelastic coating studied here the longitudinal family of modes will have a longer 

range when compared to torsional modes. It is also observed that the energy velocity for each 

mode is very similar to the group velocity of the equivalent mode for an uncoated pipe.  This 

means that the coating does not introduce additional levels of dispersion beyond what is 
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normally observed for uncoated pipes, at least over the typical frequency range used in LRUT.  

This is an important result when attempting to interpret signals obtained in the time domain. 

 

The frequency and time domain predictions generated for a non-axisymmetric defect 

demonstrate that scattering from the defect remains largely unaffected by the presence of the 

coating.  In other words, there is no additional mode conversion occurring in the pipe because 

of the presence of the coating, and the only effect a coating has on scattering is caused by the 

small change in the geometry of the defect, which may be neglected for most coatings.  Thus, 

it appears reasonable to conclude that the only significant effect that needs to be considered is 

the attenuation the coating imparts on each mode.  Therefore, if one wishes to model the 

effect of a viscoelastic material on scattering from a defect in a pipe or other structure then 

provided the thickness of the material is small compared to the thickness of the substrate, it is 

sufficient to model only the uncoated structure and to account for the influence of the 

viscoelastic material through modal attenuation, which may readily be found using the SAFE 

method.  Furthermore, when undertaking experimental measurements the methods currently 

used in LRUT may also be retained, such as the interpretation of the returning signal using 

group velocity data, and it is necessary only to correct for the attenuation of each mode when 

reviewing echoes from a defect in the time domain.  

 

The theoretical method developed here is designed to take advantage of the long slender 

structures found in pipelines.  This has enabled numerical predictions to be generated 

efficiently in the frequency and the time domain using relatively modest computer facilities.  

However, in the future it may be interesting to investigate whether the computational 

efficiency of this method may be increased through the introduction of higher order elements 
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such as those described by Ostachowicz el al. [17] and/or through additional optimisation of 

the finite element mesh. 
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APPENDIX 1 

𝐏p,c  =

[
 
 
 
 
 
 
 
 𝟎 𝟎 𝟎 𝐙41p,c

T 𝐙51p,c
T 𝟎

𝟎 𝟎 𝟎 𝐙51p,c 𝐙52p,c
T 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐙63p,c
T

𝐙41p,c 𝐙51p,c
T 𝟎 𝟎 𝟎 𝐙64p,c

T

𝐙51p,c 𝐙52p,c 𝟎 𝟎 𝟎 𝐙65p,c
T

𝟎 𝟎 𝐙63p,c 𝐙64p,c 𝐙65p,c 𝟎 ]
 
 
 
 
 
 
 
 

 (A1) 

𝐒p,c  =

[
 
 
 
 
 
 
 𝐙41p,c
T 𝐙51p,c

T 0 0 0 0

𝐙51p,c 𝐙52p,c
T 0 0 0 0

0 0 𝐙63p,c
T 0 0 0

0 0 0 𝐙44p,c 0 0

0 0 0 0 𝐙44p,c 0

0 0 0 0 0 𝐙66p,c]
 
 
 
 
 
 
 

 (A2) 

 

𝐙41p,c = 𝜌p,c[(𝑐Lp,c
2 − 𝑐Tp,c

2 )𝐊xp,c + 𝑐Tp,c
2 𝐊1p,c − 𝜔

2𝐊2p,c] (A3) 

𝐙51p,c = 𝜌p,c[(𝑐Lp,c
2 − 2𝑐Tp,c

2 )𝐊xyp,c
T + 𝑐Tp,c

2 𝐊xyp,c] (A4) 

𝐙52p,c = 𝜌p,c[(𝑐Lp,c
2 − 𝑐Tp,c

2 )𝐊yp,c + 𝑐Tp,c
2 𝐊1p,c − 𝜔

2𝐊2p,c] (A5) 

𝐙63p,c = −𝜌p,c(𝑐Tp,c
2 𝐊1p,c − 𝜔

2𝐊2p,c) (A6) 

𝐙64p,c = 𝜌p,c𝑖𝑘[−(𝑐Lp,c
2 − 2𝑐Tp,c

2 )𝐊𝟑p,c + 𝑐Tp,c
2 𝐊𝟑p,c

T ] (A7) 

𝐙65p,c = 𝜌p,c𝑖𝑘[−(𝑐Lp,c
2 − 2𝑐Tp,c

2 )𝐊4p,c + 𝑐Tp,c
2 𝐊4p,c

T ] (A8) 

𝐙44p,c = −𝜌p,c𝑐Tp,c
2 𝑘2𝐊2p,c (A9) 

𝐙66p,c = 𝜌p,c𝑐Lp,c
2 𝑘2𝐊2p,c (A10) 

𝐊1p,c = ∫ ∇𝐍T∇𝐍
Γ1p,c

𝑑Γ1p,c     and     𝐊2p,c = ∫ 𝐍T𝐍
Γ1p,c

𝑑Γ1p,c (A11a,b) 

𝐊3p,c = ∫ 𝐍T
𝜕𝐍

𝜕𝑥Γ1p,c

𝑑Γ1p,c     and     𝐊4p,c = ∫ 𝐍T
𝝏𝐍

𝝏𝑦Γ1p,c

𝑑Γ1p,c  (A12a,b) 
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𝜕𝐍T

𝜕𝑥

𝜕𝐍

𝜕𝑥Γ1p,c

𝑑Γ1p,c     and     𝐊yp,c = ∫
𝜕𝐍T

𝜕𝑦

𝜕𝐍

𝜕𝑦Γ1p,c

𝑑Γ1p,c (A13a,b) 
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𝐊xyp,c = ∫
𝜕𝐍T

𝜕𝑥

𝜕𝐍

𝜕𝑦Γ1p,c

𝑑Γ1p,c (A14) 

 

 

APPENDIX 2 

 

𝐆11± = 𝐌1𝑥± +𝐌1𝑧𝑥𝑥± +𝐌1y± +𝐌1𝑧𝑦𝑦± +𝐌1𝑧± +𝐌1𝑥𝑥𝑧± +𝐌1𝑦𝑦𝑧± (A15) 

𝐆21 = 𝐐1𝑥− + 𝐐1𝑧𝑥− (A16) 

𝐆31 = 𝐐1𝑦− + 𝐐1𝑧𝑦− (A17) 

𝐆41± = 𝐐1𝑥𝑥± +𝐐1𝑦𝑦± ∓ 𝐐1𝑧± (A18) 

𝐆22 = 𝐑𝑥 +𝐑1 − 𝐑2 (A19) 

𝐆32 = 𝐑𝑥𝑦1
T + 𝐑𝑥𝑦2 (A20) 

𝐆42 = 𝐑𝑥𝑧1
T + 𝐑𝑥𝑧2 (A21) 

𝐆33 = 𝐑y + 𝐑1 −𝐑2 (A22) 

𝐆43 = 𝐑𝑦𝑧1
T + 𝐑𝑦𝑧2 (A23) 

𝐆44 = 𝐑𝑧 + 𝐑1 − 𝐑2 (A24) 

𝐆25 = 𝐐3𝑥+ − 𝐐3𝑧𝑥+ (A25) 

𝐆35 = 𝐐3𝑦+ − 𝐐3𝑧𝑦+ (A26) 

𝐆45 = −𝐐3𝑥𝑥+ − 𝐐3𝑦𝑦+ + 𝐐3z𝜏+ (A27) 

𝐆55 = −𝐌3𝑥+ +𝐌3𝑧𝑥𝑥+ −𝐌3𝑦+ +𝐌3𝑧𝑦𝑦+ −𝐌3𝑧+ +𝐌3𝑥𝑥𝑧+ +𝐌3𝑦𝑦𝑧+ (A28) 
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𝜕𝑥Ω2p
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𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑥Ω2c

𝑑Ω2c       
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     𝐑𝑦 = 𝜌p(𝑐Lp
2 − 𝑐Tp
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𝜕𝑦
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𝜕𝑦Ω2c
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𝜕𝐖
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𝑑Ω2c  

(A31) 
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𝜕𝑦Ω2p

𝑑Ω2p + 𝜌c𝑐Tc
2 ∫

𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑦Ω2c

𝑑Ω2c  (A32) 

𝐑𝑥𝑧1 = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑧Ω2p

𝑑Ω2p

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑧Ω2c

𝑑Ω2c     

(A33) 

𝐑𝑥𝑧2 = 𝜌p𝑐Tp
2 ∫

𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑧Ω2p

𝑑Ω2p + 𝜌c𝑐Tc
2 ∫

𝜕𝐖𝐓

𝜕𝑥

𝜕𝐖

𝜕𝑧Ω2c

𝑑Ω2c (A34) 

𝐑𝑦𝑧1 = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝐖𝐓

𝜕𝑦

𝜕𝐖

𝜕𝑧Ω2p

𝑑Ω2p

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝐖𝐓

𝜕𝑦

𝜕𝐖

𝜕𝑧Ω2c

𝑑Ω2c 

(A35) 

𝐑𝑦𝑧2 = 𝜌p𝑐Tp
2 ∫

𝜕𝐖𝐓

𝜕𝑦

𝜕𝐖

𝜕𝑧Ω2p

𝑑Ω2p + 𝜌c𝑐Tc
2 ∫

𝜕𝐖𝐓

𝜕𝑦

𝜕𝐖

𝜕𝑧Ω2c

𝑑Ω2c     (A36) 

𝐑𝑧 = 𝜌p(𝑐Lp
2 − 𝑐Tp

2 )∫
𝜕𝐖𝐓

𝜕𝑧

𝜕𝐖

𝜕𝑧Ω2p

𝑑Ω2p

+ 𝜌c(𝑐Lc
2 − 𝑐Tc

2 )∫
𝜕𝐖𝐓

𝜕𝑧

𝜕𝐖

𝜕𝑧Ω2c

𝑑Ω2c  

(A37) 

𝐑1 = 𝜌p𝑐Tp
2 ∫ ∇𝐖𝐓∇𝐖

Ω2p

𝑑Ω2p + 𝜌c𝑐Tc
2 ∫ ∇𝐖𝐓∇𝐖

Ω2c

𝑑Ω2c  (A38) 

  𝐑2 = 𝜌p𝜔
2∫ 𝐖𝐓

Ω2p

𝐖𝑑Ω2p + 𝜌c𝜔
2∫ 𝐖𝐓

Ω2c

𝐖𝑑Ω2c (A39) 

𝐐1𝑥± = 𝑖𝑘𝛾𝑛𝜌𝑝𝑐T𝑝
2 ∫ 𝐖T𝑢1𝑥±

𝑛 𝑑ΓAp
ΓAp

+ 𝑖𝑘𝛾𝑛𝜌𝑐𝑐T𝑐
2 ∫ 𝐖T𝑢1𝑥±

𝑛 𝑑ΓAc
ΓAc

   

𝑛 = 1,2…𝑚1 

(A40) 
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𝐐1𝑧𝑥± = 𝜌𝑝𝑐T𝑝
2 ∫ 𝐖T

𝜕𝑢1𝑧±
𝑛

𝜕𝑥
𝑑ΓAp + 𝜌𝑐𝑐T𝑐

2 ∫ 𝐖T
𝜕𝑢1𝑧±

𝑛

𝜕𝑥
𝑑ΓAc

ΓAcΓAp

   

𝑛 = 1,2…𝑚1 

(A41) 

𝐐3𝑥+ = 𝑖𝑘𝛾
𝑛𝜌𝑝𝑐T𝑝

2 ∫ 𝐖Tu1𝑥+
𝑛 𝑑ΓBp

ΓBp

+ 𝑖𝑘𝛾𝑛𝜌𝑐𝑐T𝑐
2 ∫ 𝐖Tu1𝑥+

𝑛 𝑑ΓBc
ΓBc

   

𝑛 = 1,2…𝑚1 

(A42) 

𝐐3𝑧𝑥+ = 𝜌𝑝𝑐T𝑝
2 ∫ 𝐖T

𝜕u1𝑧+
𝑛

𝜕𝑥
𝑑ΓBp

ΓBp

+ 𝜌𝑐𝑐T𝑐
2 ∫ 𝐖T

𝜕u1𝑧+
𝑛

𝜕𝑥
𝑑ΓBc

ΓBc

 

  𝑛 = 1,2…𝑚1 

(A43) 

𝐐1𝑦± = 𝑖𝑘𝛾
𝑛𝜌𝑝𝑐T𝑝

2 ∫ 𝐖T𝑢1𝑦±
𝑛 𝑑ΓAp

ΓAp

+ 𝑖𝑘𝛾𝑛𝜌𝑐𝑐T𝑐
2 ∫ 𝐖T𝑢1𝑦±

𝑛 𝑑ΓAc
ΓAc

   

𝑛 = 1,2…𝑚1 

(A44) 

𝐐1𝑧𝑦± = 𝜌𝑝𝑐T𝑝
2 ∫ 𝐖T

𝜕𝑢1𝑧±
𝑛

𝜕𝑦
𝑑ΓAp + 𝜌𝑐𝑐T𝑐

2 ∫ 𝐖T
𝜕𝑢1𝑧±

𝑛

𝜕𝑦
𝑑ΓAc

ΓAcΓAp

 

  𝑛 = 1,2…𝑚1 

(A45) 

𝐐3𝑦+ = 𝑖𝑘𝛾
𝑛𝜌𝑝𝑐T𝑝

2 ∫ 𝐖T𝑢1𝑦+
𝑛 𝑑ΓBp

ΓBp

+ 𝑖𝑘𝛾𝑛𝜌𝑐𝑐T𝑐
2 ∫ 𝐖T𝑢1𝑦+

𝑛 𝑑ΓBc
ΓBc

   

𝑛 = 1,2…𝑚1 

(A46) 

𝐐3𝑧𝑦+ = 𝜌𝑝𝑐T𝑝
2 ∫ 𝐖T

𝜕u1𝑧+
𝑛

𝜕𝑦
𝑑ΓBp

ΓBp

+ 𝜌𝑐𝑐T𝑐
2 ∫ 𝐖T

𝜕u1𝑧+
𝑛

𝜕𝑦
𝑑ΓBc

ΓBc

   

𝑛 = 1,2…𝑚1 

(A47) 

𝐐1𝑧± = 𝑖𝑘𝛾𝑛𝜌p𝑐Lp
2 ∫ 𝐖T𝑢1𝑧±

𝑛 𝑑ΓAp
ΓAp

+ 𝑖𝑘𝛾𝑛𝜌c𝑐Lc
2 ∫ 𝐖T𝑢1𝑧±

𝑛 𝑑ΓAc
ΓAc

   

𝑛 = 1,2…𝑚1 

(A48) 

𝐐1𝑥𝑥± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫ 𝐖T
𝜕𝑢1𝑥±

𝑛

𝜕𝑥
𝑑ΓAp

ΓAp

+ 𝜌
c
(𝑐Lc
2 − 2𝑐Tc

2 )∫ 𝐖T
𝜕𝑢1𝑥±

𝑛

𝜕𝑥
𝑑ΓAc

ΓAc

  𝑛 = 1,2…𝑚1 

(A49) 

𝐐1𝑦𝑦± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫ 𝐖T
𝜕𝑢1𝑦±

𝑛

𝜕𝑦
𝑑ΓAp

ΓAp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫ 𝐖T
𝜕𝑢1𝑦±

𝑛

𝜕𝑦
𝑑ΓAc

ΓAc

  𝑛 = 1,2…𝑚1 

(A50) 
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𝐐3𝑧+ = 𝑖𝑘𝛾
𝑛𝜌

p
𝑐Lp
2 ∫ 𝐖Tu1𝑧+

𝑛 𝑑ΓBp
ΓBp

+ 𝑖𝑘𝛾𝑛𝜌
c
𝑐Lc
2 ∫ 𝐖Tu1𝑧+

𝑛 𝑑ΓBc
ΓBc

   

𝑛 = 1,2…𝑚1 

(A51) 

𝐐3𝑥𝑥+ = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫ 𝐖T
𝜕u1𝑥+

𝑛

𝜕𝑥
𝑑ΓBp

ΓBp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫ 𝐖T
𝜕u1𝑥+

𝑛

𝜕𝑥
𝑑ΓBc

ΓBc

  𝑛 = 1,2…𝑚1 

(A52) 

𝐐3𝑦𝑦+ = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫ 𝐖T
𝜕u1𝑦+

𝑛

𝜕𝑦
𝑑ΓBp

ΓBp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫ 𝐖T
𝜕u1𝑦+

𝑛

𝜕𝑦
𝑑ΓBc

ΓBc

  𝑛 = 1,2…𝑚1 

(A53) 

𝐌1𝑥± = 𝑖𝑘𝛾
𝑚𝜌𝑝𝑐T𝑝

2 ∫ 𝑢1𝑥−
𝑚 𝑢1𝑥±

𝑛 𝑑ΓAp
ΓAp

+ 𝑖𝑘𝛾𝑚𝜌𝑐𝑐T𝑐
2 ∫ 𝑢1𝑥−

𝑚 𝑢1𝑥±
𝑛 𝑑ΓAc

ΓAc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A54) 

𝐌1𝑦± = 𝑖𝑘𝛾𝑚𝜌𝑝𝑐T𝑝
2 ∫ 𝑢1𝑦−

𝑚 𝑢1𝑦±
𝑛 𝑑ΓAp

ΓAp

+ 𝑖𝑘𝛾𝑚𝜌𝑐𝑐T𝑐
2 ∫ 𝑢1𝑦−

𝑚 𝑢1𝑦±
𝑛 𝑑ΓAc

ΓAc

  

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A55) 

𝐌1𝑧± = 𝑖𝑘𝛾
𝑚𝜌𝑝𝑐L𝑝

2 ∫ 𝑢1𝑧−
𝑚 𝑢1𝑧±

𝑛 𝑑ΓAp
ΓAp

+ 𝑖𝑘𝛾𝑚𝜌𝑐𝑐L𝑐
2 ∫ 𝑢1𝑧−

𝑚 𝑢1𝑧±
𝑛 𝑑ΓAc

ΓAc

  

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A56) 

𝐌1𝑧𝑥𝑥± = 𝜌𝑝𝑐T𝑝
2 ∫

𝜕𝑢1𝑧−
𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓAp

ΓAp

+ 𝜌𝑐𝑐T𝑐
2 ∫

𝜕𝑢1𝑧−
𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓAc

ΓAc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A57) 

𝐌1𝑧𝑦𝑦± = 𝜌𝑝𝑐T𝑝
2 ∫

𝜕𝑢1𝑧−
𝑚

𝜕𝑦
𝑢1𝑦±
𝑛 𝑑ΓAp

ΓAp

+ 𝜌𝑐𝑐T𝑐
2 ∫

𝜕𝑢1𝑧−
𝑚

𝜕𝑦
𝑢1𝑦±
𝑛 𝑑ΓAc

ΓAc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A58) 

𝐌1𝑥𝑥𝑧± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝑢1𝑥−

𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓAp

ΓAp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝑢1𝑥−

𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓAc

ΓAc

  

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A59) 
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𝐌1𝑦𝑦𝑧± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝑢1𝑦−

𝑚

𝜕𝑦
𝑢1𝑧±
𝑛 𝑑ΓAp

ΓAp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝑢1𝑦−

𝑚

𝜕𝑦
𝑢1𝑧±
𝑛 𝑑ΓAc

ΓAc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A60) 

𝐌3𝑥± = 𝑖𝑘𝛾
𝑚𝜌p𝑐Tp

2 ∫ 𝑢1𝑥+
𝑚 𝑢1𝑥±

𝑛 𝑑ΓBp
ΓBp

+ 𝑖𝑘𝛾𝑚𝜌c𝑐Tc
2 ∫ 𝑢1𝑥+

𝑚 𝑢1𝑥±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A61) 

𝐌3𝑦± = 𝑖𝑘𝛾
𝑚𝜌p𝑐Tp

2 ∫ 𝑢1𝑦+
𝑚 𝑢1𝑦±

𝑛 𝑑ΓBp
ΓBp

+ 𝑖𝑘𝛾𝑚𝜌c𝑐Tc
2 ∫ 𝑢1𝑦+

𝑚 𝑢1𝑦±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A62) 

𝐌3𝑧± = 𝑖𝑘𝛾
𝑚𝜌p𝑐Lp

2 ∫ 𝑢1𝑧+
𝑚 𝑢1𝑧±

𝑛 𝑑ΓBp
ΓBp

+ 𝑖𝑘𝛾𝑚𝜌c𝑐Lc
2 ∫ 𝑢1𝑧+

𝑚 𝑢1𝑧±
𝑛 𝑑ΓBc

ΓBc

  

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A63) 

𝐌3𝑧𝑥𝑥± = 𝜌p𝑐Tp
2 ∫

𝜕𝑢1𝑧+
𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓBp

ΓBp

+ 𝜌c𝑐Tc
2 ∫

𝜕𝑢1𝑧+
𝑚

𝜕𝑥
𝑢1𝑥±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A64) 

𝐌3𝑧𝑦𝑦± = 𝜌p𝑐Tp
2 ∫

𝜕𝑢1𝑧+
𝑚

𝜕𝑦
𝑢1𝑦±
𝑛 𝑑ΓBp

ΓBp

+ 𝜌c𝑐Tc
2 ∫

𝜕𝑢1𝑧+
𝑚

𝜕𝑦
𝑢1𝑦±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A65) 

𝐌3𝑥𝑥𝑧± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝑢1𝑥+

𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓBp

ΓBp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝑢1𝑥+

𝑚

𝜕𝑥
𝑢1𝑧±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A66) 

𝐌3𝑦𝑦𝑧± = 𝜌p(𝑐Lp
2 − 2𝑐Tp

2 )∫
𝜕𝑢1𝑦+

𝑚

𝜕𝑦
𝑢1𝑧±
𝑛 𝑑ΓBp

ΓBp

+ 𝜌c(𝑐Lc
2 − 2𝑐Tc

2 )∫
𝜕𝑢1𝑦+

𝑚

𝜕𝑦
𝑢1𝑧±
𝑛 𝑑ΓBc

ΓBc

   

(𝑚 = 0,1,⋯ ,𝑚1; 𝑛 = 0,1,⋯ ,𝑚1) 

(A67) 
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