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ABSTRACT 

 

Dissipative splitter silencers are often used to reduce the noise emitted in ventilation and gas 

turbine systems.  It is well known that the acoustic performance of a splitter silencer changes 

under the influence of the convective effects of a mean gas flow and so in this article a theoretical 

model is developed to include the effects of mean flow.  The theoretical model is based on a 

hybrid finite element method which enables the inclusion of bull nose fairings and a perforated 

screen separating the mean gas flow from a bulk reacting porous material.  Predictions are 

compared against experimental measurements obtained both with and without mean flow.  Good 

agreement between prediction and measurement is generally observed in the absence of mean 

flow, although it is seen that for silencers with a low percentage open area the silencer insertion 

loss is over predicted at higher frequencies.  When mean flow is present, problems with the 

experimental methodology are observed at relatively modest mean flow velocities, and so 

comparison between prediction and experiment is limited to relatively low face velocities.  

However, experiment and theory both show that the insertion loss reduces at low frequencies 

when mean flow is in the direction of sound propagation, and at high frequencies the influence of 

mean flow is generally much smaller.  Following additional theoretical investigations it is 

concluded that the influence of mean flow on splitter silencer performance should be accounted 

for at low frequencies when silencer airway velocities are greater than about 20 m/s; however, at 

higher frequencies one may generally neglect the effect of mean flow, even at higher velocities.  

Predictions obtained using the hybrid method are also compared to a simplified point collocation 

approach and it is demonstrated that the computationally efficient point collocation method may 

be used to investigate the effects of mean flow in a splitter silencer without loss of accuracy.  
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1.  INTRODUCTION 

 

It is common for dissipative silencers to be used to attenuate sound radiated by fans or gas 

turbines.  It is well known that the mean gas velocity imparts a convective effect on the sound 

propagation and for dissipative silencers this may significantly affect silencer performance.  

Integrating the effects of a mean flow field into a mathematical model suitable for predicting the 

acoustic performance of splitter silencers does, however, present a significant challenge.  This is 

largely because of the size and complexity of a typical commercial dissipative silencer, as well as 

the complex nature of the interaction between the noise source and the (bulk reacting) absorbing 

material.  In view of this very few articles in the literature add the effects of mean flow when 

analysing splitter silencer performance.  Moreover, these articles are limited solely to examining 

the influence of mean flow on modal attenuation so that the effect of mean flow on the scattering 

of sound from the inlet/outlet planes of a splitter silencer has yet to be reported in the literature.  

This omission is, perhaps, not surprising given that a “bull-nose” fairing is normally added at 

either end of a silencer specifically to smooth out the mean gas flow.  Therefore, in order to be 

consistent when including the effects of mean flow one should also incorporate the influence of 

the bull-nose fairing on the scattering of sound at either end of the silencer.  Clearly this 

represents a significant computational challenge, especially for those silencers used in HVAC and 

gas turbine applications, which are required to perform up to an upper (octave band) frequency 

limit of 8 kHz.  The aim of this article is to develop a mathematical model that is suitable for 

analysing the convective effects of mean flow on splitter silencer performance, whilst at the same 

time accommodating a realistic silencer design of the type typically found in HVAC and gas 

turbine applications.  The mathematical model is validated by comparison with experimental 

measurements and methods for reducing computational expenditure are also explored. 
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The addition of mean flow into models developed for relatively small dissipative silencers found 

in automotive systems is now well established [1-6].  Automotive silencers are, however, 

relatively straightforward to model because the absorbing material surrounds the mean gas flow 

so that it flows unimpeded in the central (normally circular) pipe.  This is not the case for splitter 

silencers in which baffles of material are placed in the airway.  These silencers have traditionally 

been investigated by assuming that they are uniform and infinite in length, which allows the 

eigenmodes for the silencer cross-section to be found.  Relevant examples include refs. [7-12], 

where analytic methods have been used to derive the governing eigenequation for the silencer 

cross-section, which is then solved using appropriate root finding techniques.  Numerical 

methods may also be used to solve the governing eigenequation and this approach is attractive 

because it avoids problems associated with analytic root finding [3].  Relevant examples include 

the finite element based approach of Astley and Eversman [13] for a locally reacting silencer, and 

Astley and Cummings [14] for a bulk reacting silencer.  Moreover, the finite element method of 

Astley and Cummings can readily be used to obtain the eigenmodes for complex dissipative 

silencer designs with mean flow and in principle it is possible to use this method to examine 

larger splitter silencers of the type found, for example, in gas turbines.  However, a modal 

analysis does not capture the scattering at the inlet and outlet planes of the silencer, nor does it 

quantify the amplitudes of the propagating eigenmodes.  This is a significant limitation when 

attempting to predict silencer performance at higher frequencies and so this method is only of 

limited use for the design of splitter silencers. 

 

The analysis of splitter silencer performance over a wide frequency range must include silencer 

end effects and one method of doing this is to begin by predicting silencer modal attenuation, and 

then to add on heuristic correction factors for each end of the silencer.  Brandstätt et al. [12] used 

this approach for rectangular splitter silencers and, after undertaking a number of experimental 

measurements, arrived at correction factors for the scattering at either end of the silencers.  These 
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correction factors include the effects of mean flow and Brandstätt et al. show that when mean 

flow is in the same direction as the sound propagation the silencer insertion loss drops, whereas if 

the mean flow is reversed the insertion loss increases.  This behaviour was also observed by 

Cummings and Sormaz [10], albeit for the attenuation of an individual mode.  Brandstätt et al. 

[12] were able to obtain reasonable agreement between their semi-empirical model and 

experimental data, although the method does depend on gathering lots of experimental data and it 

is not clear how transferable these correction factors would be to different sizes of rectangular 

splitter silencer, as well as different cross-sectional designs. 

 

Clearly, it is preferable to develop a more comprehensive theoretical approach that is capable of 

capturing scattering at either end of the silencer, as well as computing the amplitudes of the 

modes propagating within the system.  This has only recently been accomplished for bulk 

reacting splitter silencers in the absence of mean flow.  For example, Kirby and Lawrie [15] used 

both analytic and numerical methods to analyse a splitter silencer of finite length, and Lawrie and 

Kirby [16] later presented an analytic technique that avoids root finding in the silencer section.  

The effect of fairings at either end of the silencer were later added by Kirby [17] using a point 

collocation technique, although it was assumed that these fairings were flat, rather than of a 

rounded “bull-nose” shape that is common in commercial silencer designs; mean flow effects 

were also omitted.  The method of Kirby [17] does, however, represent the most complete model 

for splitter silencers currently available and so this article aims to retain the fairings at either end 

of the silencer but also to include chamfers on the fairings that are used to smooth out the mean 

flow. 

 

The addition of mean flow into the model of a splitter silencer presents the problem of how to 

accommodate a change from low velocity in the inlet/outlet ducts to the higher velocities found in 

the airway between the parallel baffles.  Clearly, it is desirable to avoid a sudden jump in fluid 
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velocity over the inlet/outlet planes of the silencer so that one may properly enforce continuity 

conditions.  In order to do this it is necessary to accommodate the non-uniform shape of the bull-

nose fairing at either end of the silencer.  This is accomplished here for the acoustic part of the 

analysis by using the so-called hybrid method described by Kirby [3, 18], and this is reported in 

section 2.  The experimental methodology is described in section 3, and in section 4 theoretical 

predictions are compared to experimental measurements both with and without mean flow.  

Following a discussion on the agreement between prediction and measurement a computationally 

efficient alternative approach to the hybrid method is then investigated in section 5.  

 

 

2.  THEORY 

 

The silencer geometry is separated into uniform and non-uniform regions, with modal 

expansions used for the uniform regions.  A plan view of a splitter silencer is shown in Fig. 1.  

The silencer consists of three parallel baffles, with two baffles placed on opposite walls and 

one placed centrally, with a line of symmetry at 0, see Fig. 1.  The analysis is restricted 

to three baffles because this configuration is very common commercially; however, the 

analysis that follows may readily be extended to any number of parallel baffles [17].  The 

mean gas flow is assumed to be steady, incompressible, inviscid and irrotational so that for 

the non-uniform regions a potential flow problem may be solved directly.  These assumptions 

were also adopted by Eversman [19] in the study of sound radiation from a turbofan inlet, and 

these assumptions are justified on the basis that the flow velocities studied here are relatively 

low and that these approximations for the mean flow field will have a negligible effect on the 

acoustics of the problem.  In Fig. 1 it is also assumed that the incident sound pressure field in 

R1 consists solely of a plane acoustic wave, which permits a two dimensional analysis only 

(x, y plane) [16]. 
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The silencer is partitioned into five regions, bounded by planes A-D.  Region R1 is assumed 

to have a uniform cross-section with a uniform mean flow of Mach number M .  Between 

planes A and B lies region RAB ( R R R ) and here a potential mean flow field is 

present.  In addition, region R3 is separated by a perforated plate from region R2, and region 

R3 contains a bulk reacting porous material in which the mean flow velocity is assumed to be 

negligible.  The outer surface of region R4 that faces into R2 is the bull-nose fairing, which is 

assumed to be rigid and impervious to sound; the rest of region R4 is also assumed to be 

impervious to sound so that region R3 abuts onto a rigid wall.  Planes A and B are drawn at 

locations sufficiently far from the bull-nose fairing to allow for the assumption of a uniform 

mean flow profile over each plane, so that in region R  a uniform mean flow of Mach number 

M5 is present.  The region lying between planes C and D (RCD) is considered to be identical 

to region RAB, with an equivalent incompressible potential mean flow field.  Finally, R10 is 

assumed to be identical to R1, with a mean flow Mach number of M , and an anechoic 

termination is assumed to be present at ∞. 

 

In Fig. 2 a magnified plan view of the bull-nose fairing is shown, which consists of a central 

splitter of width 2a and two parallel baffles of width a placed against opposite walls; the gap 

between each splitter is 2b.  The bull-nose fairings consist of a quarter circle of radius rb and 

a flat section of width wb.  In order to compute the mean flow field around each fairing it is 

first assumed that this may be decoupled from the acoustic sound pressure field and that once 

the flow field has been calculated this may then be substituted into the acoustic analysis that 

follows.  This approach has been used in the study of turbofan engines and the method of 

Eversman [19] is applied here.  Accordingly, for the mean flow field the weighted residual 

formulation for a potential mean flow field in region R2 is written as [19] 
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 W ∙ W ∙ Γ . (1)

 

Here, W ,  is an element shape function and  is the velocity potential of the ambient 

fluid in region R2, so that the mean flow velocity .  The outer surface of R2 is denoted 

Γ  and  is the unit normal pointing out of R .  Equation (1) is solved to find the mean flow 

profile in region R2 using the same finite element mesh as that used for the acoustic analysis 

that follows. 

 

For the acoustic problem the presence of a non-uniform mean flow field means that one 

should use a more general velocity potential formulation, although the flow is also assumed 

to be steady and irrotational in order to simply the acoustic analysis that follows [20].  

Accordingly, for region q ( 1 10) the acoustic wave equation for steady irrotational 

flow, and for an isentropic equation of state, yields  

 

 ∙ i ∙
1

i ∙ 0, (2)

 

where  is the ambient fluid density,  is the speed of sound,  is the acoustic velocity 

potential, and a time dependence of  is assumed throughout, with  denoting time,  

radian frequency and √ 1.  Here, the acoustic particle velocity is defined as , 

so that ⁄ ∙  [20].  The assumption of incompressible flow permits 

Eq. (2) to be simplified to give 
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 ∙ i ∙ 0, (3)

 

where ⁄  and ⁄ .  Equation (3) is solved in section 2.1 using an 

eigenvalue analysis for the uniform regions of the silencer, which are then joined to a full 

finite element discretisation in the non-uniform regions in section 2.2. 

 

2.1 Finite element eigenvalue analysis 

The velocity potential for the uniform sections R1, RBC and R10 is expanded here as an infinite 

sum over the duct eigenmodes to give 

 

 , F Φ e A Φ e  (4)

 

 , B Ψ e C Ψ e  (5)

 

 , D Φ e . (6)

 

Here, F, A, B, C and D are the modal amplitudes,  are the incident, and  the reflected 

(dimensionless) axial wavenumbers, and Φ  are the incident and Φ  the reflected 

eigenfunctions, in regions R1 and R10, respectively, where regions R1 and R10 are assumed to 

be identical with reflected waves omitted from region R10 in order to enforce an anechoic 

termination.  For region RBC,  are the incident and  the reflected (dimensionless) axial 

wavenumbers, and Ψ  are the incident and Ψ  the reflected eigenfunctions, 

respectively. 
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The eigenvalue analysis for regions R1 and R10 is straightforward provided one assumes the 

outer surface of the duct is rigid and impervious to sound.  This has been reported elsewhere 

in the literature, see for example Kirby [5], and so is not described further here.  For the 

splitter section a general analysis for bulk reacting dissipative silencers that includes a 

uniform mean flow field has also appeared in the literature, see for example Astley and 

Cummings [14], and Kirby [3], therefore only a brief summary is presented here.  To arrive at 

a governing eigenequation for region RBC, it is necessary first to enforce continuity of 

pressure and normal particle displacement over the perforate [3, 4], and zero normal particle 

velocity over each hard wall boundary.  If the (dimensionless) acoustic impedance of the 

perforate screen separating regions R5 and R6 is denoted , a finite element formulation 

delivers the following eigenequation  

 

 . (7)

 

where,  is an identity matrix and the matrices ,  and  are given by 

 

	 i ζ⁄  (8)

 

2 2i ζ⁄  (9)

 

1 	 i ζ . (10)

 
In addition 
 

 
∂N

∙
∂N

R and
∂N

∙
∂N

R (11a, b)

 

 N N R and N N R (12a, b)
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 N N S and N N S  (13a, b)

 

Here, N  is an element shape function so that the column vector  holds the nodal values 

of the eigenfunction Ψ .  Vectors  and  hold values of Ψ  on the perforated 

screen, where S  and S  denote the outer surface of the perforated screen lying in regions 

R5 and R6, respectively (which for this problem are points located on opposite sides of the 

perforated screen).  For region R3, the propagation constant of the porous material is denoted 

 and the equivalent complex density , where ⁄ , see Kirby [5].  Note that the 

ambient fluid properties of air in region R5 are denoted  and , so that .  Equation 

(7) is solved for nBC incident and nBC reflected eigenmodes and their associated eigenvectors.  

Following this the imaginary part of the eigenmodes are sorted into ascending order.  Note 

that in this eigenvalue analysis the perforated screen is backed by a porous material; this 

material is assumed to damp down any hydrodynamic modes that may be present in the 

silencer so that these modes may be omitted from the analysis that follows without loss of 

accuracy [5]. 

 

2.2 Hybrid finite element method for non-uniform regions 

In order to condense the analysis that follows, regions RAB and RCD are assumed to be 

identical mirror images of one another and so the analysis is restricted to RAB.  Furthermore, a 

finite element analysis for a dissipative silencer with mean flow has been reported previously 

[3, 6] and so only a brief recap is reported here, although previous models are revised in this 

section to accommodate the non uniform mean flow field.  The airway in region RAB is 

denoted R2 and the acoustic velocity potential in region R2 is approximated using the shape 

function W ,  so that formulation for region R2 yields, 
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W ∙ 2i W ∙ W R

W 1 M ∙ Γ W 1 M ∙ Γ , 

(14) 

where, M M , and 

 

 
1 M M M

M M 1 M
. (15)

 

In addition,  and∙  are the unit normals pointing out of surface Γ  in the x and y 

directions, respectively.  Note that Eq. (14) is similar to that reported by Eversman [19], 

although the assumption of incompressible flow allows for the removal of an extra term from 

the integral over Γ .  Similarly, for region R3 

 

W ∙ W R W ∙ Γ W ∙ Γ . (16)

 

Equations (14) and (16) may be joined together by enforcing continuity of pressure and 

displacement over the perforated screen [3, 4], to give 

W ∙ 2i W ∙ W R

β W ∙ W R

W 1 M ∙ Γ W 1 M ∙ Γ

β W ∙ Γ

i
W 2i

M ∂
∂

M ∂
∂

Γ

i
W Γ  

(17) 
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Here, Γ  and Γ  denote the surface of planes A and B, respectively, and Γ  and Γ  denote 

the surface of the perforates that lie in region R2, or region R3, respectively.  The unit normals 

in the x direction over planes A and B are denoted by  and , respectively, and 

.  The hybrid numerical method enforces continuity of displacement in the surface 

integrals in Eq. (17) and continuity of pressure is enforced separately.  This delivers the 

following system of equations: 

 

  (18)

 

 . (19)

 

 . (20)

 
Similarly, for RCD (= R7 + R8),  

 

 , (21)

 

 ; (22)

 

 . (23)

 

Here, the velocity potential is also discretised using the shape function W ,  so that the 

column vector  holds the values of the velocity potential ,  at individual nodes in 

region q.  Vector  holds values for nodes at a perforate in region q, and ,  and  ,  

hold values on the inlet and outlet planes of each non uniform region.  The other matrices that 

make up this system of equations are given in the Appendix.  The problem is solved by 
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joining together Eqs. (18) – (23) and solving them simultaneously.  In order to do this it is 

convenient to write 

 

 , (24)

 
and to subdivide this matrix into the component velocity potentials for each region, so that 

 

 . (25)

 
Similarly,  

 

 , (26)

 
which yields 

 

 . (27)

 
Matrix  has order , where  and  are the number of nodes on Γ  and Γ , 

respectively (with , and ;  is the number of nodes in region RAB, and 

 is the number of nodes in region RAB that do not lie on Γ  and Γ , so that 

.  The value for the velocity potential at those nodes in region RAB that do not lie on 

Γ  and Γ  are held in matrix .  Similar arguments also apply to .  Equations (24) -

(27) are now joined together to give 
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 (28) 
 
where .  Equation (28) is solved to obtain the unknown modal amplitudes and the 

velocity potentials in regions RAB and RCD, once the appropriate modal amplitudes of the 

incident sound field have been specified.  Using the model outlined above it is possible to 

assign a range of different characteristics to the sound source and to include sources which 

drive higher order modes, see for example those discussed by Mechel [21] and Kirby and 

Lawrie [15]; however, the predictions obtained here will be compared against experimental 

data taken under laboratory conditions that assume plane wave excitation.  Accordingly, the 

inlet modal amplitude is specified as F 1 1 M⁄ , and F 0 for 0; this choice 

for F  sets the inlet sound power equal to unity. 

 

Silencer performance is readily expressed in terms of transmission loss (or insertion loss, 

which will be discussed later), and is defined as the ratio of the transmitted to incident sound 

powers.  Following the setting of the inlet sound power equal to unity, the transmission loss, 

in decibels, is given as [22] 

 

 TL 10	 log
M 1 M

1 M
|D |

, (29)

 
where |Φ | , and  is the number of propagating modes in region R10.  Note 

that even though the excitation is restricted to a plane wave only, Eq. (29) accommodates all 
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higher order modes that propagate downstream of the silencer.  However, Eq. (29) assumes 

that there is no transfer of energy between propagating acoustic modes and hydrodynamic 

modes that may form on shear layers at the exit from the silencer. 

 

3.  EXPERIMENT 

 

A measurement methodology for splitter silencers is outlined in the European Standard EN 

ISO 7235 [23], and in the U.S. by ASTM E 477 [24].  Both standards seek to measure the 

insertion loss of a silencer with and without mean flow.  An interesting difference between 

the two standards is that ISO 7235 specifies a “modal filter” to be placed between the sound 

source and the test silencer, whereas this is not included in E 477.  The modal filter in ISO 

7235 is intended to damp down higher order modes emitted by the sound source and to 

deliver an incident sound field with a “dominating plane wave mode in the test duct in front 

of the test silencer” [23].  This approach has significant advantages when attempting to 

compare theory and experiment because it unambiguously specifies the modal characteristics 

of the incident sound field.  Accordingly, ISO 7235 is used here to measure the IL of four 

splitter silencers.   

 

The material used in the test silencers is rock wool and this is normally purchased in the form 

of large “slabs” of material, which are then dropped into a steel carcass that forms each 

baffle.  The rock wool is separated from the silencer airway by a sheet of perforated steel, 

which runs the length of each baffle and abuts onto the bull nose fairings at either end, see 

Figs. 1 and 2.  The rock wool is treated as an equivalent fluid that is homogeneous and 

isotropic, which permits the use of the standard Delany and Bazley approach for 

characterising the bulk acoustic properties of a bulk fibrous material.  These properties were 
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measured in an impedance tube using the two microphone technique [25] and for the 

normalised propagation constant, this gives [26] 

 

 Γ 0.2722 . i 1 0.2432 . , (30)

 
and for the normalised complex density 
 

 Γ 0.1591 . i 1 0.1316 . . (31)

 
 
Here Γ Γ⁄ , 1⁄  and Θ⁄ , where  is frequency and 	Θ is the flow resistivity 

of the porous material. The flow resistivity of the porous material was measured in 

accordance with ISO 29053 [27], which gives 1881	Pa	s/m .  Note that the bulk 

acoustic properties and flow resistivity of rock wool were measured for random samples of 

the material in which any preferential alignment of the fibres was removed by breaking up 

the material before testing.  Following previous articles by the first author, a semi-empirical 

correction is used here to avoid inconsistencies in the Delany and Bazley curve fitting 

formulae at low frequencies [17, 28].  This yields a value of 2.48 for the steady flow 

tortuosity at a transition value of 0.01085, see also [4].   

 

For the perforated screen that lies between the airway and the rock wool, the semi-empirical 

model of Kirby and Cummings is used [29].  This model is further modified using the method 

suggested by Denia et al. [30], to give 

 

 i0.425 1 F ⁄ , (32)

 
with 

 

 F 1 1.06 . 0.17 . . (33)
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Here,  is the open area porosity of the perforated screen,  is the hole diameter and  is the 

orifice impedance measured in the absence of a porous material.  Values for  in the 

presence of a mean grazing flow are widely available in the literature, although the data 

measured by Kirby and Cummings is used here [29].  For each silencer studied, 3	mm, 

27% and the thickness of the perforated screen 1.6	mm. 

 

4.  RESULTS 

 

Comparisons between predicted and measured data are presented in this section, both with 

and without mean flow.  It is sensible first to examine comparisons without flow in order to 

explore any differences between theory and measurement without the added complication of 

mean flow.  Insertion loss measurements were carried out for over 60 different silencers and 

so only a small sample of the data measured is reported here, although this data has been 

carefully chosen to be representative of the wider range of results that have been obtained.  

The dimensions of the test silencers to be investigated are given in Table 1, where the 

percentage open area of the silencer Δ ⁄ .  In the predictions that follow, the 

transverse finite element mesh for each uniform region uses three noded line elements, and 

for the non uniform regions eight noded quadrilateral elements are used.  Before generating 

the final predictions for each silencer design the effect of changing the location of planes A-D 

was investigated by studying the mean flow field and the convergence of the acoustic 

problem.  In general it was found that placing planes A and D a distance of 4  away 

from the front/end of the bull nose fairing, and placing planes B and C a distance of 2

 away provided a good compromise between the number of elements required and the 

need to deliver a uniform flow field over each plane. 
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In the results that follow, silencer IL is presented, which is the difference between the sound 

power level measured with and without the test silencer in place.  This is different to the 

silencer transmission loss (TL), which is defined as the difference between the sound powers 

incident and transmitted through the silencer.  ISO 7235 notes that “for measurements 

according to this International Standard, the insertion loss of a silencer equals the 

transmission loss.”  Accordingly, in the discussions that follow we shall refer to the silencer 

IL rather than TL, largely because the silencer industry prefers IL. 

 

4.1 Silencer performance in the absence of mean flow 

In Fig. 4, the predicted and measured IL is compared for silencer A for one third octave 

bands.  The predictions in Fig. 4 were generated using 9446 degrees of freedom, which are 

chosen to provide good convergence (to one decimal place) for the IL at the highest (centre) 

frequency of 8 kHz.  Figure 4 generally shows good agreement between prediction and 

measurement over the entire frequency range.  Discrepancies below 100 Hz are thought to be 

caused by experimental error, which is likely to be caused by problems with the anechoic 

terminations at very low frequencies.  Whilst a slight over prediction is seen at peak IL, Fig. 4 

demonstrates that it is possible to predict successfully the performance of a splitter silencer 

over a wide frequency range.  This is also observed for silencers B and C in Figs. 5 and 6, 

respectively, although some discrepancy is again observed at peak IL values.  The sharp peak 

in IL loss seen in each figures is caused by energy transferring from the silencer section into 

higher order modes that have suddenly cut-on in the outlet duct (R10).  The frequency at 

which this peak appears is therefore dictated by the overall width of the outlet duct and not, 

for example, by the length of the silencer, see Kirby and Lawrie for a more detailed 

discussion [15]. 
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Silencers A and B have a percentage open area of Δ 50% and for silencer C Δ 38.5%.  

It was generally found that for higher percentage open areas the agreement between 

prediction and measurement was comparable to that shown in Figs. 4-6.  However, if one 

studies silencers with a lower percentage open area then problems with over prediction at 

higher frequencies may occur.  For example, in Fig. 7 the IL for silencer D is shown.  This 

silencer has a very low percentage open area of Δ 20% and represents the worst case 

scenario of all of the silencers measured (including those not shown here).  Clearly, 

agreement between prediction and experiment is less successful at medium to high 

frequencies, although the low frequency behaviour is still captured reasonably well.  This 

problem with predicting medium to high frequency performance for silencers with a low 

percentage open area has generally been found to appear once the percentage open area drops 

below about 30-35%.  This will be discussed further in section 5. 

 

4.2 Silencer performance with mean flow 

During the course of the experimental programme it was found to be a significant challenge 

to undertake meaningful measurements when mean flow is present.  During the 

commissioning of the test rig problems were apparent with background (flow generated) 

noise and this limited the face velocities for which experiments were possible.  A particular 

problem was that the modal filter specified by ISO 7235 [23] impacted upon the signal to 

noise ratio in the medium frequency range, which coincides with high attenuations for the 

silencers being studied.  Moreover, when conducting experiments it is desirable to see a 

significant influence on silencer performance when mean flow is present.  This generally 

demands the study of larger silencers, but a combination of the modal filter and higher 

silencer attenuation serves to further limit the available signal to noise ratio.  Accordingly, 
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during the testing programme it was found to be impossible to combine large silencers with 

relatively large face velocities without generating problems with the signal to noise ratio.  

These problems may be addressed by, for example, lowering the attenuation of the modal 

filter and/or changing the sound source, but it was felt that this would potentially incur 

significant extra costs with no guarantee that a solution could readily be found.  Accordingly, 

the data reported here is restricted to lower face velocities. 

 

In Fig. 8 predictions are compared against experiment for silencer A with a face velocity of 

3.7 m/s and it is not surprising to see that the addition of mean flow has little measurable 

effect on silencer performance (the airway Mach number is 0.022).  In Fig. 9 

predictions are compared against experiment for silencer D with a face velocity of 2.95 m/s.  

Silencer D has a lower percentage open area when compared to silencer A and so for this 

silencer the Mach number in the airway increases to 0.043.  Thus, in Figs. 8 and 9 a 

slight lowering of IL is seen at lower frequencies and this behaviour is similar to that 

observed by Cummings and Sormaz [10], and Brandstätt et al. [12].  However, in Figs. 8 and 

9, only a limited investigation into the influence of mean flow has been possible because of 

the limitation of the experimental methodology.  Following a number of additional 

measurements covering a number of different silencer geometries it was concluded that the 

effect of mean flow on silencer IL was small to negligible for those face velocities for which 

it was possible to adhere to ISO 7235 [23].  This does not, however, prevent further 

investigations using the theoretical model and so the predicted influence of mean flow on the 

IL for silencers A-D is shown in Figs. 10-13, respectively.  Here, the IL is plotted for 

different airway mean flow Mach numbers of M 	 0.1	and	 0.2.  It is evident in Figs. 

10-13 that the mean flow has a relatively systematic effect on silencer performance at low 

frequencies, with silencer performance reducing when the mean flow is in the same direction 
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as the sound propagation, and increasing when the mean flow is reversed.  At higher 

frequencies the effect of mean flow is seen to reduce and no obvious trend in performance is 

observed.  In fact from these figures one may conclude that it is possible to neglect the 

influence of mean flow on silencer performance at higher frequencies because one is unlikely 

to be able to measure the IL sufficiently accurately to resolve the differences seen in IL, even 

at high Mach numbers.  This has ramifications for silencer modelling because neglecting 

mean flow reduces the computational time of the eigensolution for the silencer section and 

this saving is likely to be significant for those higher frequencies encountered here. 

 

5.  DISCUSSION 

 

The nature of the discrepancy between prediction and experiment seen in fig. 7 has been 

observed before by Mechel [21] and also Kirby [17] who used Mechel’s measured data to 

demonstrate good agreement for larger percentage open areas, but for an open area of 33% 

poor agreement was observed at higher frequencies.  Clearly the same problem persists with 

the current data, although the agreement between prediction and experiment is much better in 

the current study when compared to that presented by Kirby [17].  It is, however, difficult to 

be certain as to why these problems persist, although it is likely that they are caused by a 

combination of theoretical and experimental inaccuracies.  For the experimental 

measurements, Kirby [17] proposed that problems may be caused by structural flanking 

transmission in which the incident sound energy bypasses the silencer and breaks back into 

the duct on the far side of the silencer.  However, the limiting insertion loss for the 

experimental facility was significantly above the values of IL measured here and so flanking 

transmission should not be a problem.  Another possible source of error is in the assumption 

that the measured IL is the same as the predicted TL.  This assumption requires that the sound 
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source in the measurements provides an identical output, both with and without the silencer 

present.  However, it is possible that standing waves may be set up between the silencer and 

the sound source and/or the modal filter.  Here, one may expect significant levels of energy to 

be reflected back towards the sound source by a silencer with a low percentage open area.  It 

is possible that this reflected energy may affect the output of the sound source, as well as alter 

the nature of the sound field incident on the test silencer.  This problem was also noted by 

Roland [31] and it is possible that these reflections from silencers with lower percentage open 

areas are causing problems with the experimental measurements. 

 

The other source of discrepancy lies with the theoretical predictions.  In the model it is 

necessary to assume uniformity of the material packing as well as the material properties, 

which is unlikely to be the case in a real silencer.  Moreover, the silencer predictions are 

sensitive to the impedance of the perforate and it is difficult to quantify accurately the 

impedance of the perforate over such a wide frequency range.  The perforate impedance also 

depends strongly on the conditions very close to the perforate [29], and in the model it is 

assumed that a uniform density for the material is always adjacent to the perforate.  Again, 

this is unlikely to be true in practice and this may affect the actual perforate impedance.  

Nevertheless, it is interesting to note that generally good agreement can be found between 

prediction and experiment at higher open areas.  Further, one would expect that any 

systematic problems with the material specification, and/or perforate impedance, would show 

up across all of the silencer measurements, whereas this is not the case in practice.  

Therefore, it is difficult to identify problems with the theoretical model that would apply only 

to those silencers of low percentage open area and at high frequencies, assuming of course 

that the theoretical model is fully converged (which has been extensively verified). 
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Modelling large dissipative silencer performance up to a frequency of 8 kHz presents a 

difficult problem and one has to be realistic regarding the level of agreement that may be 

expected when comparing predictions with experimental measurements, especially as the 

experimental measurements are difficult to undertake.  In view of this the theoretical model 

appears to perform well under most conditions and over a wide range of different geometries, 

most of which have not been shown here.  Furthermore, it is common for silencer 

manufacturers to be more concerned about low frequency performance and here the 

theoretical model performs well.  Therefore, it appears appropriate to conclude that, within 

the bounds of experimental and theoretical uncertainty, the theoretical model provides a 

reliable guide to the true performance of a splitter silencer, at least for plane wave excitation. 

 

5.1 Lowering computational demands 

The theoretical model developed in section 2 is designed to accommodate the geometry of a 

typical splitter silencer.  This includes the bull nose fairings at either end of the silencer, as 

well as the chamfer that is normally present to smooth the air flow.  However, modelling the 

bull-nose fairings is computationally expensive and so it is interesting to see if one can 

develop a simpler model that will lower computational demands whilst at the same time 

maintaining prediction accuracy.  The most obvious simplification is to ignore the chamfers 

and to use a flat fairing at either end of the silencer.  This approach was used by Kirby [17] in 

the absence of mean flow, and it has the advantage of allowing the two dimensional finite 

element mesh between planes A and B, and C and D to be removed.  This permits the use of 

point collocation to enforce continuity conditions over the inlet and outlet planes of the 

silencer, which will considerably lower computational expenditure when compared to the 

hybrid method described earlier.  The disadvantage of this approach is that one enforces the 

acoustic continuity conditions over a jump in the mean flow profile.  To see the effect of this 
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approximation, the predicted IL for silencer A is compared with and without a chamfer, and 

this is done without mean flow in Fig 14, and with mean flow in Fig. 15.  Here the 

predictions with a chamfer are obtained using the method described in section 2, with values 

of 0.025 and 0.05; without the chamfer the point collocation method of Kirby [3, 

17] is adopted, with continuity of pressure and displacement enforced over the ends of the 

silencer following the addition of mean flow, see Kirby [18].  In Fig. 14 it can be seen that 

when no mean flow is present the chamfer on the fairings has little effect on the IL of silencer 

A.  This trend is generally followed for the other silencers investigated here, although for 

silencer D the lower open area causes the scattering from the silencer inlet to play more of a 

role at higher frequencies.  It is, however, encouraging to note that the two methods generally 

deliver similar values for the IL.  This observation has also been confirmed in predictions for 

other silencers (not shown here) and so it appears reasonable to conclude that one may 

neglect the influence of the chamfer when predicting silencer performance in the absence of 

mean flow.  This confers a significant advantage because the degrees of freedom required 

drop significantly;  for example, for silencer A they drop from 9,446 to 200. 

 

When a mean flow of Mach number of 0.2 is added, agreement between the two 

methods is seen to be comparable to that observed without flow.  Therefore, one may 

conclude that the discrepancy between the two methods seen in Fig. 16 is caused by the 

presence of the chamfer rather than the way in which the continuity conditions have been 

enforced.  Thus, the use of an abrupt change in the mean flow velocity over an area 

discontinuity appears not to have any significant affect on the silencer predictions, at least 

within experimental uncertainty.  Therefore, the results presented here show that it is feasible 

to approximate a bull nose fairing as a flat plate and to permit a jump in mean flow velocity 

over the silencer entry/exit planes.  Any discrepancies caused by this assumption are likely to 
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appear at higher frequencies and for relatively high mean flow velocities, but they are likely 

to be of the same order as those errors observed in experimental measurements.  Therefore, in 

view of the enormous saving in computational expenditure, it appears appropriate in the 

future to use the point collocation approach of Kirby [3, 17] modified to include mean flow.  

This permits the inclusion of mean flow in an iterative design procedure, which must form an 

essential part of any silencer design procedure.  This is because the number of variables that 

influence silencer performance is seen here to be considerable.  Moreover, the appropriate 

design of a dissipative silencer will be strongly influenced by the sound power characteristics 

of the sound source, as well as the size of the duct into which the silencer will be placed.  

Therefore, it is difficult to use the model generated here to report general guidelines 

regarding the appropriate design of a splitter silencer in the presence of flow.  Accordingly, 

the purpose of this article is to present and validate a theoretical methodology for use in 

bespoke design applications and here it is shown that one may use the point collocation 

method to do this.  This simplified approach has significant advantages for larger and more 

complex silencers such as the three dimensional silencers studied by Kirby et al. [32]. 

 

6. CONCLUSIONS 

 

The acoustic performance of a dissipative splitter silencer has been studied here using both 

experimental and theoretical techniques.  The theoretical model permits the inclusion of 

chamfers on the silencer fairings and IL predictions are presented both with and without 

mean flow.  In the absence of mean flow the theoretical model is shown to be capable of 

capturing silencer performance over a wide frequency range and for an upper frequency limit 

of 8 kHz.  However, for those silencers with a percentage open area below about 30-35% the 

theoretical model tends to over predict the measured silencer performance at higher 
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frequencies and some uncertainty still persists regarding the reason for these discrepancies.  

The measurement of silencer performance with mean flow was found to be difficult because 

of the desire to maintain an incident plane wave.  This meant that significant problems were 

encountered with the signal to noise ratio at higher mean flow velocities.  Accordingly, the 

mean flow measurements were restricted to relatively modest face velocities, although it was 

still possible to see a lowering of IL at low frequencies.  The theoretical model was then used 

to investigate higher mean flow velocities and the general trends seen in the experiments 

were also observed in the theoretical predictions.  That is, when a mean gas flow is in the 

direction of sound propagation, silencer performance is seen to drop at low frequencies, 

whereas at higher frequencies the effect of mean flow is less significant.  At low frequencies 

the opposite is true when the direction of the mean flow is reversed.  At higher frequencies 

the effect of mean flow on silencer IL is less significant and so it appears to be justifiable to 

neglect mean flow at higher frequencies.  This offers significant savings in computational 

expenditure for the theoretical model, as well as the possibility of redesigning experimental 

methodologies to focus only on low frequency measurements when mean flow is present. 

 

It is demonstrated here that it is possible to approximate the effects of mean flow on silencer 

IL by using the point collocation model of Kirby [3, 17] suitably modified to include mean 

flow [18].  This involves removing the bull nose fairing and replacing it with a flat plate so 

that continuity conditions are enforced over a step change in the mean flow profile.  It is 

concluded that the errors incurred by enforcing continuity conditions over a step velocity 

change are negligible and that influence of mean flow on silencer performance is dictated by 

the velocity in the central section of the silencer.  Accordingly, the rather onerous hybrid 

method reported here can be replaced with a relatively straightforward point collocation 

approach, which significantly lowers computational demands when studying the effects of 
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mean flow.  This is important in delivering fast and effective commercial design facilities for 

applications where mean flow velocities may be significant, such as gas turbine exhaust 

systems.  It also delivers a method viable for studying the effects of flow on more complex 

silencer designs that require a three dimensional approach, see for example the designs 

studied by Kirby et al. [32].   

 

ACKNOWLEDGEMENTS 

The authors would like to thank the UK Technology Strategy Board (TSB), through the 

Knowledge Transfer Programme (KTP), for their support of the work reported in this article.  

The authors would also like to thank CAICE Acoustic Air Movement Ltd. and AAF Ltd. for 

granting access to their silencer performance measurements, and to AAF Ltd for providing 

the facility for measuring the material properties.  



 29

 

APPENDIX 

 

Finite element matrices: 

 

W ∙ W 2i W W W W R (A1)

 

W ∙ W W W R (A2)

 

i
W W 2iM W

W M W W
Γ (A3)

 

i
W W Γ (A4)

 

, i 1 M , Φ W Γ, 0, 1, 2, … . . (A5)

 

, i , 1 M Ψ , W Γ Ψ , W Γ , 0, 1, 2, … . . (A6)

 

, i 1 M Φ Φ Γ, 0, 1, 2, … . , 0, 1, 2, … .  (A7)

 

, i 1 M Ψ Ψ , Γ Ψ Ψ , Γ  

0, 1, 2, … . , 0, 1, 2, … . . 

(A8)

 

W ∙ W 2i W W W W R (A9)

 

W ∙ W W W R (A10)
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i
W W 2iM W

W M W W
Γ (A11)

 

i
W W Γ (A12)

 

, i 1 M , Φ W Γ, 0, 1, 2, … . . (A13)

 

, i , 1 M Ψ , W Γ Ψ , W Γ 0, 1, 2, … .  (A14)

 

, i 1 M Φ Φ Γ, 0, 1, 2, … . , 0, 1, 2, … .  (A15)

 

, i 1 M Ψ Ψ , Γ Ψ Ψ , Γ  

0, 1, 2, … . , 0, 1, 2, … . . 

(A16)

 

The matrices ,  are diagonal matrices in which each element is given by e∓ ,  (

0,1, … , , with the  sign being used for the incident (i) mode and the + sign for the 

reflected (r) mode 
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Figure Captions 

 

Figure 1.  Geometry of splitter silencer. 

 

Figure 2.  Geometry of bull nose fairings with chamfer. 

 

Figure 3.  Geometry of experimental test rig. 

 

Figure 4.  Measured and predicted IL for silencer A in the absence of mean flow.              , 

prediction;  ▲  , measurement.  

 

Figure 5.  Measured and predicted IL for silencer B in the absence of mean flow.              , 

prediction;  ▲  , measurement. 

 

Figure 6.  Measured and predicted IL for silencer C in the absence of mean flow.              , 

prediction;  ▲  , measurement. 

 

Figure 7.  Measured and predicted IL for silencer D in the absence of mean flow.              , 

prediction;  ▲  , measurement. 

 

Figure 8.  Measured and predicted IL for silencer A with a mean flow Mach number of 

0.022 in the airway.                 , prediction;  ▲  , measurement. 

 

Figure 9.  Measured and predicted IL for silencer D with a mean flow Mach number of 

0.043 in the airway.                 , prediction;  ▲  , measurement. 
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Figure 10.  IL predictions for Silencer A.                  , M 0;                , M5 0.1;                , 

M5 0.2;                    , M5 	0.1;                    , M5 	0.2.. 

 

Figure 11.  IL predictions for Silencer B.                  , M 0;                , M5 0.1;                , 

M5 0.2;                    , M5 	0.1;                    , M5 	0.2.. 

 

Figure 12.  IL predictions for Silencer C.                  , M 0;                , M5 0.1;                , 

M5 0.2;                    , M5 	0.1;                    , M5 	0.2.. 

 

Figure 13.  IL predictions for Silencer D.                  , M 0;                , M5 0.1;                , 

M5 0.2;                    , M5 	0.1;                    , M5 	0.2.. 

 

Figure 14.  Measured and predicted IL in the absence of mean flow.                  , point collocation 

prediction without chamfer;                       , full hybrid method with chamfer. 

 

Figure 15.  Measured and predicted IL with 5 0.2.                  , point collocation prediction 

without chamfer;                       , full hybrid method with chamfer. 
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Table 1 Test Silencer Geometries 

Silencer   (m)   (m) L (m)    Δ %  

A 0.1 0.1 1.8 0.025 0.15 50
B 0.15 0.15 0.6 0.025 0.25 50 
C 0.1 0.0625 1.2 0.025 0.15 38.5 
D 0.1 0.025 0.6 0.025 0.15 20 
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Figure 1.  Geometry of splitter silencer. 
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Figure 2.  Geometry of bull nose fairings with chamfer. 
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Figure 3.  Geometry of experimental test rig. 
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Figure 4.  Measured and predicted IL for silencer A in the absence of mean flow.                , 

prediction;  ▲  , measurement.  
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Figure 5.  Measured and predicted IL for silencer B in the absence of mean flow.               , 

prediction;  ▲  , measurement. 
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Figure 6.  Measured and predicted IL for silencer C in the absence of mean flow.               , 

prediction;  ▲  , measurement. 
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Figure 7.  Measured and predicted IL for silencer D in the absence of mean flow.                , 

prediction;  ▲  , measurement. 
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Figure 8.  Measured and predicted IL for silencer A with a mean flow Mach number of 

0.022 in the airway.                 , prediction;  ▲  , measurement. 
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Figure 9.  Measured and predicted IL for silencer D with a mean flow Mach number of 

0.043 in the airway.                  , prediction;  ▲  , measurement. 
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Figure 10.  IL predictions for Silencer A.                  , M5	 	0;                , M5	 	0.1;                   ,		

M5	 	0.2;                    , M5	 	‐0.1;                    , M5	 	‐0.2. 
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Figure 11.  IL predictions for Silencer B.                  , M5	 	0;                , M5	 	0.1;                   ,		

M5	 	0.2;                    , M5	 	‐0.1;                    , M5	 	‐0.2. 
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Figure 12.  IL predictions for Silencer C.                  , M5	 	0;                , M5	 	0.1;                   ,		

M5	 	0.2;                    , M5	 	‐0.1;                    , M5	 	‐0.2. 
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Figure 13.  IL predictions for Silencer D.                  , M5	 	0;                , M5	 	0.1;                   ,		

M5	 	0.2;                    , M5	 	‐0.1;                    , M5	 	‐0.2. 
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Figure 14.  Measured and predicted IL in the absence of mean flow.                  , point collocation 

prediction without chamfer;                       , full hybrid method with chamfer. 
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Figure 15.  Measured and predicted IL with M5	 	0.2.                  , point collocation prediction 

without chamfer;                       , full hybrid method with chamfer. 
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