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ABSTRACT 

 

A numerical matching technique known as point collocation is used to model mathematically 

large dissipative splitter silencers of a type commonly found in HVAC ducts.  Transmission 

loss predictions obtained using point collocation are compared with exact analytic mode 

matching predictions in the absence of mean flow.  Over the frequency range in which 

analytic mode matching predictions are available, excellent agreement with point collocation 

transmission loss predictions is observed for a range of large splitter silencers.  The validity 

of using point collocation to tackle large dissipative silencers is established, as is the 

computational efficiency of the method and its suitability for tackling dissipative silencers of 

arbitrary, but axially uniform, cross sections. 
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1.  INTRODUCTION 

 

Dissipative silencers are widely used to attenuate broadband noise emanating from fluid 

moving devices such as internal combustion engines and fans.  The silencers vary 

considerably in size and shape according to the application, for example automotive exhaust 

silencers are relatively small whereas many HVAC applications require much larger 

silencers.  The theoretical analysis of relatively small automotive dissipative silencers is now 

well established and silencer performance is routinely quantified in terms of silencer 

transmission loss.  Problems arise, however, in extending these methods to larger silencers 

and design techniques for these silencers are less well developed.  The aim of this paper is to 

examine the feasibility of extending a numerical modelling technique, developed for 

relatively small silencers, to the study of much larger bulk reacting HVAC splitter silencers. 

 

In general there are two possible approaches to modelling finite length (bulk reacting) 

dissipative silencers:  one may analyse the problem numerically, which generally involves the 

use either of the finite element method [1] or the boundary element method [2]; alternatively 

one may approach the problem analytically, which typically involves finding roots of the 

governing dispersion relation and using an orthogonality relation to match the acoustic 

pressure and velocity fields over the inlet and outlet planes of the silencer.  As a design tool, 

both methods have advantages and disadvantages.  By adopting a generalised numerical 

approach, such as the finite element method suggested by Peat and Rathi [1], it is possible, in 

principle, to study a silencer of any shape or size.  However, the number of degrees of 

freedom in the problem grows rapidly as silencer dimensions and excitation frequency 

increases and, even for a relatively small automotive silencer, the subsequent CPU 
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expenditure quickly becomes prohibitive (see Kirby [3]).  An analytic approach is arguably 

preferable to a numerical one and, for automotive silencers, the mode matching approach of 

Cummings and Chang [4], and later Glav [5], have been shown to work well, although only 

in the case of zero mean flow.  Analytic matching of the continuity conditions over the 

inlet/outlet planes of the silencer does, however, demand that a sufficient number of roots to 

the dispersion relation have been found in order to achieve a converged solution for the 

problem.  That is, one should obtain a transfer matrix T  for the silencer, whose elements tij 

decay rapidly with increasing i, j.  A well-known problem with this method is the difficulty in 

locating and tracking all of the (complex) roots required to achieve a fully convergent 

solution, and to date this problem has yet to be overcome, even for small automotive 

silencers.  In general, the difficulty in locating sufficient roots restricts the applicability of 

analytic mode matching techniques, especially for much larger silencers and/or at higher 

frequencies.  

 

The extension of numerical models, first developed for relatively small silencers, to the study 

of much larger HVAC silencers is not straightforward.  Problems arise with the large increase 

in the degrees of freedom necessary to achieve sufficiently accurate predictions at higher 

frequencies, and Cummings [6] reasoned that these problems might become “intractable”.  

Thus, current models for HVAC silencers rely on simplifying the problem in order to achieve 

a tractable solution.  For example, Cummings and Sormaz [7], and Kakoty and Roy [8], treat 

the silencer as infinite in length and predict modal attenuation.  Ramakrishnan and Watson 

[9] attempt to model a finite length silencer, after first using the finite element method to 

obtain roots of the governing silencer dispersion relation, but they account for the inlet/outlet 

planes of the silencer only by the addition of heuristic end corrections.  Whilst computing the 

attenuation of a few propagating modes may provide a simple guide to HVAC silencer 
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performance, most notably at low Helmholtz Numbers (defined here as cbfπ2 , where f is 

the excitation frequency, c  is the isentropic speed of sound and b  is the duct width), at 

higher Helmholtz numbers the influence of higher order modes becomes progressively more 

significant and one must use an ever increasing number of modes to represent silencer 

performance accurately.  Furthermore, modal scattering at silencer discontinuities may 

significantly affect silencer performance; see for example the studies by Mechel [10, 11], 

who used analytic mode matching techniques to quantify scattering effects over the inlet and 

outlet planes of a splitter silencer.  Mechel concluded that scattering, especially at the inlet 

plane, significantly affected silencer performance.  Moreover, in order to extend the analysis 

to higher Helmholtz numbers Mechel [10] included higher order modes in the incident sound 

pressure field.  More recently, Cummings [6] also included higher order incident modes in an 

analytic investigation of a dissipative silencer.  His approach involved coupling a traditional 

mode-matching technique with a ray-tracing model that allows relatively high Helmholtz 

numbers to be analysed.  Both Mechel [10] and Cummings [6] do, however, treat the 

absorbing material as locally reacting; such an assumption greatly reduces the applicability of 

each technique when analysing HVAC systems since this assumes the absorbent material is 

either relatively “thin”, when compared to the transverse duct dimensions, or has a very high 

flow resistivity.  Both assumptions suppress axial sound propagation inside the absorbent 

material, which is unlikely to be the case in, for example, a typical HVAC splitter silencer. 

 

The key to modelling a finite length, bulk reacting, HVAC splitter silencer is to adopt a 

computationally efficient method whilst retaining sufficient accuracy at higher Helmholtz 

numbers.  It is, therefore, sensible first to take advantage of the fact that most HVAC 

silencers have an axially uniform cross-section.  Accordingly, a numerical eigenvalue 

analysis is carried out in section 3 of this article, for the duct/silencer cross-section; numerical 
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mode-matching is then used to model scattering at the silencer inlet/outlet planes.  Here, a 

numerical mode matching procedure known as point collocation is used as this fits 

conveniently with a numerical (finite element) solution of the governing dispersion relation.  

Point collocation has already been used to model relatively small dissipative silencers, for 

example, Astley et al. [12] applied point collocation over a single discontinuity in a 

rectangular duct of dimensions m 1.009.0 × .  Astley et al. report a “good measure of 

correspondence” between numerical predictions and experimental measurement, but their 

comparison is limited to a maximum Helmholtz number of 0.55.  Later, Kirby [13] modelled 

a dissipative silencer of elliptical cross-section and used point collocation to match over two 

duct discontinuities.  Again, comparisons were made only with experimental data, although 

on this occasion a maximum Helmholtz number of 3 was reached (based on the dimension of 

the major axis).  Good agreement between prediction and experiment is reported by Kirby 

[13], however at higher frequencies the validity of such comparisons is questionable because 

of experimental error.  The studies of Astley et al. [12] and Kirby [13] cover a relatively 

limited range of Helmholtz numbers – where only the first few least attenuated modes are 

likely to influence silencer performance – and crucially only compare predictions with 

experiment.  No information is provided on how accurately point collocation enforces the 

matching conditions, especially under circumstances when a large number of higher orders 

modes are likely to influence silencer performance.  Moreover, issues such as the rate of 

convergence of point collocation, and the optimum number, and position, of the collocation 

points, have yet to be investigated.  A question remains, therefore, concerning the accuracy 

and the numerical efficiency of point collocation when studying much larger HVAC ducts.  It 

is this issue with which this article is concerned.  Accordingly, point collocation predictions 

are compared with exact analytic solutions (where it is proved all required roots have 

successfully been located) in order to investigate the accuracy of the method, but also to 
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identify the number of degrees of freedom required to generate predictions comparable to 

those found analytically.  This is important, not only in investigating possible numerical 

problems at higher frequencies, but also in determining whether point collocation is suitable 

for use as a general design tool. 

 

 

2.  GEOMETRY AND GOVERNING EQUATIONS 

 

To fully investigate the accuracy of the point collocation technique, a splitter silencer is 

studied in the absence of mean flow as this facilitates the derivation of a benchmark analytic 

solution.  Note that the orthogonality relation adopted herein is known to be invalid in the 

presence of mean flow (the authors are unaware of an equivalent relation when mean flow is 

present).  In principle, there is no reason why the numerical technique presented here may not 

be extended to include mean flow, however this is not straightforward, and we feel it is 

prudent first to investigate the accuracy of the method for large Helmholtz numbers, before 

examining more complex problems. 

 

The model duct is shown in Fig. 1.  The duct walls are rectangular in cross section and 

assumed to be rigid and impervious to sound.  The silencer section is located in the region 

Lx ≤≤0  and consists of a bulk reacting (isotropic) porous material lining opposite walls, 

and a single, centrally placed, splitter of the same material.  A multimode incident sound field 

propagates along the inlet duct towards the silencer.  We choose here to restrict the incident 

sound field to transverse modes symmetric about the z  axis only, neglecting those modes 

symmetric about the y  axis.  This allows for a simplification of the ensuing numerical and 

analytic analysis since only a two dimensional ( yx  , ) representation of the problem is 
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necessary; more importantly this assumption realises significant savings in CPU expenditure.  

Of course, higher order modes symmetric about the y  axis will be present in a real inlet duct 

system, as well as in the silencer section itself, however these are neglected in the belief that 

their influence on the overall performance of the silencer will be relatively small (this issue is 

discussed further in Section 4).  It should be noted, however, that the point collocation 

approach described here may readily be extended to study a fully three dimensional problem. 

 

It is convenient here to non-dimensionalise the length scales in the problem such that xkx = , 

yky =  etc., where the “barred” quantities are dimensional and ck ω=  (ω is the radian 

frequency).  Further, the acoustic velocity potential in the duct, ) ;,( tyxΦ , is assumed to vary 

harmonically with time (t), so that teyxtyx  i),();,( ωφΦ = , ( 1i −= ).  Then the non-

dimensional, time independent velocity potential in the inlet duct, Iφ , satisfies 

 

 0),(1
2

2

2

2

=













+

∂

∂
+

∂

∂
yx

yx
Iφ ,  0≤<∞− x ; by ≤≤0 . (1) 

 

Likewise, the velocity potential for the outlet duct, Oφ , satisfies 
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For the silencer section, the velocity potential Sφ  is expressed in terms of 1φ , 2φ  and 3φ , such 

that 
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Hence, 
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where Γ is the (dimensionless) propagation constant for the porous material (assuming 

xe Γφ −∝  in the material).  Note that the fluid pressure and normal velocity are continuous at 

interfaces 1ay =  and 2ay = , for Lx ≤≤0 , see Eqs. (16) and (17).  The acoustic field in each 

section (the inlet, splitter and outlet section) is expanded as an infinite sum over the 

eigenmodes, giving 
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where )( yYm  is conveniently expressed as 
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Here, Aj, Bm, Cm, Dn and Fj are modal amplitudes, sm is the wavenumber in the splitter 

section, 1+In  is the number of “cut-on” modes in the inlet duct and nη  is the wavenumber in 
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the inlet/outlet section.  Note that the wavenumbers ... 2, 1, ,0 ,0)Re(  , => nss nn , are 

numbered by increasing real part.  Thus 0s  is the least attenuated mode.  The quantities Z(y) 

and Y(y) are the transverse duct eigenfunctions in the inlet/outlet region and the splitter 

section, respectively.  The outlet section is assumed to be terminated anechoically.   

 

2.1  MATCHING CONDITIONS 

At the inlet and outlet planes of the silencer, continuity of acoustic pressure and axial particle 

velocity are enforced, therefore at 0=x  continuity of pressure yields 
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where β is the normalised complex density of the porous material ( ρωρβ )(= ; )(ωρ  is the 

equivalent complex density of the porous material, see Allard and Champoux [14], and ρ  is 

the density of air).  Continuity of velocity yields 
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At Lx = , continuity of pressure yields 
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and continuity of velocity yields, 
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Application of the above continuity conditions delivers an infinite system of equations which, 

after truncation and inversion, yields the modal amplitudes for each duct section.  Before 
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enforcing these conditions, the axial wavenumbers and transverse eigenfunctions, defined by 

Eqs. (7)-(9), must first be computed.  Accordingly an eigenvalue analysis is performed for 

each duct section and this is reported in Sections 3 (numerical) and 4 (analytic).  The analysis 

for the inlet/outlet sections is straightforward and is omitted.  The appropriate transverse 

boundary and continuity conditions for the silencer section are given as 
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2.2  INCIDENT SOUND FIELD 

The focus of this paper is on modelling sound attenuation in HVAC ducts over a wide range 

of Helmholtz numbers and it is highly likely that higher order modes in the inlet duct will be 

excited by a noise source such as a fan.  Accordingly, a multimodal incident sound pressure 

field is specified here, although the detailed characteristics of this sound field will depend, to 

some extent, on the characteristics of the individual noise source present in an actual system.  

To proceed, one must know, a priori, the modal characteristics (in the form of the modal 

amplitudes Fj) of the chosen noise source, although obtaining this data for a fan presents 

many challenges.  To overcome this problem, and to maintain the generality of the approach 

presented, we instead assign a simple heuristic relationship between the incident modal 
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amplitudes, Fj, based on assumptions concerning the modal characteristics of the noise 

source.  Mechel [10] suggests three possible assumptions: constant modal amplitude, equal 

modal power and equal modal energy density.  Of these three possibilities, Mechel suggests 

that equal modal energy density is the most plausible representation of the modal 

characteristics typically found in an HVAC duct downstream from a fan (an assumption also 

adopted by Cummings [6]).  Accordingly, in the analysis that follows we shall focus on 

predictions obtained assuming equal modal energy density (EMED) in the incident sound 

field.  For the purposes of comparison, however, we also analyse the other two suggestions, 

equal modal amplitude (EMA), and equal modal power (EMP), in order to see how the 

differing assumptions affect predictions of silencer performance. 

 

If the incident sound field is assumed to contain equal modal energy density, then the modal 

amplitude for propagating mode j, is given as [10] 
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to unity.  It should be noted also that Eq. (19) is valid only for propagating incident duct 

modes; for evanescent modes, Fj is set equal to zero.  Alternatively, equal modal amplitude 

yields [10], 

 

 

1

0

2

0 i2

−

=








= ∑

In

m

mmj

p

F ηε
, (20) 

 

and equal modal power, 
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The expressions above differ from those of Mechel [10] only in the suppression of higher 

order modes symmetric about the y  axis.  As stated earlier, this represents an approximation 

to the actual problem, however we believe that the benefits of this assumption in terms of 

computational efficiency significantly outweigh the additional influence of these neglected 

modes on silencer performance. 

 

 

3.  NUMERICAL MODEL 

 

3.1  FINITE ELEMENT EIGENVALUE ANALYSIS 

An eigenvalue analysis is carried out here both for the splitter section and for the inlet and 

outlet ducts.  The analysis for an unlined rectangular duct is reported elsewhere; for the 

splitter section the analysis follows closely the method of Astley and Cummings [15] and so 

only the final governing eigenequation is presented.  Accordingly, the components of the 

transverse eigenfunction in each region of the splitter section are written, for mode m, as 
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and these are discretised into finite elements in which the resulting nodes are numbered 
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321 nnn ++ , in region 3R , where 321  and , , nnn  denote the total degrees of freedom in regions 

1R , 2R , and 3R  respectively.  The nodal values that make up the discretised transverse 

eigenfunctions, say iy~  for node i, form vectors 1Y , 2Y  and 3Y , so that  



 14 

 

 [ ] 112

1

211

1

1

~

~

~

 )( ),......,( ),()( YN=

















=

n

n

y

y

y

yNyNyNyy , 
10 ay <≤ , (23) 

 

 [ ] 222

1

212

21

1

1

2111

~

~

~

 )( ),......,( ),()( YN=

















=

+

+

+

+++

nn

n

n

nnnn

y

y

y

yNyNyNyy , 
21 aya <≤ , (24) 

 

 [ ] 332

1

213

321

21

21

3212121

~

~

~

 )( ),......,( ),()( YN=

















=

++

++

++

++++++

nnn

nn

nn

nnnnnnn

y

y

y

yNyNyNyy , bya ≤≤2 . (25) 

 

Here )(yNK  are the global trial (or shape) functions of the finite element mesh.  Three node 

isoparametric quadratic finite elements are used in each silencer region; for the inlet and 

outlet regions, elements and nodal locations identical to those chosen for the silencer section 

are also adopted.  The trial expressions given by Eqs. (23)-(25) are substituted into the 

governing equations for the silencer section (Eqs. (4)-(6)) and, after application of the 

relevant matching conditions (Eqs. (15)-(18)), a weak Galerkin treatment yields the following 

eigenequation, 
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It is convenient to express this eigenequation in matrix form, by defining matrices A  and C  

according to 
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The governing eigenequation may now be written as 

 

 [ ] 0YCA =−  2s . (29) 

 

Eq. (29) is solved for the axial wavenumber s, and produces 321 nnnns ++=  eigenvalues and 

associated eigenvectors.  Solution of Eq. (29), and all future equations, was carried out using 

a FORTRAN complier and a Numerical Algorithm Group solver. 

 

 

3.2 POINT COLLOCATION 

Point collocation demands that the acoustic pressure and particle velocity in the duct are 

matched at individual collocation points.  The number of collocation points, nc, is restricted to 
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be less than or equal to the number of eigensolutions, ns, obtained on solving Eq. (29).  

Accordingly, in the analysis that follows )( sc nn ≤  collocation points are chosen for the 

silencer section, and these are numbered 1 ...., 2, ,1 r , in region 1R , 2111 21 r, ...., r ,rr +++ , in 

region 2R , ,121 ++ rr   ...., 2, 21 ++ rr  321 rrr ++ , in region 3R , where 321  and , , rrr  denote the 

number of collocation points in regions 1R , 2R , and 3R  respectively.  For mode m, let the 

value of the transverse eigenfunction )(yyK  (where 3or  2, ,1=K ) at collocation point i, be 

ip~ , then vectors 1P , 2P  and 3P  may be constructed so that 
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Thus, for mode m, vectors 1P , 2P  and 3P  contain the values of the transverse eigenfunctions 

)(1 yy , )(2 yy  and )(3 yy  at the chosen collocation points in regions 1R , 2R , and 3R  

respectively (note that if the location chosen for the collocation points is identical to that 

chosen for the nodes in the finite element mesh in Section 3.1, then YP = ).  For the inlet and 

outlet ducts, collocation points identical to those in the silencer section are chosen, and so for 

mode j, the value of the transverse eigenfunction )(yZ j  at collocation point i, is denoted by 

iz~ , and  

 

[ ]  ~ ,.....,~ ,~
121

T

1Ψ rzzz= , [ ]  ~ ,.....,~ ,~
2111 21

T

2Ψ rrrr zzz +++= , [ ]  ~ ,.....,~ ,~
3212121 21

T

3Ψ rrrrrrr zzz ++++++= , 

(32a, b, c) 

where 

 

 [ ]T

321 ΨΨΨΨ = . (33) 
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Matching proceeds (see Astley et al. [12]) by re-writing the transverse eigenfunctions in Eqs. 

(7)-(9), to include only the collocation points in each duct section, and then substituting the 

velocity potential for each region into the matching conditions described by Eqs. (11)-(14).  

Therefore at 0=x , continuity of pressure yields, 
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Here, the modal sums are truncated at the number of collocation points nc )( 321 rrr ++=  for 

the incident and reflected modes in the splitter and the reflected modes in the inlet duct; nI 

incident modes are included.  Continuity of velocity at 0=x  yields 
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Similarly, at Lx = , continuity of pressure yields 
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and continuity of velocity yields, 
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It is convenient to re-arrange Eqs. (34)-(41), and to introduce 
Ls

mm
meCC
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~

, to give 
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Eqs. (42)-(49) form a complete set of )(2 321 rrrnc +++  linear equations that enforce 

continuity of acoustic pressure and axial particle velocity at each collocation point over the 

inlet and outlet planes of the silencer.  After substitution of appropriate values for the modal 

amplitudes, jF , in the incident sound field (see Eqs. (19)-(21) for three alternative methods 

of specifying jF ), Eqs. (42)-(49) may be solved simultaneously for the 4nc unknown modal 

amplitudes, jA , mB , mC
~

, and nD .  Note that in order to invert a square matrix the number of 
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collocation points chosen, nc, must be equal to the number of eigensolutions, ns, taken from 

the solution to Eq. (29).  

 

A popular method of representing overall silencer performance is to compute the silencer 

transmission loss since this is independent of any source or radiation impedance.  Silencer 

transmission loss (TL) is defined as the ratio of the transmitted to incident sound powers.  For 

all choices of forcing considered here the incident sound power is unity, hence, in decibels: 
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4.  ANALYTIC MODE MATCHING 

 

An analytic model is presented here in order to provide exact "benchmark" predictions for 

comparison with the numerical method presented in Section 3.  Accordingly an exact mode 

matching procedure is presented which utilises a well-known orthogonality relation in order 

to match over each axial silencer discontinuity.  To begin with, the exact solution of the 

governing Helmholtz equation in the inlet and outlet region, together with rigid wall 

conditions at 0=y and by = , yields the following, well known, result for a propagating 

mode of order n: 
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Solving the boundary value problem for the splitter section is rather more involved.  The 

transverse eigenfunction for the splitter section is defined in Eq. (10).  On using Eqs. (11)-

(14) it is found that 

 

 )cosh()(1 yyY nn λ= , (52a) 

 

 [ ] [ ])(cosh)cosh()(sinh)sinh()( 11112 ayaayayY nnnnnnn −+−= γλβγγλλ , (52b) 
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with 21 nn s−−=γ  and 22

nn s−= Γλ .  The axial wavenumber for the splitter section, s, is 

given as a root of the dispersion relation 0)( =sK , where 
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Here 

 [ ] [ ])(cosh)cosh()(sinh)sinh()(~
121121 aaaaaasy −+−= γλβγγλλ  (54) 

and 

 [ ] [ ])(sinh)cosh()(cosh)sinh()(~
121121 aaaaaasz −+−= γλβγγλλ , (55) 

 

with 21 s−−=γ  and 22
s−= Γλ , so that nns γγ =)( , etc.  Note also that )()(~

22 aYsy nn =  

and 

2
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sz
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= .  

 

This dispersion relation may be solved for the axial splitter wavenumber ns , 2..... 1, ,0=n , 

using a root finding technique such as the Newton Raphson or secant method, although many 

other techniques are available.  The success of the analytic mode matching scheme depends 

on computing accurately all required roots.  This is a challenging task for complex roots and 

largely depends on the appropriateness of the initial guess supplied to the root finding 



 21 

algorithm.  At low Helmholtz numbers, low frequency approximations of the dispersion 

relation may be adopted to identify appropriate initial guesses, and one may also employ the 

Argument Principle to check that all roots in a specified region of the complex plane have 

been found.  However, searching for roots in the complex plane is a laborious and 

cumbersome process especially at higher Helmholtz numbers where, to compound the issue, 

a larger number of roots must be found.  To speed up the root finding procedure it is common 

to use a successfully located root to provide the initial guess at the next, say, frequency 

interval, and to track a root through the complex plane as the frequency is altered.  This 

technique is adopted here, although it does not always work as often a root bifurcates in the 

complex plane, causing one or more roots to be missed at the next frequency interval.  This 

phenomenon was evident in the current problem, even when adopting a frequency interval of 

0.01 Hz.  The problems described here militate against the use of the analytic technique over 

a large range of Helmholtz numbers.  Nevertheless it is possible to demonstrate when all 

required roots for a certain range of parameters have successfully been located, and in so 

doing provide confidence in subsequent mode matching computations.  The following 

integral relation (which is essentially the Argument Principle) is used, 

 

 ∫ =
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i 2

1

π
, (56) 

 

where [ ] [ ] )(~ )(sinh)(~ )(cosh)( 22 syabszabsK −+−= λλλ .  Note )(sK  is chosen to have no 

poles and )(sK ′  is the derivative of )(sK .  The contour C does not pass though any zeros or 

poles of )(sK  and the integer N represents the number of zeros interior to C.  The contour C 

is chosen to include all the roots found numerically. 
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On successfully locating a sufficient number of eigenmodes (the Newton Raphson method 

was adopted here), analytic mode matching proceeds to match pressure and velocity over the 

inlet and outlet planes of the splitter silencer.  To facilitate a convergent system of equations 

two orthogonality relations are used.  The first is the usual orthogonality relation for 
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 and the second, see [5], is 
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where mnδ  is the Kronecker delta and 
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Application of continuity of velocity and pressure at the silencer inlet, 0=x , yields 
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respectively.  Similarly at Lx = , continuity of velocity and pressure are given as 
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and 
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respectively.  The quantity jmR  is defined as 
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Note that 0)( =jjQ η  and ( ) )(cos)( 2 jjj KbajP τπβτ = , where 2222
bjj πΓτ += .  To 

solve the problem it is convenient to eliminate mB  and mC  from Eqs. (59)-(62).  Two linear 

systems of equations are thereby obtained, namely 
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where 
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Eqs. (66) and (67) may now be solved for nχ  and nψ  after suitable truncation of the infinite 

sums, say at a number of eigenmodes equal to nt.  The modal amplitudes An and Dn may then 

be computed from Eqs. (68) and (69); the amplitudes Bn and Cn follow after substitution of An 

and Dn into either the pressure or velocity continuity conditions in Eqs. (60) and (62). 

 

A key issue in the above procedure is the number of eigenmodes, nt, at which the infinite sum 

is truncated.  The sum must include enough eigenmodes to provide an accurate, converged, 

solution but the user must also ensure that no eigenmodes are missing prior to the point of 

truncation.  Eq. (56) tells us if all roots have been located in a specified region of the complex 

plane but not, of course, where to locate a missing mode.  On satisfying Eq. (56) the silencer 

transmission loss may be computed using Eq. (50), however at high Helmholtz numbers 

relevant eigenmodes are often missed due to failures in the tracking procedure; the effect of 

this on transmission loss predictions can be seen in the results presented in the following 

section. 
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5.  RESULTS AND DISCUSSION 

 

The principal behind point collocation is to enforce continuity of acoustic pressure and 

particle velocity at discrete transverse locations over an axial duct discontinuity, as opposed 

to matching analytically which seeks to enforce continuity conditions uniformly.  Thus one 

cannot expect numerically matching to be as accurate as analytic matching, nevertheless, 

provided one chooses carefully the number and location of points at which numerical 

matching takes place, predictions should in theory tend towards those predictions obtained 

when matching analytically.  Moreover, and this is true both for numerical and analytic mode 

matching, prior to matching one must ensure that a sufficient number of higher order axial 

modes have been computed accurately so that the sound pressure and velocity fields are 

accurately represented, especially either side of a discontinuity.  A balance must therefore be 

struck between the number of axial eigenmodes required to represent accurately the 

continuity conditions at each collocation point, and the number of collocation points required 

to represent the transverse pressure and velocity fields.  The analysis herein considers first 

how best to achieve this balance for a splitter silencer and then focuses on investigating how 

well point collocation performs for large splitter silencers. 

 

The analysis in Sections 2 to 4 specifies non-dimensional length scales for the silencer 

geometry in order to reduce by one the number of parameters in the model.  Silencer 

performance thus depends on four non-dimensional length scales: ,1a  ,2a  b  and L .  In 

addition, the material flow resistivity (σ ) is required to fix the acoustic properties of the 

absorbent.  The generalisation of theoretical predictions using these parameters is difficult 

without generating a large number of curves, especially as σ  is a complicated function of k.  

For example, Ramakrishnan and Watson [9] required 12 charts to “generalise” design curves 
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for a duct lined on opposite walls, although extrapolation of their findings is far from 

straightforward.  Similarly, Bies et al. [16] required 38 design charts to characterise a duct 

lined on opposite walls, although they added mean flow in the airway.  Thus, generalising 

those results generated here, even for one source model, is likely to lead to a very long article 

and to detract from the main aims of the paper.  Instead, to provide a rigorous examination of 

point collocation but economise on data presentation, we have chosen three large test 

silencers.  For example, Silencer A has an overall width of 2 m, (thus m 1=b ), a length of 

m 2=L , and material dimensions of m 25.01 =a , m 5.02 =a  (see Table 1, which also 

contains details of the two other silencers, B and C).  A fibrous bulk absorbing material is 

chosen and the generalised data of Delany and Bazley [17] are adopted, thus the propagation 

constant is given as 

 

 ( )7.0595.0 098.01i189.0 −− ++= ξξΓ , (73) 

 

and the normalised complex density as 

 

 ( )[ ] ( )[ ]754.0732.07.0595.0 057.01i087.0 098.01i189.0 −−−− ++++−= ξξξξβ . (74) 

 

Here ξ  is a non-dimensional frequency parameter given as σρξ f = , where f is the 

excitation frequency.  The flow resistivity for silencer A is chosen, arbitrarily, to be 8000 

MKS Rayls/m.  Note also that the formulae of Delany and Bazley are known to be invalid at 

low frequencies and so the semi-empirical correction formulae of Kirby and Cummings [18] 

are adopted to alleviate this inconsistency. 

 

It is widely known that one can expect to rely on the accuracy of only approximately 20% of 

the eigensolutions found when carrying out a finite element eigenvalue analysis.  For silencer 
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A this effect is demonstrated in Table 2 by comparing solutions to Eq. (29) with those found 

on solving 0)( =sK , where )(sK  is given by Eq. (53), to obtain the wavenumber s at a 

frequency of 500Hz.  The finite element solution was generated using 5 isoparametric 

quadratic line elements, thus generating 11 degrees of freedom.  It is noticeable in Table 2 

that agreement between the two methods for the first 5 least attenuated modes may be 

considered acceptable, but as the mode order increases errors in the finite element solution 

begin to grow.  Nevertheless the finite element model performs creditably (given that only 5 

elements have been used to model a transverse dimension of 1 m), and computes 

approximately five eigenvalues relatively accurately, although the accuracy of the first two 

least attenuated modes is questionable.  Of course, to achieve more accurate solutions the 

number of degrees of freedom in the mesh may be increased; for example, on using only 12 

elements an error of 0.12% is observed for the least attenuated mode growing to an error of 

1.4% for mode 9.  Thus it is important to ensure that a sufficient number of degrees of 

freedom are included in order to compute accurately those axial higher order modes needed 

to represent the sound pressure and velocity at each collocation point.  Normally, when 

studying smaller silencers, up to 6 axial higher order modes are thought to play a significant 

role, see for example the analytic mode matching of Cummings and Chang [4].  It is likely, 

however, that for much larger silencers additional axial higher order modes will need to be 

considered. 

 

The results presented in this section include only those higher order modes that are symmetric 

about the z  axis.  This is a simplification of the real problem, but enables a two dimensional 

analytic approach to be carried out which facilitates a fast and efficient comparison with the 

point collocation technique (the validation of which is the underlying motivation for the work 

presented here).  Of course, in a real HVAC duct system a fan may also generate incident 
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duct modes that are symmetric about the y  axis.  Such modes can readily be accommodated 

by extending the eigenvalue analysis from one to two dimensions and matching numerically 

over the two-dimensional cross-section to give a fully three-dimensional sound pressure 

distribution.  This does, however, incur very a large increase in CPU expenditure.  For 

example, it would take approximately 300 times the computational expenditure to obtain 

three-dimensional predictions of an accuracy comparable to those obtained using a two-

dimensional model (assuming a solver speed proportional to 3
N , N being the degrees of 

freedom in the finite element mesh).  Furthermore, it is questionable whether those incident 

modes symmetric about the y  axis play a significant role in the overall performance of the 

silencer.  Preliminary results for silencers A and C (see Table 1), obtained by implementing a 

three-dimensional approach, have been compared with the two-dimensional predictions 

(albeit for a much smaller mesh density than the two-dimensional solutions shown later).  

These initial findings indicate that the additional effect of those modes symmetric about the 

y  axis is small.  Such observations remain to be further substantiated, however, at least for 

the purposes of validating the point collocation technique, we feel it is justified at this stage 

to neglect those incident modes symmetric about the y  axis. 

 

As discussed above, the number and location of points over which matching takes place is 

crucial to the success of the point collocation method.  One obvious starting point is to match 

at collocation points equal in number to the eigenvalues deemed "accurate" on solving the 

eigenvalue problem.  Thus, one first solves an eigenvalue problem of order ns, then utilises 

only the "accurate" eigenmodes, say na eigenmodes (where sa nn 2.0= ), and matches over nc 

collocation points, remembering that nc must be equal to na to maintain a square matrix (see 

Section 3.2).  This approach is examined in Fig. 2, under the assumption of equal modal 

energy density (EMED) in the incident sound field.  An analytic transmission loss prediction 
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(taking 32=tn ) for silencer A is compared with the point collocation method in which 12 

elements ( 25=sn ) are generated for the eigenvalue analysis and matching takes place over 5 

collocation points.  Hence 52.0 === sac nnn  (see Fig. 3 for location of collocation points).  

It is evident in Fig. 2 that discrepancies between the two methods are apparent, even though 

at least 5 accurate eigenvalues have been utilised.  Thus, either too few collocation points 

have been chosen, or too few axial higher order modes have been utilised to represent 

accurately the continuity conditions prior to matching.  The remedy is to increase the number 

of collocation points, nc, which automatically increases the number of higher order modes 

utilised.  The effect of this is also shown in Fig. 2, where predictions are presented for 

25== ac nn , taken after solving Eq. (29) with 125=sn  (see Fig. 3 for the location of the 

collocation points).  It is evident that increasing the number of collocation points greatly 

increases the accuracy of the point collocation predictions, and much better agreement with 

the analytic solution is obtained. 

 

The results presented in Fig. 2 suggest that for relatively large silencers, such as silencer A, a 

proportionately higher number of collocation points, and hence higher order modes, are 

required to provide an accurate solution.  Although good agreement between analytic and 

numerical predictions is evident (for 25== ac nn  and 125=sn ), point collocation is 

implemented only after discarding 80% of the computed eigenvalues.  This may not represent 

a computationally efficient approach, especially if less than 25 of the computed axial higher 

order modes are necessary to determine accurately the pressure and velocity fields prior to 

matching.  An alternative approach is to match numerically over collocation points coincident 

with the nodal locations generated in the finite element eigenvalue analysis, i.e. to set 

sac nnn == .  This approach is potentially more computationally efficient since every 
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eigensolution is utilised, furthermore the user need only generate one set of nodal locations.  

Of course, one cannot expect the transmission loss predictions to be as accurate, for a given 

number of collocation points, since up to 80% of the eigensolutions used in matching may be 

inaccurate.  Nevertheless, provided a sufficient number of accurate least attenuated modes are 

included, inaccurate higher order modes in the matching procedure should not significantly 

affect the collocation predictions, since their contribution to the modal sums in Eqs. (42)-(49) 

will be small. 

 

In Fig. 4 point collocation and analytic transmission loss predictions are again compared for 

silencer A, but here the point collocation predictions were found first by using 

9=== sac nnn , then with 25=== sac nnn  and finally with 65=== sac nnn .  It is evident 

that, as one should expect, increasing the number of collocation points improves the accuracy 

of the point collocation method.  It is noticeable also for the case when 25=== sac nnn  that 

the point collocation predictions are not as accurate as the equivalent predictions shown in 

Fig. 2, after taking 25== ac nn  and 125=sn .  This is to be expected as the predictions in 

Fig. 4 contain many inaccurate higher order modes when compared to those in Fig. 2.  

Nevertheless, predictions for 25=== sac nnn  compare favourably in terms of accuracy with 

those in Fig. 2 (except near the cut-on frequency of a higher order mode close to 1 kHz) and, 

if one assumes a solver of speed proportional to N
3
 (for a matrix of order N), a reduction in 

CPU expenditure of approximately 66% is possible.  As one further increases the number of 

degrees of freedom to 65=== sac nnn , very good agreement between point collocation and 

analytic predictions is now possible (the two curves virtually overlap).  To achieve this level 

of accuracy, however, requires approximately 6 times the CPU expenditure for silencer A 

when compared to predictions of comparable accuracy in Fig. 2, achieved after taking 



 31 

25== ac nn  and 125=sn .  Thus a balance must be struck between the desired accuracy of 

solution and computational efficiency, both in terms of solution time and operator time taken 

to mesh the problem.  Where this balance is struck depends on the type and size of the 

silencer studied, and on the accuracy required.  The purpose of this paper is to validate point 

collocation as a method applicable to large silencers, for this reason emphasis is placed here 

on solution accuracy rather than computational efficiency.  Convergence of the finite element 

transmission loss predictions is therefore of utmost interest and convergence was found to be 

easiest to track by matching over collocation points identical to the finite element nodes 

generated for the eigenvalue problem; adaptation is thus carried out only for the eigenvalue 

mesh.  The effect of systematically refining only the finite element eigenvalue mesh is 

demonstrated in Fig. 5, where point collocation transmission loss predictions for silencer A 

are compared with analytic predictions at 1 kHz (for incident EMED).  Fig. 5 demonstrates 

systematic convergence of the point collocation predictions towards the (exact) analytic 

solution as the degrees of freedom are increased (taking sac nnn == ).  This adaptation 

procedure may not be the most efficient computationally, but provides a safe and reliable 

method when studying new silencers and is therefore adopted in all further transmission loss 

predictions presented in this paper. 

 

As the Helmholtz number increases, it is common practice to increase the density of the finite 

element mesh in order to maintain prediction accuracy.  For the current method, numerical 

transmission loss predictions converge quickly at very low frequencies, and so, as one would 

expect, relatively few degrees of freedom are necessary to achieve good agreement with 

analytic predictions (to within 0.3 dB).  At much higher frequencies, convergence is slower, 

however very good agreement with analytic predictions (for example, to within 0.1 dB at 4 

kHz) is normally possible after a modest increase in degrees of freedom.  For example, for 
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silencer A, comparable accuracy may be achieved using 33 degrees of freedom at 100 Hz, 

and 65 degrees of freedom at 4 kHz: an increase in computational expenditure of 

approximately eight times at the higher frequency.  The situation is, however, complicated by 

higher order incident modes, and simple linear extrapolation of the number of degrees of 

freedom between the two frequency extremes is not possible.  This is because a 

proportionally larger number of degrees of freedom are required close to the frequency at 

which the first few higher order incident modes cut-on.  For example, at 1 kHz, up to 97 

degrees of freedom are required to achieve agreement between numerical and analytic 

predictions to within 0.3 dB for silencer A.  This problem does, however, disappear at higher 

frequencies when a large number of higher order incident modes have cut-on, since the 

relative proportion of incident sound power transferred to a newly cut-on mode is 

significantly reduced.  Thus, the number of degrees of freedom required, and hence 

computational time, depends not only on frequency (or Helmholtz number) but also on the 

modal characteristics of the sound pressure field.  This augurs against refining the finite 

element mesh solely on the basis of Helmholtz number.  Instead, the mesh is refined here at 

the highest frequency of interest.  On achieving a converged solution at this frequency (to at 

least 1 decimal place), the mesh density is then kept constant for calculations at every lower 

frequency of interest.  This approach compromises computational efficiency in order to 

ensure an accurate solution is found over as wide a frequency range as possible, remembering 

that very close to the cut-on frequency of the first few incident higher order modes, it is 

possible some small errors may be present. 

 

In Figs. 4 and 5 very good agreement between analytic mode matching and numerical point 

collocation was achieved provided enough collocation points were chosen.  It is sensible to 

see if this observation holds for a wider range of excitation frequencies, silencer dimensions, 
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and inlet conditions.  In Fig. 6 comparisons between point collocation and analytic 

predictions are presented for silencer A, for frequencies up to 4 kHz and for four different 

incident modal conditions – EMED, EMA, EMP and plane wave (i.e. 0,1 10 == nF,..., FF ).  

For each of the four different inlet conditions, excellent agreement between analytic and 

numerical predictions is evident and the two curves overlay one another.  The transmission 

loss predictions obtained when only a plane wave is incident are, as one would expect, less 

than those found when the incident sound power is distributed amongst a number of higher 

order modes, except of course below the cut-on frequency of the first higher order mode.  At 

the cut-on frequency of each higher order mode, sharp changes in transmission loss are 

clearly evident (as energy is transferred to a newly propagating mode) although as the 

number of cut-on modes increases this effect is progressively diluted.  The three different 

multimode conditions adopted for the incident sound field give broadly comparable results, 

although the EMA predictions are consistently lower than both the EMEA and EMP 

predictions.  It is important also to note that excellent correlation between analytic and 

numerical predictions has been achieved here for relatively large Helmholtz numbers (up to 

73 in Fig. 6).  This demonstrates the feasibility of using point collocation at higher 

frequencies and offers an alternative to a hybrid mode/ray model approach of the type 

suggested by Cummings [6]. 

 

In Fig. 7 transmission loss predictions are compared for silencer B, which has a transverse 

dimension double that of silencer A (see Table 1), and a different splitter width.  It is evident 

in Fig. 7 that the agreement between the two methods is again very good, at least up to a 

frequency of approximately 1250 Hz.  Above 1250 Hz the analytic mode matching technique 

fails (seen as noise in Fig. 7).  This is due to one or more roots of the dispersion relation, 

0)( =sK  (see Eq. (53)) being missed during the numerical root finding procedure.  Although 
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many of the higher order modes contribute little to the overall axial sound attenuation in the 

far field, they may be vital in accurately constructing the analytic pressure and velocity fields 

in the near field, i.e. the inlet and outlet planes.  Hence these modes are required to accurately 

enforce the relevant matching conditions when using an analytic approach.  Thus, missing 

even one mode may have a significant (and unpredictable) effect on the predicted sound field, 

see [19] where this issue is discussed further.  Moreover it is not surprising that, given the 

overall dimensions of silencer B, modes have been missed at frequencies above 1250 Hz.  It 

is noticeable, however, that the analytic solution fails here at a Helmholtz number lower than 

that seen for silencer A, indicating that the ease of locating roots to the dispersion relation 

depends on the splitter geometry as well as overall duct dimensions.  No such problems are 

apparent with the point collocation technique and stable, plausible, transmission loss 

predictions are evident up to a frequency of 4 kHz.  Again, the EMED and EMP predictions 

are broadly comparable to one another, especially at higher frequencies, and the EMA 

predictions are consistently lower. 

 

In Fig. 8 predictions are presented for silencer C (see Table 1) which has the same duct 

dimensions as silencer A, but contains a relatively narrow airway and a much higher material 

flow resistivity.  Again the point collocation method provides predictions comparable in 

accuracy to analytic mode matching over the frequency range in which the analytic 

predictions are valid (in this case up to 350 Hz).  Furthermore, for frequencies up to 4 kHz 

the point collocation predictions appear stable and plausible.  It is noticeable that for this 

silencer very sharp changes in transmission loss are evident close to modal cut-on frequencies 

in the inlet/outlet ducts. 
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So far the performance of the point collocation technique has been examined solely in terms 

of silencer transmission loss.  Although transmission loss is normally used to quantify 

silencer performance, it represents only a simple power balance and so may obscure detailed 

silencer behaviour.  To compare analytic and numerical modelling techniques more closely it 

is useful also to analyse predictions of the axial and radial sound pressure distribution 

[computed directly from Eqs. (6)-(8)].  In Fig. 9 the relative axial sound pressure level is 

shown for the centreline ( 0=y ) of silencer A at a frequency of 500 Hz.  Clearly, excellent 

agreement between point collocation and analytic mode matching is evident: the two curves 

overlap.  Fig. 9 also demonstrates the influence of the porous material and, on the duct centre 

line, one may observe a reduction in sound pressure level of approximately 55 dB.  In Fig. 10 

the transverse sound pressure distribution is shown at axial locations of 0=x , 2Lx =  and 

Lx = , for silencer A at 500 Hz.  Again, very good agreement between point collocation and 

analytic mode matching is evident, and the two sets of data overlap in a fashion similar to that 

seen in earlier plots.  Figs. 9 and 10 demonstrate the successful implementation of the 

matching conditions: here analytic and numerical predictions agree to at least 3 decimal 

places at 0=x  and 1 decimal place at Lx = .  Fulfilment of the pressure gradient boundary 

conditions is harder to judge in Figs. 9 and 10.  These conditions are also harder to enforce 

accurately: at 0=x  numerical and analytic solutions agree here to within 1 decimal place and 

at Lx =  to within approximately 0.2 dB/m.  This agreement can be improved by increasing 

the number of modes used in the analytic solution, and the number of collocation points in 

the numerical solution, but this will be at the cost of increased CPU time.   

 

Finally, a three dimensional view of the sound pressure field in silencer A is presented in 

Figs. 11 and 12 (constructed from point collocation predictions with 65 == sc nn ).  These 

two figures depict the sound pressure field close to modal cut-on frequencies in the inlet duct 
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and demonstrate the complex nature of the sound field, especially close to the silencer 

discontinuities.  Moreover, as pointed out by Mechel [11], the complex nature of the sound 

pressure distribution warns against field measurements where the sound pressure levels are 

taken only from one or two points in front of or behind the silencer. 

 

5.  CONCLUSIONS 

 

The efficacy of point collocation as a tool for studying large dissipative silencers has been 

examined here.  Transmission loss predictions obtained using point collocation were 

compared against "benchmark" exact analytic mode matching predictions.  Over the 

parameter range in which the exact method is valid, excellent agreement between the two 

methods is observed even for large dissipative silencers.  It may be concluded that, provided 

the finite element mesh and associated collocation points are chosen using a normal 

adaptation procedure, point collocation offers a computationally efficient, reliable and 

accurate method for studying dissipative silencers in general.  Although the point collocation 

method is restricted to axially uniform silencers, it is applicable to those of arbitrary cross-

section and/or a large transverse dimension. 
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Table 1. 

Data for Silencers 

Silencer Length 

L  (m) 

Width 

b2 (m) 

 

1a  

 

2a  

Material Flow Resistivity 

σ (MKS Rayls/m) 

A 
2 2 0.25 0.5 8000 

B 
2 4 0.4 1.2 8000 

C 
2 4 1.25 1.5 16000 

 

 

 

Table 2. 

Comparison between numerical and analytic eigenvalues. 

Mode Analytic  Finite Element 

Error in 

real part 

(%) 

 Real Imaginary Real Imaginary  

1 0.245192 1.045951 0.223072 1.055412 9.02 

2 0.833424 0.593330 0.885459 0.541869 6.34 

3 0.894753 1.598022 0.894820 1.597759 0.01 

4 0.924533 1.504441 0.924229 1.500974 0.03 

5 1.019494 1.357102 1.020888 1.341760 0.137 

6 1.430482 0.923567 1.634150 0.800204 14.24 

7 1.765143 0.671366 2.240622 0.519500 26.94 

8 2.104025 0.611501 2.810752 0.444239 33.59 

9 2.358073 0.215525 2.975040 0.162507 26.16 
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Fig. 1. (a) Plan view of silencer 
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Fig. 1. (b) Silencer Cross-section 

 

 

 



 41 

 

 

 

 

 

Fig. 2.  Predicted transmission loss for silencer A:  , analytic mode matching, EMED, 

( 32=tn );      , point collocation, EMED, ( 25 ,5 === sac nnn );   -    -   , point 

collocation, EMED, ( 125 ,25 === sac nnn ). 
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Fig. 3.  Collocation points chosen for predictions shown in Fig. 2. 
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Fig. 4.  Predicted transmission loss for silencer A:  , analytic mode matching, EMED, 

( 32=tn );      , point collocation, EMED, ( 9 === sac nnn );   -    -   , point 

collocation, EMED, ( 25 === sac nnn ); - - - - - , point collocation, EMED, 

( 65 === sac nnn ), overlays analytic solution. 
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Fig. 5.  Predicted transmission loss for silencer A at 1 kHz:  , analytic mode matching, 

EMED ( 32=tn );      , point collocation, EMED, ( sc nn  = ). 
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Fig. 6.  Predicted transmission loss for silencer A:  , EMED;   -    -   , EMA;   

   , EMP; + , plane wave.  In each case, analytic solution ( 32=tn ) overlays point 

collocation ( 65 == sc nn ). 
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Fig. 7.  Predicted transmission loss for silencer B:  , EMED;   -    -   , EMA;   

   , EMP.  In each case, analytic solution ( 64=tn ) overlays point collocation 

( 97 == sc nn ). 
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Figure 8.  Predicted transmission loss for silencer C:  , EMED;   -    -   , EMA; 

     , EMP.  In each case, analytic solution ( 64=tn ) overlays point collocation 

( 97 == sc nn ). 
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Fig. 9.  Axial sound pressure level for silencer A for 0=y  and Hz 500=f :  , 

analytic mode matching, EMED, ( 64=tn );      , point collocation, EMED, 

( 65 == sc nn ). 
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Fig. 10.  Transverse sound pressure level for silencer A, at 0=x , 2Lx = , and Lx = , at 

Hz 500=f :  , analytic mode matching, EMED, ( 64=tn );      , point 

collocation, EMED, ( 65 == sc nn ). 
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Fig. 11.  Sound pressure level for silencer B, EMED, at Hz 258=f  ( 65 == sc nn ). 
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Figure 12.  Sound pressure level for silencer B, EMED, at Hz516=f  ( 65 == sc nn ) 

 

 

 


