1	SI: ENPE 2017 - Short Communication
2	
3	Use of magnetic powder to effectively improve the performance of sequencing
4	batch reactors (SBRs) in municipal wastewater treatment
5	Yi Liu ^{a,b,1} , Jixiang Li ^{a,c,1} , Wenshan Guo ^d , Huu Hao Ngo ^{d,*} , Jiajun Hu ^e , Min-tian Gao ^e
6	^a Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
7	^b College of Sciences, Shanghai University, Shanghai 200444, China
8	^c State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic
9	University, Tianjin 300387, China
10	^d Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering,
11	University of Technology Sydney, Sydney, NWS 2007, Australia
12	^e Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai
13 14	200444, China
15	¹ equal contribution
16	*Corresponding author: School of Civil and Environmental Engineering, University of Technology,
17	Sydney (UTS), P.O. Box 123, 15 Broadway, Ultimo, NSW 2007, Australia. Tel.: +61 295142745. Fax:
18	+61 295142633. E-mail address: h.ngo@uts.edu.au or ngohuuhao121@gmail.com
19	Abstract
20	This study aims to investigate the effect of adding magnetic powder in the sequencing
21	batch reactor (SBR) on the reactor performance and microbial community. Results
22	indicated that, the magnetic activated sludge sequencing batch reactor (MAS-SBR) had
23	7.76% and 4.76% higher ammonia nitrogen (NH ₄ ⁺ -N) and chemical oxygen demand
24	(COD) removal efficiencies than that of the conventional SBR (C-SBR). The
25	MAS-SBR also achieved 6.86% sludge reduction compared with the C-SBR.
26	High-throughput sequencing demonstrated that the dominant phyla of both SBRs
27	(present as ≥1% of the sequence reads) were <i>Protebacteria</i> , <i>Bacteroidetes</i> , <i>Chloroflexi</i> ,
28	Saccharibacteria, Chlorobi, Firmicutes, Actinobactoria, Acidobacteria, Planctomycetes
29	and unclassified _Bacteria. The relative abundance of Protebacteria and Bacteroidetes
30	simultaneously declined whereas the other 8 phyla increased following the addition of

31	magnetic powder. Adding magnetic powder in the SBR significantly affected the
32	microbial diversity and richness of activated sludge, consequently affecting the reactor
33	performance.
34	Keywords: Magnetic activated sludge, sequencing batch reactor, sludge reduction,
35	microbial diversity and richness, high-throughput sequencing
36	1. Introduction
37	Sequencing batch reactor (SBR) has been widely used in municipal and industrial
38	wastewater treatment, as it provides several advantages such as the flexibility of
39	process, cost effectiveness, and high biodegradation efficiency (Singh and Srivastava,
40	2010). However, the sludge generated in the SBR process is almost 0.3-0.5 g dry
41	biomass produced per g soluble COD removed, and the treatment expense of excessive
42	sludge accounts for as much 60% of the total plant operation costs (Ying et al., 2010). It
43	should be realized currently that finding out the efficient and eco-friendly methods to
44	minimize excess sludge production is of great importance. Recently, researchers (Nazif
45	et al., 2016; Li et al., 2016; Raj et al., 2013) achieved successfully excess sludge
46	reduction (20-70%) using oxic-settling-anoxic (OSA) system, metabolic uncouplers and
47	anaerobic/anoxic/oxic (AAO) system. However, these methods cannot avoid the
48	drawbacks such as additional capital, operating costs, and potentially environmental
49	impact as a part of chemical uncouplers are difficult to metabolic and will cause
50	uncertain effects on human health eventually.
51	Considering its environmentally friendly and positive magnetic bio-effect, the

52	magnetic activated sludge (MAS) process has been used to improve reactor
53	performance, especially sludge reduction. Ji et al. (2010) and Łebkowska et al. (2011)
54	discovered that the static magnetic field exerted a positive effect on activated sludge
55	including biomass growth, dehydrogenase activity and organic matter biodegradation.
56	Ma et al. (2017) reported that 10-60 mg/L Fe ₃ O ₄ nanoparticles improved denitrification,
57	phosphorus removal and enzymatic activity. Liu et al. (2015) compared the
58	conventional activated sludge (CAS) and the MAS processes for the removal of
59	pollutants. Results showed that adding the magnetic powder had no negative influence
60	on the growth of activated sludge, resulting in higher ammonia nitrogen removal
61	efficiency (88.68±7.98%). Yao et al. (2013) developed a novel magnetic carrier with
62	surface magnetic field of 4 mT to study the magnetic enhanced bio-effect on
63	nitrification in sequencing batch biofilm reactors. They revealed that nitrite and
64	ammonia oxidation activities in biofilm were promoted in the magnetic carrier reactor
65	compared with non-magnetic carrier reactor. Ying et al. (2010) also obtained an average
66	of 91% COD removal efficiency when using the MAS process. Furthermore, they found
67	that the MAS process could possibly maintain high MLVSS concentration and lower
68	the sludge loading rate, and consequently resulted in low sludge production. Zhou et al.
69	(2015) developed a kind of modified Fe ₃ O ₄ nanoparticles as an efficient biomimic
70	catalyst for promoting activated sludge anaerobic hydrolysis,, Their results indicated
71	that sludge reduction efficiency increased from an initial 17.0% to 35.3% under optimal
72	conditions.

73	To the best of our knowledge, the biodegradation process depends on the
74	microorganisms in the bioreactor, thus we should pay more attention to the microbial
75	communities involved for providing insight into how microorganisms influence reactor
76	performance. Especially, with the rapid development of modern molecular biological
77	methods, such as high-throughput sequencing, it is easier to analyze the complex
78	microbial communities. (Neoh et al., 2017; Zhang et al., 2016; Yuan et al., 2016).
79	This study aims to evaluate the use of magnetic powder for enhancing pollutants
80	removal as well as reducing sludge production in the SBR. Further, high-throughput
81	sequencing technology served to analyze the microbial community and composition in
82	the SBR, in order to reveal the impact of added magnetic powder on the microbial
83	communities and how to improve the performance of SBR.
84	2. Materials and methods
85	2.1 SBR and operating conditions
86	Two SBRs used in this study consisted of two aerobic reactors (each having an
87	effective volume of 4 L). One was a MAS sequencing batch reactor (MAS-SBR) with
88	1g/L added magnetic powder (9.119µm, Sinopharm Chemical Regent Co., Ltd, China),
89	and the other was a conventional SBR (C-SBR) without adding magnetic powder.
90	Synthetic wastewater was used as feed to both SBRs. The reactors were seeded with
91	aerobic activated sludge from a local municipal wastewater plant (Bailonggang
92	Wastewater Treatment Plant, Shanghai, China), and operated under the same conditions
93	for 60 days. The aeration intensity was set at 0.75 m ³ / h and the hydraulic retention time

94	(HRT) was 8 h with extra 1 h setting time. No sludge waste occurred throughout 60
95	days from both reactors, except samples taken to measure the suspended solids. The
96	experiment temperature was conducted at 28-32 °C.
97	2.2 Raw wastewater and physiochemical analysis
98	Raw wastewater was prepared every day referring to Liu et al. (2005). Chemical
99	oxygen demand (COD), ammonia-nitrogen (NH4+-N) and mixed volatile suspended
100	solids (MLSS) were measured according to Chinese NEPA standard methods (2002).
101	The influent COD were 290.1±7.4 mg/L and 287±4.57 mg/L for the C-SBR and
102	MAS-SBR, respectively. The influent NH_4^+ -N were 65.7 \pm 2.7 mg/L and 64.6 \pm 2.15
103	mg/L for the C-SBR and the MAS-SBR, respectively. The particle sizes of magnetic
104	powder and sludge samples were measured using a static light scattering particle size
105	analyzer (Malvern 2000, Britain). The measurement of sludge volume after 30 min of
106	settling (SVI ₃₀) was used for describing sedimentation performance of sludge. The
107	sludge activity was measured by pH value method whose principle is the concentration
108	of CO ₂ accumulated by cellular respiration (Li et al., 2007)
109	2.3 Microbial community and diversity analysis
110	2.3.1 DNA extraction and PCR amplification
111	To comprehensively analyze the microbial communities in the SBRs, 2 mixed liquor
112	samples (one sample for each) were collected from the C-SBR and the MAS-SBR at the
113	end of the experiments for Illumina MiSeq sequence analysis. Microbial DNA was
114	extracted using the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.)

115	according to manufacturer's protocols.
116	2.3.2 454 sequencing and phylogenetic classification
117	Amplicons were extracted, purified and quantified according to the manufacturer's
118	instructions. Purified amplicons were pooled in equimolar and paired-end sequenced (2
119	\times 250) on an Illumina MiSeq platform. The raw reads were deposited into the NCBI
120	Sequence Read Archive (SRA) database (Accession Number: SRP101681). Operational
121	Units (OTUs) were clustered with 97% similarity using UPARSE, and chimeric
122	sequences were identified and removed using UCHIME. The taxonomy of each 16S
123	rRNA gene sequence was analyzed by RDP Classifier against the silva (SSU123)16S
124	rRNA database using the confidence threshold of 70%. According to the rarefaction
125	curves, Shannon and Chao indices were calculated to compare the microbial diversity
126	and richness between the C-SBR and the MAS-SBR samples.
127	3. Results and Discussion
128	3.1 The performance of the SBRs
129	After nearly one month acclimatization, both SBRs successfully reached steady state.
130	The COD and NH ₄ ⁺ -N removals are provided in Figure 1. It can be seen from Figure 1
131	that adding magnetic powder in the SBR had no negative impact on the removals of
132	COD and NH ₄ ⁺ -N. The average COD and NH ₄ ⁺ -N removal efficiencies increased from
133	83.60±11.02% to 88.36±7.43%, 78.54±18.59% to 86.3±13.13%, respectively. Thus,
134	adding magnetic powder in the SBR successfully enhance the removal of the pollutants.
135	3.2 Activated sludge properties

136	At the beginning of the experiments, the MLSS concentrations of both SBRs were
137	3.146±0.055 g/L. By the end, the MLSS concentrations of the C-SBR and the
138	MAS-SBR reached up to 5.376±0.067 g/L and 5.160±0.061 g/L respectively. The
139	amount of sludge increased by 70.88% in the C-SBR and 64.02% in the MAS-SBR,
140	suggesting that 6.86% sludge reduction was obtained by adding magnetic powder in the
141	SBR. At the same time the SVI ₃₀ tests demonstrated that adding magnetic powder could
142	improve the sedimentation property of sludge. In other words, the possibility of sludge
143	bulking can be partly decreased by adding magnetic powder. Meanwhile, according to
144	the pH value method testing, the sludge activity measured as $\Delta [\text{CO}_2]$ increased from
145	0.088 μmol/g·min of the C-SBR to 0.119 μmol/g·min of the MAS-SBR, indicating that
146	adding magnetic powder in the SBR had a positive effect on sludge activity. The
147	average particle size distribution size was $40.821\mu m$ for the C-SBR and $37.765\mu m$ for
148	the MAS-SBR. Thus, adding magnetic powder had little bioflocculation effect on
149	activated sludge. It can be inferred that magnetic bio-effect may affect the microbial
150	communities in the SBRs, and further improved the reactor performance. Thus it is
151	necessary to further analyze the diversity, composition and dominant species of
152	microbial communities in the SBRs.
153	3.3 Microbial community and diversity analysis
154	3.3.1 Overall analysis of amplicon sequencing
155	The microbial community and composition of activated sludge samples in the SBRs
156	were investigated through high-throughput sequencing. After necessary quality filtering,

157	the valid sequences of activated sludge samples in the C-SBR and the MAS-SBR were
158	32454 and 37494, respectively. Alignment and clustering of the sequences showed that
159	the OTUs based on a 97% sequence identity of the C-SBR and the MAS-SBR were 492
160	and 493, respectively. In summary, the microbial communities in the SBRs consist of
161	30 phyla, 58 classes, 95 orders, 156 families, 223 genera, 344 species (relative
162	abundance≥0.1%). The rarefaction curves approached the plateau phase at 400 reads for
163	both samples, suggesting that the sequencing depth was sufficient to capture most of the
164	microbial diversity. Also, the Good's coverage of the sludge samples in both SBRs were
165	more than 0.998, indicating that the sequence library obtained from each sludge sample
166	could cover the microbial diversity of the SBR. Moreover, Shannon indices showed that
167	the MAS-SBR (4.8) contained higher level of community diversity than the C-SBR
168	(4.59) whereas Chao indices confirmed the opposite result in species richness.
169	3.3.2 Taxonomic classification of the microbial communities
170	To better understand the microbial communities of the C-SBR and the MAS-SBR
171	systems, the sequence reads were taxonomically classified and the relative abundance
172	was calculated at the phylum and genus level for each sample. The results are visualized
173	in Figure 2 and Table 1. At the phylum level, the top 10 dominant phyla present as ≥1%
174	of the sequence reads in the C-SBR and the MAS-SBR were similar, including
175	Proteobacteria (33.9% and 28.1%), Bacteroidetes (32.7% and 26.0%), Chloroflexi
176	(11.9% and 18.6%), Saccharibateria (5.0% and 5.1%), Chlorobi (4.2% and 5.4%),
177	Firmicutes (4.2% and 4.5%), Actinobactoria (2.95% and 3.85%), Acidobacteria (2.05%

178	and 3.58%), Planctomycetes (1.02% and 1.43%) and unclassified_Bacteria (1.11% and
179	1.45%), respectively. It can be seen that the relative abundance of <i>Protebacteria</i> and
180	Bacteroidetes simultaneously declined from 33.9% and 32.7% to 28.1% and 26.0%,
181	respectively, whereas the other phyla increased by 6.7%, 0.1%, 1.2%, 0.3%, 0.9%, 0.8%
182	0.41% and 0.34%, respectively. It is reported that <i>Bacteroidetes</i> play a critical role in
183	degradation of polysaccharides and starch which are considered to be COD in
184	wastewater (Shu et al., 2015). Although the relative abundance of Bacteriodetes
185	declined by 6.7% with added magnetic powder, there is no negative effect on COD
186	removal efficiency, suggesting functional-sosurplus Bacteriodetes existed in both SBRs.
187	Chloroflexi have been identified as the major participants in the biological treatment in
188	digesting long chain fermenting sugars into short chain fatty acids precursors (Yamada
189	and Sekiguchi, 2009). Herein, the increased abundance of <i>Chloroflexi</i> in the MAS-SBR
190	may provide evidence for improved COD removal. At the genus level, the relative
191	abundance of Nitrosomonas fell from 0.017% in the C-SBR to 0.004% in the
192	MAS-MBR, whereas the relative abundance of Nitrosomonadaceae, Nitrospira and
193	Candidatus_Nitrotoga increased from 0.665%, 0.065% and 0.017% in the C-SBR to
194	0.743%, 0.128% and 0.021% in the MAS-MBR, respectively. Nitrosomonas and
195	Nitrosomonadaceae are related to the process of ammonia oxidization to nitrite, and
196	Nitrospira and Candidatus_Nitrotoga are closely associated with the process of nitrite
197	oxidation to nitrate (Ma et al., 2017). Thus, the genera variation consequently affected
198	the processes of ammonia oxidation and nitrite oxidation in the SBR, which provided

199	evidence of 7.76% higher NH ₄ ⁺ -N removal efficiency by adding magnetic powder in the
200	SBR. Similarly, the relative abundance of Clostridium_sensu_stricto_13 increased from
201	3.28% in the C-SBR to 3.94% in the MAS-SBR. It has been reported that the genera
202	Clostridia had the ability to degrade biomass and fermentation of the wastewater (Lynd
203	et al., 2002). Maybe it can be used to explain the 6.68% sludge reduction by the
204	addition of magnetic powder in the SBR. Compared to the C-SBR, the relative
205	abundances of some genera (e.g. Simplicispira, Commonadaceae, Thauera,
206	Chryseobacterium and Saprospiaceae) decreased or increased in the MAS-SBR. Thus,
207	adding magnetic powder in the SBR significantly affected the microbial diversity and
208	richness of activated sludge, and consequently affected the reactor performance.
209	4. Conclusion
210	Adding magnetic powder in the SBR has definite potential in removal pollutants and
211	reducing sludge production. The differences between the C-SBR and the MAS-SBR
212	were clearly observed, such as COD and NH ₄ ⁺ -N removals, sludge properties and
213	dominant bacteria in activated sludge. High-throughput sequencing helped to
214	understand the effect of adding magnetic powder on the reactor performance and
215	microbial community in activated sludge.
216	
217	More detailed information such as PCR amplification, compositions of synthetic
218	wastewater, the SV_{30} results during the operation and SEM images of C-SBR and
219	MAS-SBR can be found in Supplementary Material.

220 Acknowledgements

- The authors appreciate the financial support of the National Natural Science
- Foundation of China (No. 51408588 and No. 21307093), the Youth Innovation
- 223 Promotion Association (No. 2017353), the Fund for Science and Technology
- Development of Pudong (No. PKJ2014-C12), the State Key Laboratory of Separation
- Membranes and Membrane Processes (Tianjin Polytechnic University, No. M2-201605),
- the Scientific Research Projects of Shanghai Science and Technology Committee (No.
- 227 14540500600 and No. 16391902000). The authors are also grateful for the joint
- 228 collaboration among SARI, Shanghai University and UTS.

229 References

- 230 1. Ji, Y.L., Wang, Y.H., Sun, J.S., Yan, T.Y., Li, J., Zhao, T.T., Yin, X.H., Sun, C.J.,
- 2010. Enhancement of biological treatment of wastewater by magnetic field.
- 232 Bioresour. Technol. 101, 8535-8540.
- 23 2. Łebkowska, M., Rutkowskanarożniak, A., Pajor, E., Pochanke, Z., 2011. Effect of a
- static magnetic field on formaldehyde biodegradation in wastewater by activated
- 235 sludge. Bioresour. Technol. 102, 8777-8782.
- 236 3. Li, J.X., Qiao, L., Zhao, J.H., He, S.Y., Hu, Z.T., Zhang, S.L., 2007. Application of
- sludge activity measurement by pH value method in engineering. Technology of
- 238 water treatment. 33 (12), 62-65.
- 239 4. Li, P., Li, H.C., Li, J., Guo, X.S., Liu, J.X., Xiao, B.Y., 2016. Evaluation of sludge
- reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic

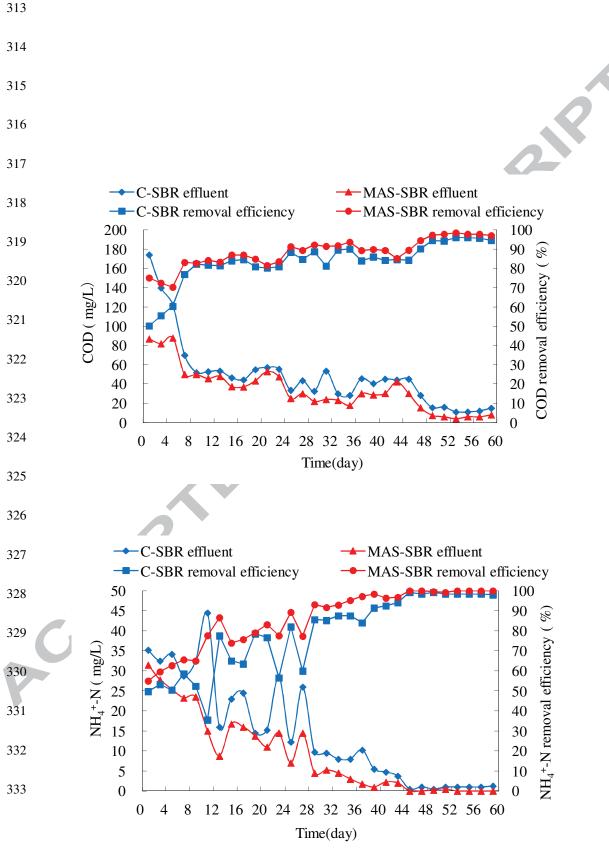
- process. Bioresour. Technol. 221, 31-36.
- 5. Liu, R., Huang, X., Xi, J.Y., Qian, Y., 2005. Microbial behaviour in a membrane
- bioreactor with complete sludge retention. Process Biochem. 40, 3165-3170.
- 6. Liu, Z.M., Liang, Z., Wu, S.G., Liu, F., 2015. Treatment of municipal wastewater
- by a magnetic activated sludge device. Desalin. Water Treat. 53, 909-918.
- 246 7. Lynd, L.R., Weimer, P.J., Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose
- 247 utilization: fundamentals and biotechnology. Microbiolo. Mol. Biol. R. 66, 506-577.
- 248 8. Ma, B., Wang, S., Li, Z.W., Gao, M.C., Li, S.S., Guo, L., She, Z.L., Zhao, Y.G.,
- Zheng, D., Jin, C.J., Wang, X.J., Gao, F., 2017. Magnetic Fe₃O₄ nanoparticles
- 250 induced effects on performance and microbial community of activated sludge from a
- sequencing batch reactor under long-term exposure. Bioresour. Technol. 225,
- 252 377-385.
- 9. Nazif, S., Mehrdadi, N., Zare, S., Mosavari, S., 2016. Improvement and prediction
- of OSA system performance in sludge reduction through integration with thermal
- and mechanical treatment. Water Sci. Technol. 74(9), 2087-2096.
- 256 10. Neoh, C.H., Yung, P.Y., Noor, Z.Z., Razak, M.H., Aris, A., Din, M.F.M., Ibrahim,
- 257 Z., 2017. Correlation between microbial community structure and performances of
- 258 membrane bioreactor for treatment of palm oil mill effluent. Chem. Eng. J. 308,
- 259 656-663.
- 260 11. Raj, S.E., Banu, J.R., Kaliappan, S., Yeom, I.-T., Kumar, S.A., 2013. Effects of
- sidestream, low temperature phosphorus recovery on the performance of

anaerobic/anoxic/oxic systems integrated with sludge pretreatment. Bioresour.

262

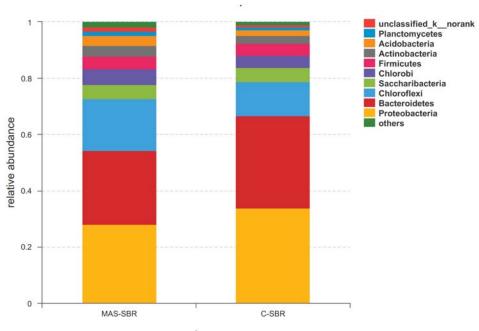
281

282


326-334.

Technol. 140, 376-384. 263 264 12. Shu, D.T., He, Y.L., Yue, H., Wang, Q.Y., 2015. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment 265 plants as revealed by 454-high-throughput pyrosequencing. Bioresour. Technol. 186, 266 163-172. 267 13. Singh, M., Srivastava, R.K., 2010. Sequencing batch reactor technology for 268 biological wastewater treatment: a review. Asia-Pac. J. Chem. Eng. 6, 3-13. 269 14. Yamada and Sekiguchi, 2009. Cultivation of uncultured chloroflexi subphyla: 270 significance and ecophysiology of formerly uncultured chloroflexi 'subphylum i' 271 with natural and biotechnological relevance. Microbes Environ. 24(3), 205-16. 272 273 15. Yao, C., Lei, H.Y., Yu, Q., Li, S.P., Li, H.L., Chen, K., Zhang, X.H., 2013. Application of magnetic enhanced bio-effect on nitrification: a comparative study of 274 275 magnetic and non-magnetic carriers. Water Sci. Technol. 67(6), 1280-1288. 16. Ying, C., Umetsu, K., Ihara, I., Sakai, Y., Yamashiro, T., 2010. Simultaneous 276 removal of organic matter and nitrogen from milking parlor wastewater by a 277 magnetic activated sludge (MAS) process. Bioresour. Technol. 101, 4349-4353. 278 279 17. Yuan, Y., Liu, J.J., Ma, B., Liu, Y., Wang, B., Peng, Y.Z., 2016. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge 280

fermentation products to sequencing batch reactor (SBR). Bioresour. Technol. 222,


283	18. Zhang, Y., Li, B., Xu, R.X., Wang, G.X., Zhou, Y., Xie, B., 2016. Effects of
284	pressurized aeration on organic degradation efficiency and bacterial community
285	structure of activated sludge treating saline wastewater. Bioresour. Technol. 222,
286	182-189.
287	19. Zhou, L.F., Huang, B.B., Huang, D.W., Niu, C.G., Zeng, G.M., Ruan, M., Zhang,
288	X.G., 2015. A feasible strategy for promoting activated sludge hydrolysis by using
289	ironporphyrin modified Fe ₃ O ₄ nanoparticles as an efficient biomimic catalyst. Chem
290	Eng. J. 280, 248-255.
291	

292	
293	
294	
295	Figure Captions
296	Figure 1: Effect of adding magnetic powder in the SBR on COD and NH ₄ ⁺ -N removals
297	Figure 2: Taxonomic classification of the microbial communities at phylum level in
298	both SBRs, present as $\geq 1\%$ of the sequence reads in at least one sample.
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	

Fig. 1.

Fig. 2.

347

348

349

350

351

352 **Table 1**

353 The comparison of the main genera in the C-SBR and the MAS-SBR

Genera	C-SBR (%)	MAS-SBR (%)
Nitrosomonas	0.017	0.004
Nitrosomonadaceae	0.665	0.743
Nitrospira	0.065	0.128
Candidatus_Nitrotoga	0.017	0.021
Clostridium_sensu_stricto_13	3.28	3.94
Simplicispira	4.08	2.78
Commonadaceae	6.67	6.47
Thauera	3.30	1.66
Chryseobacterium	12.25	7.16
Saprospiaceae	8.86	8.14
Anaerolineaceae	5.24	9.02
Ardenticatenia	2.53	3.33
Saccharibacteria	5.16	5.01
PHOS-HE36	2.07	2.82

354

Highlights

356

355

- The effect of magnetic powder addition on the performance of MAS-SBR was
- 358 studied
- Adding magnetic powder could enhance the removal of pollutants and sludge
- 360 reduction
- Magnetic powder addition significantly enriched the microbial diversity