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Abstract
Estimation of covariance function parameters of the error process in the presence of an unknown
smooth trend is an important problem because solving it allows one to estimate the trend
nonparametrically using a smoother corrected for dependence in the errors. Our work is motivated
by spatial statistics but is applicable to other contexts where the dimension of the index set can
exceed one. We obtain an estimator of the covariance function parameters by regressing squared
differences of the response on their expectations, which equal the variogram plus an offset term
induced by the trend. Existing estimators that ignore the trend produce bias in the estimates of the
variogram parameters, which our procedure corrects for. Our estimator can be justified
asymptotically under the increasing domain framework. Simulation studies suggest that our
estimator compares favorably with those in the current literature while making less restrictive
assumptions. We use our method to estimate the variogram parameters of the short-range spatial
process in a U.S. precipitation data set.
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1. INTRODUCTION
This paper is devoted to estimation of covariance function parameters from data containing
an unknown smooth trend. This important problem arises in nonparametric regression
models

(1)
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where g(·) is the unknown smooth regression function, ε(·) is the error process with a
covariance function C(·, ·; φ) parameterized by a vector φ and y(xi) is the observation at the
design point xi for i = 1, …, n. We are interested in the models where the indices xi belong
to a subset of the d-dimensional Euclidean space. Estimation of φ subsequently allows one
to select an appropriate amount of smoothing in order to estimate g(·) using a local smoother
corrected for dependence in ε [4, 11]. Failure to correct the smoother for dependence in ε
results in undersmoothed estimates [11] when the errors are positively correlated.

In the current literature surveyed in [11], two classes of estimators can be identified: (i)
those based on the differences of observations y(xi), e.g., [7], and (ii) those based on
variogram fitting using residuals from a preliminary non-parametric model fit with the
amount of smoothing chosen as in the case with independent errors, e.g., [4]. In the first
class, the decision to use a particular difference between the responses y(xi) and y(xj ) is
based on the distance between xi and xj. However, we are not aware of any difference-based
estimators when the dimension of xi exceeds 1. As for the second class, the use of residuals
from a preliminary fit that assumes independent errors may be improper: following [11], the
residuals may not have the same mean and dependence structure as the errors ε(xi) when the
errors are positively correlated because the local smoother not corrected for dependence in
errors is prone to undersmoothing.

In this paper, we develop an estimator of φ based on fitting a regression model to the
squared differences of observations, sij = {y(xi) − y(xj )}2. To obtain a model for sij,
represent

(2)

The term E[{ε(xi) − ε(xj)}2] is known as the variogram of the process ε. When g(·) is
constant, an estimator of φ obtained by regressing the squared differences sij on the
corresponding theoretical values of the variogram is known as a variogram cloud estimator
[10]. Whenever g(·) is non-constant, the second term in the sum (2) creates a bias, which our
estimator will correct for. In contrast with the existing difference-based estimators, we do
not assume that the indices xi are one-dimensional. Unlike in the work of Tong and Wang
[15], we do not assume independence of the errors ε(xi), but when the errors are independent
and homoscedastic, Tong and Wang’s variance estimator arises as a special case of ours.
Our work is motivated by — but is not limited to — spatial statistics, where g(·) represents
an unknown long-range smooth spatial trend and ε captures the short-range variability of the
process y. Beyond smoothness of g(·), we make standard assumptions of the expanding
domain asymptotic framework [9], which allow one to consistently estimate the variogram
in the simpler models where the signal is observed without the trend.

This paper is organized as follows. In Section 2, we develop our bias-corrected variogram
cloud estimator, show its connections with a classical binned estimator, and provide
justifications. In Section 3, we report results of simulation experiments to evaluate the finite-
sample performance of our estimator and, whenever possible, to compare it with existing
estimators. Subsequently, we use our procedure to estimate the variogram parameters of the
short-range spatial dependence process in a U.S. precipitation data set. Technical and
supplementary details are provided in the Appendix.
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2. BIAS-CORRECTED VARIOGRAM ESTIMATOR
2.1 Variogram cloud estimator in one dimension

In this section, we develop a bias-corrected estimator of the variogram parameters that is
based on fitting a least squares model to the squared differences of pairs of observations
y(xi) in (1).

Consider a nonparametric regression model (1) with the design points {x1, …, xn} in [0, 1].
We require that the first four moments of ε(xi) are finite and that g(·) is continuously
differentiable. Since our goal is estimation of the variogram and its parameters, we operate
under the expanding domain asymptotic framework [3]. For simplicity, one can assume, as
in [7], a stationary variogram model

This representation is obtained upon rescaling the one-dimensional (expanding) domain
from [0, n] to [0, 1]. For example, γn(xi, xj; φ) = 2σ2{1−exp(−λn|xi − xj |)} for the
exponential variogram model, where φ = (σ2, λ). In the case of an equally-spaced design
with xi = i/n, this is the variogram of an AR(1) process on [0, n], γn(xi, xj; φ) = 2σ2{1−
ρ|i−j|}, where ρ = exp(−λ) is the lag-one correlation.

Replacing the second term in (2) with a Taylor series expansion of g(xi) about xj, we obtain

(3)

Because of the stationarity, we can redefine γn(xi, xj; φ) = γn(aij; φ), where aij = |xi − xj|.

In the case of a general space-filling design in [0, 1] (see [13]), we propose to estimate φ by
nonlinear least squares in the model

(4)

under the assumption that E(eij) = 0. The estimator is obtained as a global minimizer of the
ordinary nonlinear least squares criterion hO(·) with respect to (β, φ), where

(5)

for (i, j) in the adjacency list  = {i < j: aij ≤ (m/n)} for some “radius” m that does not
depend on n. Practical selection of bandwidth in one- and multidimensional index settings is
discussed in the Appendix A.2.

In the following subsections we show that, even though the coefficients of  in the Taylor
series expansion in (3) depend on the xj’s and are unknown, the regression model (4) indeed
effectively corrects for the variogram cloud bias {g′(xj )}2(xi − xj)2 due to not knowing g(·).
Subsequently, we generalize the procedure from one-dimensional to general d-dimensional
indexed random fields.
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2.2 Binning to aggregate the variogram cloud biases
To make the exposition more transparent, we now restrict attention to the setting of equally
spaced design in one dimension, where xi = i/n.

For k = 1, …, m, let , be the classical binned variogram estimator. A
development similar to that used to obtain (3) yields

(6)

where ak = ai,i+k = k/n.

Define . Since

(7)

the dominant term of bias in the binned variogram depends on the variogram cloud biases
only through J.

2.3 Justification of bias-corrected binned variogram estimator

Estimation of the variogram parameters by minimizing  is
equivalent to the following two-step procedure:

1. Holding φ fixed, regress Zk(φ) = Sk − γn(ak; φ) on  to estimate β̂(φ).

2.
Minimize in φ the sum of squared “residuals” . Equivalently,

minimize the criterion , where Im is the identity matrix of size m, H
= bbT/bTb is the “hat” matrix, b = (1, 22, …, m2)T, Z(φ) = {Z1(φ), …, Zm(φ)}T and
||·||2 is the Euclidean vector norm.

Consistency of  follows by

Proposition 1—Assume

A1 V = (V1, …, Vm)T converges in probability to v(φ*) = {γ(1; φ*), …, γ(m; φ*)}T,

where φ* is the true φ and  [9].

A2
 if and only if φ0 = φ1, for all valid φ0φ1.

Then φ̂ converges to φ* in probability.

The proof is outlined in the Appendix A.1.
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2.4 Equivalence of variogram cloud and binned variogram estimation
Consider two nonlinear regression models,

(8)

(9)

along with the two corresponding objective functions

(10)

(11)

where wk = n − k. It can be seen that the estimating equations obtained by differentiating
either hW or hO with respect to (β, φ) are the same, hence the estimation methods that
minimize the weighted binned variogram criterion (10) or the unweighted variogram cloud
criterion (11) are equivalent. If m does not depend on n as assumed in this work, wk = n +
O(1) and estimation by minimizing hW is asymptotically equivalent to minimization of

.

2.5 Extension to multidimensional index settings
We now extend the above one-dimensional procedure to random fields on the d-dimensional
hypercube [0, 1]d. In order to simplify exposition, assume the process is observed on the
lattice  = {0.5, 1.5, …, n1/d − 0.5}d/n1/d.

Repeating the decomposition in (3),

(12)

where uij = (xi −xj )/||xi − xj ||2, ∇ is the gradient operator. Notice that the bias depends not
only on the gradient, but also on the direction uij.

To account for the dependence of the bias on direction, we propose the following
generalization of the one-dimensional binned estimator:

1. Choose a set of directions , for example, if .

2. For each h ∈ :

a. For k = 1, …, m, compute the classical (directional) variogram estimators
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where (hk) = {xi ∈ : xi + hk ∈ }.

b. Define a directional analogue of the column vector Z(φ) of Section 2.3 as
Z(φ; h) = {Z1(φ; h), Z2(φ; h), …, Zm(φ; h)}T, where Zk(φ; h) = Sk(h) −
γn(kh; φ) for k = 1, 2, …, m.

3.
Minimize , where H = bbT/bTb and b = (1, 22, …, m2)T.

Notice that, because the same number of equally-spaced “steps” were taken in each direction
h, the projection matrix H is the same for every direction. More generally, the criterion for
minimization is obtained by projecting Z(φ; h) onto the null space of the squared lags. As in
Sections 2.1 and 2.4, one could consider a procedure based on the variogram cloud points
that lie along a given direction (at least, approximately), rather than the binned variogram.

Asymptotic justification of the procedure in the multidimensional index case is similar to
that in the one-dimensional case of Section 2.3, and is omitted here.

3. NUMERICAL EXPERIMENTS
3.1 Experiments with one-dimensional designs

It can be seen that the estimator of Tong and Wang in [15] is a special case of our variogram
estimator. The model of [15], which appears in (4) with a constant variogram (as a function
of lag), would be misspecified when there is dependence in the errors ε(xi). The primary
goal of this section is to examine the impact of this model misspecification. It is also of
interest to compare our estimator with that in Section 2.2 of [7], where Hall and Van
Keilegom [7] assume that ε is an order-p autoregressive error process in one dimension.
Their procedure, which does not account for the trend explicitly, is based upon estimation of
(i) σ2 as an average of classical semivariogram estimators of γ(m; φ) for “large” lags m =
m1, …, m2, where m1/log(n) → ∞ and m2 = O(n1/2), and of (ii) γ(k; φ) for small values of
k = 1, …, p. The parameters of an AR(p) process are subsequently recovered via Yule-
Walker equations, which, more generally, can be achieved by least squares. Of course, in the
spatial context of most interest to us, the estimator of [7] is not applicable.

We conducted simulations under the model of Section 3 of [7]. We used g(x) = 10 +
12.5x3(1 − 0.5x)3. The errors ε(xi) follow a Gaussian AR(1) process with the variogram
model γn(xi, xj; φ) = 2σ2{1 − exp(−λn|xi − xj |)}, where φ = (σ2, λ). We simulated data for
xi = (i − 0.5)/n, i = 1, 2, …, n for n = 200, 400, 800, 1,600, ρ = exp(−λ) = 0.1, 0.2, …, 0.9
and var{ε(xi)|ε(xi−1)} = 1/16. For each experimental setting, 500 data sets were generated.
The bandwidth parameters are  for the estimators of Tong and Wang in [15] and of
ours, and m1 = n0.4 and  for the estimator of Hall and Van Keilegom as in the
simulations in [7]. We used 3 random starting points in optimization; the solution with the
lowest value of hO was retained.

In Figure 1, we plot the 5th, 50th and 95th normalized sample percentiles of σ2 for the three
estimators; the estimates of var{ε(xi)} were divided by the true variance (1/16)/(1 − ρ2). It is
seen that for data with strong dependence, the estimated σ2 is heavily underestimated by the
Tong and Wang estimator in [15]. When dependence is high, our estimator appears more
variable but less biased than that of [7]. In Figure 2, we plot the corresponding sample
percentiles of estimators of ρ. The plots for the two estimators are very similar to each other,
with our estimator being slightly more variable.

The estimator of Hall and Van Keilegom from [7] effectively ignores the trend, which does
not impact the large-sample performance of their procedure under the assumptions they
make. Although in the above experiment their estimator is well-behaved and the trend is
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indeed negligible, it is of great practical interest whether ignoring the trend compromises the
estimation procedure when the variability in the trend is substantial. We fixed n = 2, 000 and
increased the amount of signal from the trend by using g(x) = c{10+12.5x3(1−0.5x)3},
where c = 2, 4, 8, 16, while keeping the remaining experimental conditions as above. In
Figures 3–4, we plot the percentiles of the estimators of σ2 and ρ for the procedure of [7]
and for ours. The behavior of our estimator barely changes as c increases, while that of the
estimator of [7] deteriorates beyond what is acceptable.

3.2 Experiments with two-dimensional designs
The goal of this section is to assess the performance of our estimator and the impact of
ignoring the trend when estimating the variogram using a two-dimensional test problem
from [4].

The set of design points is  and the number of design points,
n, is a square of an integer. We use the exponential variogram model

, where φ = (σ2, λ). To account for potentially
different magnitudes of g(x) and ε(x), the variance of the noise, σ2, is equal to the second
central moment of g(·) times a multiplicative constant τ. In the experiments of this section,
the values of τ are 0.5, 1.0, 2.0 and the values of ρ = exp(−λ) are 0.25, 0.50, 0.75. For each
experimental setting, 500 data sets were generated.

To estimate the variogram parameters, we use the procedure of Section 2.5 with m = 5 and
, although a greater number of directions and lags could

be considered. Since a stationary variogram is symmetric, i.e., γ(h; φ) = γ(−h; φ), the use of
directions from the first two quadrants is sufficient.

In Tables 1–2, we summarize the results of the experiment with the function g(·) that was
used by [4], g(x1, x2) = sin(2πx1)+4(x2−0.5)2. The focus of their work is local polynomial
regression adjusted for dependence in the error process, not estimation of the variogram
parameters by itself. Given that estimates of the variogram parameters based on the residuals
from a preliminary nonparametric fit to g(·) —under the independence assumption of errors
— can be misleading [11], estimation of the variogram parameters that bypasses estimation
of g(·), such as our present work, is of particular importance.

We estimateed the variogram parameters by minimizing the criterion

 from Section 2.5 and compared them to the estimates from

minimization of the criterion  that ignores the trend. Tables 1 and 2
juxtapose the respective estimates of τ and ρ by the two procedures. The fact that our
procedure uniformly outperforms the one that does not correct for the trend strongly
suggests the importance of bias correction in variogram estimation and provides further
support for our methodology.

4. CASE STUDY: U.S. PRECIPITATION DATA
In this section, we apply our procedure to estimate parameters of the short-range spatial
variability in a large spatial data set of U.S. precipitation in April 1948. The data set is
available as part of the spam package for R and has been used in numerous papers; see
Section 4 of [5] for discussion and references. The data consist of monthly averages of
anomaly, defined as standardized square root of precipitation readings, recorded by n = 5,
909 weather stations that are scattered irregularly over the continental U.S. We converted
the geographical coordinates (latitude and longitude) into rectangular coordinates (in miles
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along the horizontal and vertical axes) through a map projection [2], after which we rounded
the rectangular coordinates of stations to the nearest mile.

Furrer et al. [5] state that the anomaly field is close to being second-order stationary. They
represent the field stochastically as a sum of two independent processes, one with a rapidly
decaying exponential covariance function and another with a slowly decaying one. For a
data set of this size or larger, estimation of covariance function parameters in the presence of
long-range dependence, e.g., by a likelihood-based method, can become computationally
prohibitive due to evaluation and factorization of an n × n covariance matrix. On the other
hand, if the long-range dependence is modeled as being due to an unknown long-range
smooth trend, our method of Section 2 will estimate the parameters of the short-range
process at a much lower cost. Consequently, one can obtain predictions of the overall
anomaly process upon estimating g(·) by a smoothing method that corrects for dependence
in errors [4, 11].

It is notable that our method does not assume that the whole process is stationary in the
mean, which allows one to fit a wider range of models under less stringent assumptions.

To estimate parameters of the exponential covariance function, parameterized as

we rescaled the distance (in miles) so that a unit distance equals 100 miles. The smallest
rectangle that contains the spatial domain has side lengths (28.78, 17.96) after the
transformation. In our parameterization, the parameter values obtained by Furrer et al. in [5]
for σ2 and λ in the short-range process are 0.28 and 2.46, respectively.

To estimate the variogram parameters, it is important to use a set of directions and lags that
“cover” the effective range of the short-range process. For the choice of directions  = {(0,
1), (1, 0), (1, 1), (−1, 1), (2, 1), (−2, 1)}/100 and lags k = 1, 2, …, 70, the estimates for σ2

and λ are around 0.25 and 2.09, respectively. Using a different set of directions and lags to
cover the same spatial range produced similar estimates, which is consistent with the
representation in [5]. Considerably increasing the number of lags results in misleading
parameter estimates because the long-range effect (in the representation of [5]) is getting
partially captured by our short-range variogram model.

5. DISCUSSION AND EXTENSIONS
We have presented a nonlinear least squares estimator of the variogram parameters in
nonparametric regression models with dependent errors. While making fewer assumptions,
our procedure combines merits of the methods developed in [15] and [7], but does not suffer
from their drawbacks. In particular, tractable random fields include temporal, spatial, spatio-
temporal, as well as general random fields with d-dimensional indices, including
multivariate random fields [1]. Under standard regularity conditions of increasing domain
asymptotics, the proposed estimator is consistent, and possesses attractive finite sample
properties, which was studied through simulations. Proof of asymptotic normality along the
lines of [9] is possible, but was not pursued since such results are not indicative of finite-
sample operational characteristics of estimators.

Although we justified our estimator under lattice designs, the methodology extends easily to
scattered data. In particular, it is applicable to spatio-temporal data when site locations are
scattered and, possibly, sparse, but each site produces long readings over time — a scenario
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common in environmental statistics. In fact, this happens in the full precipitation data set, a
subset of which we considered in Section 4: monthly averages are computed for readings
from a network of stations operating, roughly, over the past 100 years [8]. Other famous
spatio-temporal datasets that are spatially sparse but temporally dense include the Irish wind
data [6] and Canadian weather data [12]. In these settings, one would form spatio-temporal
sample variograms for all spatio-temporal lags of interest, but for each choice of a spatial
lag, the binned variograms would be projected onto the null space of the vector of
corresponding squared temporal lags. That is, there is a separate nuisance (i.e., variogram
bias) parameter for each spatial lag.

To improve its efficiency, our estimator based on un-weighted nonlinear least squares can be
extended to weighted or to generalized nonlinear least squares. Since the projection matrix
(Im − H) = QQT, where Q is an m × (m − 1) matrix whose columns form an orthonormal
basis for the null space of bT, one can rewrite the criterion of Section 2.5 as

Replacing the standard Euclidean vector norm ||·||2 with a generalized Euclidean norm

defined for a vector v as  for some positive definite matrix A, one obtains

, where W (φ; h) is the large-sample covariance matrix of QTZ(φ; h)
in the case of generalized least squares, or a diagonal matrix of variances of QTZ(φ; h) in the
case of weighted least squares. In either case, the analytical expression for W (φ; h) can be
obtained using the results in [9]. Use of weighted or generalized least squares in the
variogram cloud criterion in (5) is not recommended even in the mean-stationary models, as
the estimation is inconsistent without correct specification of the second moment (or the
covariances) of sij [10].

When the goal is estimation of the parameters of the short-range spatial process, our
procedure is a computationally more efficient alternative to a likelihood-based method that
represents the response as a sum of long- and short-range processes, which can be
computationally intractable due to the cost of matrix factorizations when the sample sizes
measure in tens of thousands as in the case of modern spatial data sets. For a recent review
on geostatistics for large data sets, see [14].
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APPENDIX A

A.1 Outline of the proof of Proposition 1
Using (6) and (7), rewrite

(13)

where . Define S = (S1, …, Sm)T and
W = (W1, …, Wm)T, so that S = V + bJ + W + Op{(m/n)3}.

Examine

The second term converges in probability (i.p.) to 0, while the first converges i.p. to (Im−H)

{v(φ*)−v(φ)}, by assumption (A1). Therefore,  converges i.p. to 0.
Since
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 converges i.p. to . By assumption (A2), φ̂
converges i.p. to φ*.

A.2 Selection of bandwidth parameters
Selection of the number of lags m and the set of directions  for variogram estimation,
which we jointly refer to as bandwidth parameters, is a question of great practical
importance. However, even in the simpler case when ε is a white noise process, the choice is
far from obvious. In [15], the authors were able to derive an expression for the dominant
terms of the mean squared error of their estimator, which was used to argue that an optimal
bandwidth is m = O(n1/2). However, their numerical experiments suggest that a choice m =
n1/3 is more appropriate in practice, particularly when g is “wiggly”. The choice becomes
even more difficult in our context because of the potential weak indentifiability between g
and ε when g is highly variable but ε has slowly-decaying dependence.

Our procedure requires that φ is identifiable under our criterion, namely that, for all valid φ0,
φ1, m and  be chosen so that

if and only if φ0 = φ1, where v(φi) is the vector of theoretical variogram values used in

. This requirement can be easily checked once a parametric
variogram family is selected.

In practice, we recommend that the choice of m and  be tailored to each individual
application based on a two-step pilot study as follows:

Step 1 Given a set of design points {x1, …, xn} and a variogram family, simulate a
stochastic process ε for a set of plausible values of φ and estimate φ using a
set of plausible choices of  and m. This is an analogue of least squares
estimation of φ from the empirical variogram, which is widely used in spatial
statistics. Additionally, this step helps one to determine if the variogram
parameters can be estimated well (if at all) for a given design and a choice of
the variogram family.

Step 2 For promising choices of  and m, repeat the simulation exercise
incorporating a trend g suggested by an area of application, in order to narrow
down the set of  and m. Since estimation of φ is typically very fast for given
values of m and  unless m is large, one need not find “the best” pair, but
rather a range, of bandwidth parameters giving answers consistent with each
other.

In case the estimates of φ from a real data set are dramatically different from the values
considered in the pilot study, the pilot study should be repeated.
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In our simulation experiments, a choice of m of 5 or 10 worked well in all scenarios,
although we used m = n1/2 to give fair comparison with the procedure of [15]. This might
explain why our estimator was slightly more variable than that of [7] in the first one-
dimensional index experiment.
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Figure 1.
Experiment of Section 3.1: plots of the 5th, 50th and 95th sample percentiles of estimators
of σ2: our variogram estimator (-○-), the Hall and Van Keilegom estimator of [7] (--x--) and
the Tong and Wang estimator of [15] (*-·*-·* ). The true σ2 is 1 (· · · ). The trend is g(x) = 10
+ 12.5x3(1 − 0.5x)3.

Bliznyuk et al. Page 13

Stat Interface. Author manuscript; available in PMC 2012 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Experiment of Section 3.1: plots of the 5th, 50th and 95th sample percentiles of estimators
of ρ: our variogram estimator (-○-) and the estimator of [7] (--x--). The trend is g(x) = 10 +
12.5x3(1 − 0.5x)3.
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Figure 3.
Experiment of Section 3.1: plots of the 5th, 50th and 95th sample percentiles of estimators
of σ2: our variogram estimator (-○-) and the estimator of [7] (--x--). The trend is g(x) =
c{10 + 12.5x3(1 − 0.5x)3}, n = 2, 000. The true σ2 is 1 (· · ·).
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Figure 4.
Experiment of Section 3.1: plots of the 5th, 50th and 95th sample percentiles of estimators
of ρ: our variogram estimator (-○-) and the estimator of [7] (--x--). The trend is g(x) = c{10
+ 12.5x3(1 − 0.5x)3}, n = 2, 000.
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