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Abstract

Functional data analysis has received considerable recent attention and a number of successful
applications have been reported. In this paper, asymptotically simultaneous confidence bands are
obtained for the mean function of the functional regression model, using piecewise constant spline
estimation. Simulation experiments corroborate the asymptotic theory. The confidence band
procedure is illustrated by analyzing CD4 cell counts of HIV infected patients.
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1. Introduction

Functional data analysis (FDA) has in recent years become a focal area in statistics research,
and much has been published in this area. An incomplete list includes Cardot, Ferraty, and
Sarda (2003), Cardot and Sarda (2005), Ferraty and Vieu (2006), Hall and Heckman (2002),
Hall, Mdiller, and Wang (2006), 1zem and Marron (2007), James, Hastie, and Sugar (2000),
James (2002), James and Silverman (2005), James and Sugar (2003), Li and Hsing (2007),
Li and Hsing (2009), Morris and Carroll (2006), Miiller and Stadtmiiller (2005), Muller,
Stadtmiiller, and Yao (2006), Muller and Yao (2008), Ramsay and Silverman (2005), Wang,
Carroll, and Lin (2005), Yao and Lee (2006), Yao, Mller, and Wang (2005a), Yao, Muller,
and Wang (2005b), Yao (2007), Zhang and Chen (2007), Zhao, Marron, and Wells (2004),
and Zhou, Huang, and Carroll (2008). According to Ferraty and Vieu (2006), a functional
data set consists of iid realizations {&; (x), X€ y}, 1 < /< n, of a smooth stochastic process
(random curve) {& (X), X € y} over an entire interval y. A more data oriented alternative in
Ramsay and Silverman (2005) emphasizes smooth functional features inherent in discretely
observed longitudinal data, so that the recording of each random curve £4x) is over a finite
number of points in y, and contaminated with noise. This second view is taken in this paper.

A typical functional data set therefore has the form {Xj; Yy}, 1< /< n, 1< /< Nj inwhich
N;observations are taken for the /7 subject, with Xjjand Yj;the /1 predictor and response
variables, respectively, for the /7 subject. Generally, the predictor Xjjtakes values in a
compact interval y = [a, b]. For the A subject, its sample path {Xj; Yj}is the noisy
realization of a continuous time stochastic process &(x) in the sense that



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Ma et al.

Page 2

Yi=&(Xi)+o (Xyeij, (1.1)

with errors ej;satisfying £ (ej) =0, E(Sfj):l, and {&{(x), x€ x} are iid copies of a process
{£(%), XE x} whichis L2, i.e., Efl E(X)dx < +o0.

For the standard process {&(x), x € y}, one defines the mean function m(x) = E{&(x)} and

the covariance function G(x, x ) = cov {&x), £(x)}. Let sequences {A}i2 ., {wi(x)}5, be the
eigenvalues and eigenfunctions of G(x, x ), respectively, in which 1; = 1, > -+ >0,

,:/lk<°°7 {¥xhiZ 1 form an orthonormal basis of £2 (y) and G(x. x’)=zzlﬂkwk(X)lﬁk(x'),
which implies that /" G(x, X wx (x) dx”= Axwi(X).

The process {&{x), x € '} allows the Karhunen-Loeve L2 representation

EQ=m+ Y Eadilx),

where the random coefficients &£ are uncorrelated with mean 0 and variances 1, and the
functions ¢;= \//l_kz[/k. In what follows, we assume that A, =0, for &> x, where xis a

positive integer, thus G(x, X’)=Zk: 1<l5/<()<)</'>/<()5) and the data generating process is now
written as

Yimm(Xg)+ Y Eati Xyhto (Xy)ey. (12)

The sequences {Ax};_;, {¢x(x)};_, and the random coefficients & exist mathematically, but
are unknown and unobservable.

Two distinct types of functional data have been studied. Li and Hsing (2007), and Li and
Hsing (2009) concern dense functional data, which in the context of model (1.1) means
MiNq <y V;— 00 as n— oo, On the other hand, Yao, Miller, and Wang (2005a), Yao,
Muiller, and Wang (2005b), and Yao (2007) studied sparse longitudinal data for which A/j’s
are i.i.d. copies of an integer-valued positive random variable. Pointwise asymptotic
distributions were obtained in Yao (2007) for local polynomial estimators of /7(x) based on
sparse functional data, but without uniform confidence bands. Nonparametric simultaneous
confidence bands are a powerful tool of global inference for functions, see Claeskens and
Van Keilegom (2003), Fan and Zhang (2000), Hall and Titterington (1988), Hardle (1989),
Hérdle and Marron (1991), Huang, Wang, Yang, and Kravchenko (2008), Ma and Yang
(2010), Song and Yang (2009), Wang and Yang (2009), Wu and Zhao (2007), Zhao and Wu
(2008), and Zhou, Shen, and Wolfe (1998) for its theory and applications. The fact that a
simultaneous confidence band has not been established for functional data analysis is
certainly not due to lack of interesting applications, but to the greater technical difficulty in
formulating such bands for functional data and establishing their theoretical properties.
Specifically, the strong approximation results used to establish the asymptotic confidence
level in nearly all published works on confidence bands, commonly known as “Hungarian
embedding”, are unavailable for sparse functional data.

In this paper, we present simultaneous confidence bands for m(x) in sparse functional data
via a piecewise-constant spline smoothing approach. While there exist a number of
smoothing methods for estimating /7(x) and G(x, x ) such as kernels (Yao, Miller and,
Wang (2005a); Yao, Miller, and Wang (2005b); Yao (2007)), penalized splines (Cardot,
Ferraty, and Sarda (2003); Cardot and Sarda (2005); Yao and Lee (2006)), wavelets Morris
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and Carroll (2006), and parametric splines James (2002), we choose B splines (Zhou,
Huang, and Carroll (2008)) for simple implementation, fast computation and explicit
expression, see Huang and Yang (2004), Wang and Yang (2007), and Xue and Yang (2006)
for discussion of the relative merits of various smoothing methods.

We organize our paper as follows. In Section 2 we state our main results on confidence
bands constructed from piecewise constant splines. In Section 3 we provide further insights
into the error structure of spline estimators. Section 4 describes the actual steps to implement
the confidence bands. Section 5 reports findings of a simulation study. An empirical
example in Section 6 illustrates how to use the proposed confidence band for inference.
Proofs of technical lemmas are in the Appendix.

2. Main results

For convenience, we denote the supremum norm of a function ron [&, 6] by Il =
SUPxe[a,4] 11|, and the modulus of continuity of a continuous function ron [a, 6] by w (7, 8)
= MaXy x €[4 4], |x-x I8 [1(X) = Ax")|. Denote by ligil, the theoretical £2 norm of a function g

on[a 4,1l g I3=E {g (X)} =fag (%) f(x)dx, where fx) is the density function of X and the

iy 2yl N 2ex :
empirical £2 norm as !l & Il., =Ny Zizlzjzlg (Xif) where we denote the total sample size
by N':Z,-:lN"- Without loss of generality, we take the range of X, y = [a, 4], to be [0, 1].
For any B € (0, 1], we denote the collection of order g H®&lder continuous function on [0, 1]
by

C°’5[071]:{¢:||¢||0ﬁ= wp D =COI }

x#x x,x €[0,1] |)C X Iﬁ

in which ligllg g is the C%F-seminorm of . Let C[0, 1] be the collection of continuous
function on [0, 1]. Clearly, %[0, 1] C C[0, 1] and, if g € C%A[0, 1], then w (g4, &) <
ligllo g 8.

To introduce the spline functions, divide the finite interval [0, 1] into (As+1) equal
subintervals y;=[£; tx1), /=0, ...., Ns = 1, yn = [ 1] A sequence of equally-spaced

points {#,}"* called interior knots, are given as

J=11
tr=0<t< - <ty <1=¢ t,=Jhs,0 < J < Ng+1,hs=1/(Ng+1),

Ng+1°°J

in which / is the distance between neighboring knots. We denote by G = (1 [0, 1] the
space of functions that are constant on each y For any x € [0, 1], define its location index
as LX) = J(x) = min {[x/x], Ne} so that £, < X< £7,09+1, VX € [0, 1]. We propose to
estimate the mean function m(x) by

m(x)=argmin E E X;
o= gegG< 1) &i=1 ~ & j) 1)
The technical aSSUlllptionS we need are as follows

(A1)  The regression function m(x) € %110, 1].
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(A2)  The functions fxX), o(X), and gX) € CO£ [0, 1] for some B € (2/3, 1] with fX)
€ [cs C4, o(X) € [c,, C,l, XE O, 1], for constants 0 < ¢f< Cf< 0, 0< ¢, < C,
< 00,

(A3)  The set of random variables (N;)_, is a subset of (N)32 | consisting of
independent variables N;, the numbers of observations made for the i-th subject,
i=1,2, ..., with Ni~ N, where N> 0 is a positive integer-valued random

. . 2
varfable with E {N ’} <rlel, r=2,3, ... for some constant cy> 0. The set of
. ,N; . s . .
random variables (Xij, Yij 85)72 1.j=1 /5 a subset of (Xij, Yij, 8ij)fi f,'}: 1 in which

(Xij, 817),5:’111 are iid. The number x of nonzero eigenvalues is finite and the
random coefficients Ej, k=1, ..., x, I=1, ..., 00 are iid N (0, 1). The variables

(NDZ 1 G0 jers K)oy i ()i =) are independent.

(A4) Asn— oo, the number of interior knots Ny = o (n®) for some ¥ € (1/3, 25— 1)
while Ny '=o {n_” *(logn)™'"? } The subinterval length h~Ng".

(A5)  There exists r> 2/ {f - (1L + ¥9) 12} such that E |e14|" < oo.

Assumptions (A1), (A2), (A4) and (Ab) are similar to (A1)—(A4) in Wang and Yang (2009),
with (A1) weaker than its counterpart. Assumption (A3) is the same as (Al1.1), (Al.2), and
(A5) in Yao, Miller, and Wang (2005b), without requiring joint normality of the
measurement errors e;;

We now introduce the B-spline basis of G(1), the space of piecewise constant splines, as

{b,(X)}iVjO, which are simply indicator functions of intervals y;, 64%) = 1,,;(%), /=0, 1, ...,

N;. Define

1
¢, =b, ”% :fgbj(x) f(x)dx, J=0, ..., N,

0'12,(x)=var(Y|X=x)=G(x, xX)+02(x),¥x € [0, 1], @2

E{N;(N| = 1)} & .
Ta()=c;2 (nEN)™! {%; (f*!m b1 (w) f(u) du +fXM o2 () f(u) du}. (2.3)

In addition, define Oy, (@)=b,,, —a, log{—(1/2)log(1 - a)},

log (2na;, )
ay ., ={2log N+1)}'2, b, =a, ., — —— (24

S Y Ns+1 7~ “Ng+1 2
a
Ns+1

for any a € (0, 1). We now state our main results.

Theorem 1
Under Assumptions (A1)-(A5), for any a € (0, 1),

lim P {Sque[o,l]Im(x) —mx)|/on(x) < Oy, (a)} =1-g¢,

n—oo

lim P {[7(x) — m(x)|/00(x) < Zi_op2} =1 — @, ¥x € [0, 1],
n—oo
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where op(x) and Qg1 (a) are given in (2.3) and (2.4), respectively, while 2y oy, is the 100
(1 - al2)™ percentile of the standard normal distribution.

The definition of o,(x)in (2.3) does not allow for practical use. The next proposition
provides two data-driven alternatives

Proposition 1

Corollary 1

Under Assumptions (A2), (A3), and (A5), as n — oo,

sup {lo ()0, 4 (X) = L+l (D)0, o6 (6) = 11} =0 (1),
x€[0,1]

in which for x € [0, 1], o,up (X) = oy (X) {A)AnEN)Y 12 and

E(Ni(N = D), G %) f(x)}”f

Oiong(®) = 0 p (x){l"' EN, s 0.% (x)

Using o, ip(x) instead of o,(x) means to treat the (Xj; Y7) as iid data rather than as sparse
longitudinal data, while using o;;| ong(X) means to correctly account for the longitudinal
correlation structure. The difference of the two approaches, although asymptotically
negligible uniformly for x € [0, 1] according to Proposition 1, is significant in finite
samples, as shown in the simulation results of Section 5. For similar phenomenon with
kernel smoothing, see Wang, Carroll, and Lin (2005).

Under Assumptions (A1)-(A5), for any a € (0, 1), as n— oo, an asymptotic 100 (1 - a) %
simultaneous confidence band for m(x), x € [0, 1] is

m(x) £ O'tl(x)QNgl (@),

while an asymptotic 100 (1 — a) % pointwise confidence interval for m(x), x € [0, 1], is m

(X £ o X Z1-as2-

3. Decomposition

In this section, we decompose the estimation error /7(x) — /m(x) by the representation of Y;

as the sum of 77 (Xj), Z i1 Sk (Xi), and o (X)) e

We introduce the rescaled B-spline basis {B, (x)}"* for G1), which is B, (x) = b, (0|l b, II;",
J=0, ..., N;. Therefore,

-1/2
b

B,(x)=b, (x){c_,_n} J=0,...,Ns;. (31)

It is easily verified that|| B, |3=1, /=0, 1, ..., N&, (B B;) =0, J2 J"

The definition of /7i(x) in (2.1) means that
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- Ny —~
m(x) = Z/:O 4,0,(x), (32

(—~ - T
with coefficients {/10, e /le} as solutions of the least squares problem

{70,...,7N5}T= argrmn Z: lz { U—Zj: A,b, (le)}2

(-~  JeRNs+1

Simple linear algebra shows that m(x) = Z 4B, (%), where the coefficients {1, ...,
/1NS}T are solutions of the least squares problem

_ - . 2
{AO,...,ANS}Tz argmm Zl 12 {"f'_zl)’lfo (Xij)}. 3.3)

{/l(] ’’’’’ ERN +1

Projecting the relationship in model (1.2) onto the linear subspace of RM spanned by {B;,
(Xi)} 1N 1<<n0< kN We Obtain the following crucial decomposition in the space G of
spline functions:

m(x)=m(x)+e(x)=m(x)+&(x)+ Zzzlé’k (x), (3.4)

=) 1B, (0,800=y . 4B (0.E M=y 7, B0 @5)

The vectors {Ay, ..., And", {d. ... dngdTs and {zxp, ..., Tk} are solutions to (3.3) with
Yjjreplaced by m(Xj), o (Xj) ej; and Eiudr (Xj), respectively. We cite next an important
result concerning the function /(x). The first part is from de Boor (2001), p. 149, and the
second is from Theorem 5.1 of Huang (2003).

There is an absolute constant Cy> 0 such that for every ¢ € C[0, 1], there exists a function
g€ GV 0, 1] that satisfies | g Pl < Cyeo (@, hy). In particular, if g € COP [0, 1] for

some BE (0, 1], thenll g — ¢ lloo < Cgll & IIOﬁhf . Under Assumptions (A1) and (A4), with
probability approaching 1, the function m(x) defined in (3.5) satisfies |m(X) — m(X)lco = O

().

The next proposition concerns the function &) given in (3.4).

Proposition 2

Under Assumptions (A2)-(A5), for any © € R, and o/(X), ang+1, and byg+1 as given in (2.3)
and 2.4),

1im P {sup,eo,lora (07 2| < T/ay, +by,, | =exp (-2¢7),
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4. Implementation

Proposition

In this section, we describe procedures to implement the confidence bands and intervals

given in Corollary 1. Given any data set (Xij Yy)ﬁ’ﬁizl from model (1.2), the spline estimator
m(X) is obtained by (3.2), and the number of interior knots in (3.2) is taken to be

Ny=[eN!" (logn)], in which [4] denotes the integer part of aand cis a positive constant.
When constructing the confidence bands, one needs to evaluate the function o2(x) by

estimating the unknown functions fx), o-i(x), and G (x, X), and then plugging in these
estimators: the same approach is taken in Wang and Yang (2009).

The number of interior knots for pilot estimation of ), 0'3 (x), and G (x, X) is taken to be

Ng= [n1/3], and #Z=1/(1+N7). The histogram pilot estimator of the density function fx) is

Foo=(3 o 2 by G NS

T
Defining the vector R:{Rl},<,<N i {( —m(Xip) } < jen.1<in the estimation of o> (x) is

52 ()= iy - — - .
Ty (X)—Z]:Op, b, (), where the coefficients (00, - -5, are solutions of the least squares
problem:

o 7f'= wmin 35V {5 1)

{Po PN*} €RNst1

The pilot estimator of covariance function G (x, x ) is

G(X’X):arggeG(T}élG(—nZ Zu 1/¢/ iy —8 X Xy )}

where Cyj={ Y —m (X} {Yy —mXy)} 1</ ‘< N 1 <7< n. The function a,(X) is
estimated by either a;,;1p(X) = O'y(X) {AX) AN}y Y2 or

1/2
T rrone (X) = T (1) {1+(Z;Ni2/NT - 1) GAE)E ))‘) Tk } .

We now state a result. That is easily proved by standard theory of kernel and spline
smoothing, as in Wang and Yang (2009).

3
Under Assumptions (A1)-(A5), as n— oo

SUP yer0.1] { o, (X) a'_&D (x) - 1| +10, ong (X) T O-nLONG (x) - 1|}=0M (h§+n_l/2NS_1 (logn)l/z).
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Proposition 1, about how o7, 1p(X) and o, ong(X) uniformly approximate o(x), and
Proposition 3 together imply that both a,,“D(X) and o, ong(X) approximate o)
uniformly at a rate faster than (71213 (log)Y/2-1/3) ‘according to Assumption (A5).
Therefore as 7 — 00, the confidence bands

m(x) + E,,JID (x) QNBH (@), (4.1)

m(x) + En.LONG (x) QN5+] (@), 4.2)

with Opg+1 (@) given in (2.4), and the pointwise intervals /m(x) + &,,J.D()()Zl_a/z, m(x) =
03, LONG(X) Z1- /2 have asymptotic confidence level 1 - a.

5. Simulation

To illustrate the finite-sample performance of the spline approach, we generated data from
the model

2
Yi=m (X,j)+Zk:l§ik¢k Xijp)+oegj, 1 < j<N;,1<i<n,

with X'~ Uniform[0, 1], £x~ Normal(0, 1), k=1, 2, e~ Normal(0, 1), N;having a discrete
uniform distribution from 25, ..., 35, for1< /< and

m (x) =sin {27 (x — 1/2)},¢; (x) =—2cos {m(x—1/2)}/ V5, ¢o (x)=sin {7 (x—1/2)}/ /5, thus
A1 = 2/5, A = 1/10. The noise levels were o= 0.5, 1.0, the number of subjects /7 was taken
to be 20, 50, 100, 200, the confidence levels were 1 — a = 0.95, 0.99, and the constant cin
the definition of Af in Section 4 was taken to be 1, 2, 3. We found that the confidence band
(4.1) did not have good coverage rates for moderate sample sizes, and hence in Table 1 we
report the coverage as the percentage out of the total 200 replications for which the true
curve was covered by (4.2) at the 101 points {4100, k=0, ..., 100}.

At all noise levels, the coverage percentages for the confidence band (4.2) are very close to
the nominal confidence levels 0.95 and 0.99 for ¢= 1, 2, but decline for ¢=3 when n= 20,
50. The coverage percentages thus depend on the choice of A4, and the dependency becomes
stronger when sample sizes decrease. For large sample sizes 7= 100, 200, the effect of the
choice of Aj; on the coverage percentages is insignificant. Because N varies with A, for 1 <
/< n, the data-driven selection of some “optimal” Aj remains an open problem.

We next examine two alternative methods to compute the confidence band, based on the
observation that the estimated mean function /7i(x) and the confidence intervals are step
functions that remain the same on each subinterval y; 0 < J< A%. Follwing an associate
editor’s suggestion, locally weighted smoothing was applied to the upper and lower
confidence limits to generate a smoothed confidence band. Following a referee’s suggestion
to treat the number (As + 1) of subintervals as fixed instead of growing to infinity, a naive
parametric confidence band was computed as

m(x) + En,LONG (X)Ql—szH (5.1)

in which Q1-q ng+1 = Z{1+(1-a)V(Nst1)y2 is the (1 — @) quantile of the maximal absolute
values of (Ag + 1) iid AV (0, 1) random variables. We compare the performance of the
confidence band in (4.2), the smoothed band and naive parametric band in (5.1). Given n=
20 with Ay =8, 12, and 7= 50 A = 44 (by taking ¢= 1 in the definition of N in Section 4),
o=0.5,1.0,and 1 - a = 0.99, Table 2 reports the coverage percentages 2, Praive Pmooth
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and the average maximal widths W, Whaive, Wemooth OF Ns + 1 intervals out of 200
replications calculated from confidence bands (4.2), (5.1), and the smoothed confidence
bands, respectively.

In all experiments, one has Pymooth > 2> Phaive and W > Wemooth > Whaive. The coverage
percentages for both the confidence bands in (4.2) and the smoothed bands are much closer
to the nominal level than those of the naive bands in (5.1), while the smoothed bands
perform slightly better than the constant spline bands in (4.2), with coverage percentages
closer to the nominal and smaller widths. Based on these observations, the naive band is not
recommended due to poor coverage. As for the smoothed band, although it has slightly
better coverage than the constant spline band, its asymptotic property has yet to be
established, and the second step smoothing adds to its conceptual complexity and
computational burden. Therefore with everything considered, the constant spline band is
recommended for its satisfactory theoretical property, fast computing, and conceptual
simplicity.

For visualization of the actual function estimates, at o= 0.5 with 7= 20, 50, Figure 1 depicts
the simulated data points and the true curve, and Figure 2 shows the true curve, the
estimated curve, the uniform confidence band, and the pointwise confidence intervals.

6. Empirical example

In this section, we apply the confidence band procedure of Section 4 to the data collected
from a study by the AIDS Clinical Trials Group, ACTG 315 (Zhou, Huang, and Carroll
(2008)). In this study, 46 HIV 1 infected patients were treated with potent antiviral therapy
consisting of ritonavir, 3TC and AZT. After initiation of the treatment on day 0, patients
were followed for up to 10 visits. Scheduled visit times common for all patients were 7, 14,
21, 28, 35, 42, 56, 70, 84, and 168 days. Since the patients did not follow exactly the
scheduled times and/or missed some visits, the actual visit times 7;;were irregularly spaced
and varied from day 0 to day 196. The CD4+ cell counts during HIVV/AIDS treatments are
taken as the response variable Y from day O to day 196. Figure 3 shows that the data points
(dots) are extremely sparse between day 100 and 150, thus we first transform the data by

XI;;=T,;-/ A histogram (not shown) indicates that the Xj-values are distributed fairly
uniformly. The number of interior knots in (3.2) is taken to be A = 6, so that the range for
visit time 7, which is [0, 196], is divided into seven unequal subintervals, and in each
subinterval, the mean CD4+ cell counts and the confidence bands remain the same. Table 3
gives the mean CD4+ cell counts and the confidence limits on each subinterval at
simultaneous confidence level 0.95. For instance, from day 4 to 14, the mean CD4+ cell

counts is 241.62 with lower and upper limits 171.81 and 311.43 respectively.

Figure 3 depicts (a) the 95% simultaneous (smoothed) confidence band according to (4.2) in
(median) thin lines, and (b) the pointwise 95% confidence intervals in thin lines. The center
thick line is the piecewise-constant spline fit /7i(x). It can be seen that the pointwise
confidence intervals are of course narrower than the uniform confidence band by the same
ratio. Figure 3 is essentially a graphical representation of Table 3; both confirm that the
mean CD4+ cell counts generally increases over time as Zhou, Huang, and Carroll (2008)
pointed out. The advantage of the current method is that such inference on the overall trend
is made with predetermined type | error probability, in this case 0.05.

7. Discussion

In this paper, we have constructed a simultaneous confidence band for the mean function
m(x) for sparse longitudinal data via piecewise-constant spline fitting. Our approach extends

Stat Sin. Author manuscript; available in PMC 2013 February 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Ma et al.

Page 10

the asymptotic results in Wang and Yang (2009) for i.i.d. random designs to a much more
complicated data structure by allowing dependence of measurements within each subject.
The proposed estimator has good asymptotic behavior, and the confidence band had
coverage very close to the nominal in our simulation study. An empirical study for the mean
CDA4+ cell counts illustrates the practical use of the confidence band.

Clearly the simultaneous confidence band in (4.2) can be improved in terms of both
theoretical and numerical performance if higher order spline or local linear estimators are
used. Constant piecewise spline estimators are less appealing and have sub-optimal
convergence rates in the sense of Hall, Mdller, and Wang (2006), which uses local linear
approaches. Establishing the asymptotic confidence level for such extensions, however,
requires highly sophisticated extreme value theory, for sequences of non-stationary Gaussian
processes over intervals growing to infinity. That is much more difficult than the proofs of
this paper. We consider the confidence band in (4.2) significant because it is the first of its
kind for the longitudinal case with complete theoretical justification, and with satisfactory
numerical performance for commonly encountered data sizes.

Our methodology can be applied to construct simultaneous confidence bands for other
functional objects, such as the covariance function G(x, x ) and its eigenfunctions, see Yao
(2007). It can also be adapted to the estimation of regression functions in the functional
linear model, as in Li and Hsing (2007). We expect further research along these lines to
yield deep theoretical results with interesting applications.

Acknowledgments

Appendix

The authors thank Shuzhuan Zheng and the seminar participants at the University of Michigan, Georgia Institute of
Technology, Georgia State University, University of Toledo, University of Georgia, Soochow University,
University of Science and Technology of China, and Peking University for their comments on the paper. Ma and
Yang’s research was supported in part by NSF Awards DMS 0706518, DMS 1007594, an MSU Summer Support
Fellowship and a grant from Risk Management Institute, National University of Singapore. Carroll’s research was
supported by a grant from the National Cancer Institute (CA57030) and by Award Number KUS-CI-016-04, made
by King Abdullah University of Science and Technology (KAUST). The detailed and insightful comments from an
associate editor and two referees are gratefully acknowledged.

Throughout this section, a,~ b, means im bx/a,=c, where cis some nonzero constant, and
for functions a (%), 6.(X), a{x) = u{b,(X)} means a,(xX)/b,(x) — 0 as n— oo uniformly for
X€ [0, 1].

A.l. Preliminaries

LemmaA.l

We first state some results on strong approximation, extreme value theory and the classic
Bernstein inequality. These are used in the proofs of Lemma A.7, Theorem 1, and Lemma
A.6.

(Theorem 2.6.7 of Cs6rg6 and Révész (1981)) Suppose that £, 1 < i< n are ifd with E(&;) =

0, E(§12)= 1, and H(x) > 0 (x= 0) is an increasing continuous function such that x2~7 H(X) is
increasing for some y >0 and X1 logH (X) is decreasing with EH (|&1]) < co. Then there
exists a Wiener process {W (1), 0 < t< oo} that is a Borel function of £;, 1 < i< n, and

constants Cy, G, a> 0 which depend only on the distribution of &, such that for any {x,},.,

k
satisfying H1 (1) < x,< Cy (nlogn)Y2 and S«= ) ,_ /&,
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LemmaA.3

LemmaA.4

Page 11

P{max [Sk — W(k)|>xn} < C211{H(a)c,,)}_1
1<k<n

Leté™ 1< i< n, be jointly normal with £ ~N(0, 1). Letry =EE"E™ e such that for y >

0, C/>0, rl-j <Cy/n” #J. Then for t€ R, asn— 00, A{Mp ¢< t/ap+ bp} — exp
) (n)
l 9

n

(-2€77), in which Mn,‘f:max{ } and a,, by, are as in (2.4) with Ng + 1 replaced

by n.

Proof—Let {r;}", be i.i.d. standard normal r.v.’s, u={,}_,, v={v;};_, be vectors of real
numbers, and w = m|n (Itnls---+ lud s |v1ls-- -+ |vA)- By the Normal Comparison Lemma
(Leadbetter, Lindgren and Rootzén (1983), Lemma 11.1.2),

‘P{—vj<§;.") <ujfor j=1,...,n }— P{~vj<n; < u; forj:l,...,n}‘
1/2 5
o A (R AV )
If th =+ =up= vy == v,= tla,+ by = 7 itis clear that 72 /(2logn) — 1, as n— 0.

({1)2 >
y

Then 72>(2 — &)logn, for any e > 0 and large 7. Since 1 — 7 1—(Cy/n")? = 1as n—>

oo, j# j,for j# j,ACp > 0 such that 1 — r,g-")z > C2>0and 1+r;-")<1+8 for any > 0 and large
n. Let My, , = max {|ml...., |p4}. By Leadbetter, Lindgren and Rootzén (1983), Theorem
1.5.3, P{Mp,, < To} — exp (=2¢ 7) as n— oo, while the above results entail

[P (Mpg < 1p) = P (Myy < Tp)l < ZA 2

1/2 o
(1) "o )
1<i<j<n

< 2 e jenCn Y C Pexp {M} < Clp?r@asey g

A
ri

A
U

as 17— oo. Hence P{M, ¢< tt — exp (-2€°7), as 1— 0.

(Theorem 1.2 ofBosq (1998)) Suppose that{¢:}.., are fid with E(&1) =0, o ‘Efw and there
exists ¢> 0 such that forr=3,4, ..., E|&| <~ 2r!E§] <+oo. Then foreachn>1, t>0,

P(IS | > Vnot) < 2exp (—t2(4+26t/ \/ﬁa’)_l), in which S,,:Z::lgi_

Under Assumption (AZ), as n—> oo for c;, defined in (2.2), cjn=f(t) hs (L + r;,), (b, by)
=0, J# J', where maxXoc x Ns 1714 < Cw (£15). There exist constants Cg> cg> 0 such that

c,hi? < E(B,(Xy)) < C,hiPforr=1,2, ... and1<J< Ng+1,1<j< Ny 1<i<n.

Proof—By the definition of ¢, ,in (2.2),
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={f ) h+U (h“ﬁ)} (nEN1)™ o2 (x) £ () b U ()} x { 14 2= zl{ dx (X) f (%) hy+U (B! +ﬂ)} {02 (0 f () bt U (ngP)
=(f () hynEN})™ 02 (x) { + BN -1) S O }{1+U () =02 o @ 14U (1)) =02, ) {140 ()}

Page 12
cu=fb@f@de=f  f@de=fE)ht] AF) - f()ax

Hence for all /=0, ..., g, |c;n— F(5) I < f[,J )l 10 = F(O)| dx < w (1, f5) hs, o |1 =
lcsn = F(8) sl {F(2) hs}‘1< Cw (1, f), J=0, ..., Ns. By (3.1),

E{B,(Xy)) =(c,)""* [b, (x) f (x) dx=(c,,)" ’/2~hs /2,

Proof of Proposition 1—By Lemma A.4 and Assumption (A2) on the continuity of
functions ¢7 (x), 0?(x) and f(x) on [0, 1], for any x € [0, 1]

]f () fDdu— [ ¢k(u>f<u>du‘<w<¢kfhs>hs=0( ),
|f (02 (x) f(x) — o2 (u)f(u) du|<w( 2 fohs) =0 ().

J(x)

Hence,

J(x

2
TR W=c;2, MEND)T [ o} (u)f(u)dux{uE‘Nl(Nl 2 1(f ¢k(u)f(u)du) {f

a2 (x)

A.2. Proof of Theorem 1

Note that B,.,(x) = ¢;!/?, x € [0, 1], s0 the terms &4(x) and &(x) defined in (3.5) are

- Ng n N;
&= 2, N;‘B, @I B, i} 2 2B, (Xp) 6 (Xi) €ix
J=0 Tj=1j=
n N,‘
=Byl Ny p) z By (i) 9 (Xi) i

JG).n

&0=c;12 1B, I, N ZZBM( i) o (Xip) &jj.

Let

2
&=1B,, I fk<x> SIENTISL Ry it

(8.1)
ex)=| BJ(X> ” g(x) C,(i)/,?NTIZ ZJ 1 j&]()glj7

where

N;
Rikﬁf.JZijlBj (Xij) P (Xij)’ R,-j,s,JzBJ (le) o (Xij), 0<J<N,. (82
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Lemma A.5
Under Assumption (A3), for &X) given in (3.4) and £(X), &(X) given in (8.1), we have

&(x) - {Zfsl <x>+’5(x>}
k=1

<A, (1-4,)" ,x€[0,1],

D & )+
k=1

2
I8, ||2,NT - 1|. There exists C4 > 0, such that for large n,
P (Ay 2 C,log(n)/(nhy)) < 2173 A,=04 . (Vlog(n)/(nhy)) as n— oo,

where A” = SupOSJSNg

See the supplement of Wang and Yang (2009) for a detailed proof.
Lemma A.6

Under Assumptions (A2) and (A3), for Rik ¢, Ri1, e,s i1 (8.2),

ERZ,=c;! | E V) [b, 06} ) £ e +E (N Ny = D) ([, ) e ) ) )|
ER* =c;![b, () o? (u) f () du,0 < J < N,

1leJ

there exist0 < cp< Cp< 0, such thatER,zkfu,,ER,zl,&, €[y, Cel for0 < J< N,

n_lzilRiH—ERlzw =0g;. (\/logn/(nhs)) ,1<k<k, sup NT_IZ?:IleR?f@J_

0<J<Ns
asn—> oo,

Sup()s./gNs

Proof—By independence of X1; 1 </< MV and A and (3.1),

ER, =E{¥N,_|E(B, (X)) B, (X1;) ¢x (X1)) i (X17) N1}
=E{x E(B2 (X1)) 7 (X1)) I +E {2 E{B, (X1)) B, (X17) ¢ (X)) e (X )IN:1}}

=, {E @) b, @0 6 @) f @) duer BN 4y = DY [, ) e @) ) )}

(),

It is easily shown that 30 < cp < Cp < oo such that ¢, < ERIZM_._, <C0<J <N Let
L=y, =R2, &=L, — E(, ) for r=1and large n,

B, =E[{ZY B, Xy o x| < CTE[SY B, ()
vitetvy =2r

=c¥E] 3 ) e, o
- ¢ vi- .VN j=1 J Y ’

OSVI---VNI_ <2r i

¢ ¢
E(,) > YE {z?’: (E1{B, (X,-j)}2f} > ¢ (ENy) c,hl,

N;
<CYE {lermax {HIE{B] (Xl»j)}"f}} < Cé’ (EN%r) C,hl7" < CerBc}rvr!hé":Cévr!hé_r,
j=

by Lemma A.4. So {&((1 )} ~ 1, E(¢; )" » {E ¢y )Y for r= 2, and IC;>c,>0 such that

’

’ «\2 12 2
Cohit > 0, > ekl for Ul*z{E () } . We obtain EIZ,I" < ¢I*rE (¢,) with
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x€[0,1]

0<J<Ns+1 7"

Page 14

L n
C*z(C{/c ) ~ k', which implies that {§ }l.zlsatisfies Crameér’s condition. Applying Lemma

no_, -1 " / .
A3to Zi:]é“,-,,, for r> 2 and any large enough 6> 0, P{” |Z,-=1§u| 20 log"/("hs)} is
bounded by

2y
s 8%(C)" (logn) < 2ex0 {-52 (logn)}< -
1 = ' = :
4+2(C/¢)77 6 ()™ W (logm) /> =112 4
P su R> —ER®> | > 5+/logn/(nhg) f<o0
Hence; {o<1<pN nz ked ket enf( } e . Thus,

-1 2 2 / .
SUPocens I Zl‘leik.fJ ERlA & as. ( logn/(nhS)) as 71— o by Borel-Cantelli Lemma.
The properties of Rj; . jare obtained similarly.

Order all Xj; 1< /< N 1< /< nfrom large to small as Xy, X(1) 2 ... =2 X(nr), and denote
the ej;corresponding to X as . By (8.1),

(%) —C‘fMNT 'S b, (K)o (Xoy) &)
=l T_lZ,_l 10 X)) o XS, — Si-1}s

q
where quztzls(m 9= 1land §=0.

Under Assumptions (A2)-(A5), there is a Wiener process { W (1), 0 < t< oo} independent of
{Ni Xjj L<J< Nj §ike 1 < k< x, L <7< ni}, such that as n— oo,

O(x) —8(x)| =0, , (n*
Jup £ ~ 8] =04..(n") for some t< - (1 - ) 12 < 0, where &9 (x) is

N S b, | (K)o (Ko) WO~ W= D) x € [0,1]. (83

Proof—Define Mpy = maxycoepny [Sg— W ()|, in which {I/(2), 0 < < oo} is the Wiener
process as in Lemma A.1 that as a Borel function of the set of variables {5 1 < < N} is
independent of {\V;, Xj, L< /< N;, €js 1< k< x, 1< i< nysince {epl<t< Nr}is.
Further,

sup I’*(O)(x) 8(x)| = Sup ConV. )blu) (X(N ) o (X, o DAW(N,) - SNT }+ZZT1_l{b./(x) X)) & (X)) = byy K1) ¢ K1) WD) —

< max c¢ ]N 1 {b (X(N ))O-(X(NT))"'Z;:T]_ |b_, (X(,))O'(X(,)) —b_, (X([+]))0'(X([+]))|}M

—1 1
< max NZIM, {3C,+ 3 o (X)) — 0 X))
0<J<N,+1 o { v 1<t<Np—1,X()€b, | ® (D |

which, by the Holder continuity of oin Assumption (A2), is bounded by
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Page 15

N-'m max ¢ ! {3C, +| o X0 — X <
' " O</<No+l { ol ”O’ﬁISISNT%,X(nEle “ (Hl)’ﬁ
N-'m max ¢ 1 {3C,. +| o nl B Xon — X

! " O<IsNe+l ¥ { ol ”0# ! IStSNTgi,X(r)EbJ' “ (Hl)'

1-8
< NT—lMNT ( max c‘l) {3C(,+ Il o ||(),/3h€ (0 max nj) }

0<J<Ng+1 <J<Ns+1

N.
where nFZ,:Tl I (Xu) €x,),0< J< N, + 1, has a binomial distribution with parameters
(M, pyn), where py, = f)(J f(X) dx. Simple application of Lemma A.3 entails

maX oy .1, =0us. (NT Ns_]). Meanwhile, by letting H(X) = X, x,= ', t '€ (2Ir, B- (1 +
¥ 12), the existence of which is due to the Assumption (A4) that r> 2/ {5 (1 + &) /12}. Itis

Ny .o . . . " T —o(n
clear that {e(},, satisfies the conditions in Lemma A.1. Since gy =0 for

some y1 > 1, one can use the probability inequality in Lemma A.1 and the Borel-Cantelli
Lemma to obtain Mpy = Oys. (Xn) = Oas. (7). Hence Lemma A.4 and the above imply

. , _ 1—
sup [£9 (x) - E(x)| =04 (Nsn' —‘) {1+Nsﬁ(NTNS‘1) p }
x€[0,1]

=0a.s4 (Nsnt/_l"'Nsnt’_l X Ns_ll’ll_ﬁ)

=0y, (Nsnt, -1 +Nsl’lt/ _B) =0,. (I’lt, —,3+z‘))

since t'< B— (1 + ¥ /2 by definition, implying t'- 1< t'- B< - (1 + ¥ /2. The Lemma
follows by setting 1= t"— B+ &

Now

_ _ N.
e0w=c! NI'T by, Xo) o (Xe) Zo 64
_ 1 —1 N; :
_cl(x).n NT Z;t:lzjzlbj("') (Xl]) g (le) Zl']’

where Zp = W() - W(t-1), 1< t< My are i.id N(0, 1), Eixs Zjj X Njare independent,
for 1< k< x 1<j<N;1<i<n and £4x), £9(x) are conditional independent of Xj; A; 1
< /< N; 1< /< n. If the conditional variances of £x(x), £9(x) on (Xj, N)1<jenjicicnare

2 2
O-fk," ()C), Oen (x), we have

1/2
_| -1 —-2\'n 2
T & (x)_{cm)‘" NT i=1Rik,£.J(x)}

8.5)
_l -1 -2 Ni p2 (
Ten (x) _{CJ(X),n NT 27212 j:lRij.a.J(x)} ’

where Rix £ 1x) RijeJx)» and Cxx),nare givenin (8.2) and (2.2).

Under Assumptions (AZ2) and (A3), let

Stat Sin. Author manuscript; available in PMC 2013 February 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Maetal. Page 16

K -1/2
n<x>={z(r§k,n (D)+07, (x)} {Za (x)+2© <x>} . (86)
k=1 k=1

With og /(X), Te X, EX, €00, and ¢y, given in 8.5), B.1), 8.3), and (2.2). Then
n(x) s a Gaussian process consisting of (Ns + 1) standard normal variables{n, }f’ °, such that

7(X) = nyx for x € [0, 1], and there exists a constant C> 0 such that for large n,
SUPos.sz. <N |ETums < Che.

Proof—Itis apparent that £ {n;|(Xj; N), L</j<N; 1< i<n}t=N(0,1)for0<J< A, so
L {n}=N(0,1),for 0= J< Ny For J# J', by (8.2) and (3.1), Rjj e,y Rjjey = B (X)) By’
(Xj) o (Xj) =0, along with (8.4), (8.3), the conditional independence of £x(x), £%(x) on
Xjj Nj 1< /< Nj 1 <7< n and independence of i, Zj Xjj Ny L< k< x, 1< j< N 1<
sn E(nmy)is

k& iied

N; N; —
{Z?:l Zj=1R"fﬁv-’Z’j} {Z?:] Zj=1Ri,;a.f’ Z‘:f} Xij, Ni)lsjgNi,lgign}} _ECn,J.J’

2 N p2 |)712 2 Ni p2 -2
E{{ ;1=1{ZZ=1Rikf,J+Zj:1Rij.s,J}} { ?:1{22:11? +Zj:1R }} E ZZ:]{Z?:IRM,&J&/‘} Z?:lR,-k,_f,/fik +

in which

K n

n K . -1/2 n K N; -1/2
- <

i= i=1 \k= k=1 i=1
-Note that according to definitions of Rj ¢ ; Rjj.. and Lemma A.5,

1\ L} Ni o
NT Zi:l {Zkleik,f.l+Zj:1ij,g,.l}
2 -1\ Ni o _2 2 2
2N Y DL B K= B, IR, 2 (- A for0< U< A,

n K Ni n K Ni log (n) 2
. -1 2 2 -1 2 2 4 -3
i 0<Jitl}f<N My Z £ 1R‘k*5"’ +ZIR’V"’" XN - ;Rikf,/ +ZIR::/.&/ z ¢ |1-C, nhs z1-227,
<J#J <N = i=1 \k= = s

i=1 =

by Lemma A.5. Thus for large 7, with probability = 1 — 2/7°3, the numerator of CnJis
uniformly greater than ¢2 /2. Applying Bernstein’s inequality to

1 K n
Ny {Zkﬂzi:er’w R,-k,f,/ } there exists C > 0 such that, for large n,

NS S ROR
T Zk:lZi:l k&S it

P( sup < Cohs) >1-2n7°,
0<J#J" <Ny

Putting the above together, for large 7, C]:Co(cg/Z)_l,
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Page 17

P|(su |C | <Cihg >1—4n73.
P JJ

0<J#J <Ng

Note that as a continuous random variable, supo< z;<ngl C,us1 € [0, 1], thus

1
E C =| P C >t)dt.
(Supog#/ <Ng | ntt |) fo (Supog;ﬁf gNsl ndJ | )

For large 77, C1 /15 < 1 and then £ (SUpos s <ng | Cnga1) 1S

C1hg 1
f() P {supoqgj;flvs |Cn~u; |>t} dt+fc1 N P {supogﬁl o |Cn.1./ | >t} dt
< [, "lde+ [ 4n73dt < Cihg+4n < Chg
Cyhs

for some C> 0 and large enough 7. The lemma now follows from

|C

ndJ

sup |E(C , )| < E (sup ) < Ch.

,
0<J#J <Ns J 0<J#J <Ns

By Lemma A8, the (As + 1) standard normal variables mp, ..., 7y satisfy the conditions of
Lemma A.2 Hence forany t€ R,

lim P (supyero, b7 (X)| < 7/ay ,+b, ) =exp (~2¢77). (87)

n—oo

For x€ [0, 1], Rik ¢4 Rijjes9iven in (8.2), define the ratio of population and sample
quantities as r,{(X) = {nE (M) | N} 2 {R(x) | R(X)}I2, with

) a1 2 Ni p2
R”(i)_NT { Ir'L=1 (ZZ:I Rik,fJ(x)+Z jlei/'.e.J(x) )}
R(x)=(EN,)"'YX_| ER*> +ER’

1k,&,J(x) 1,6J(x) "
Under Assumptions (AZ2), (A3), for n(X), o,(X) in 8.6), (2.3),

o0 { Y &V 10| =10 - 1l @)

as n—> 00, SUp e 1y, Ira(x) = =04 (Vllog(N+1)} (logn)/(nhy)).

Proof—Equation (8.8) follows from the definitions of n(x) and o;(x). By Lemma A.6,

n N;
NT_I ZZRSLS,J(;() - ER121 &J(x) = O‘d-& (\/m) 5

i=1 j=1

SUPye[0,1]
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NISS Y R —(EN)'Y_| ER?

SUDe(0,1] ik £, () 1k &,J(x)

< SUPe0,1] (EN1)~ Zk L

—1 _ 2
2 m £,J(x) Ele £

+sup 01 (END ™' X5, In (EN) N = 1||n! 37, R?

ik&,J(x)

Zoa.s. ( vV logn/(nhs)) +Oa.s.= (n~1/2) =0a.s. ( vV logn/(nhs)) 5

and there exist constants 0 < ¢5< Cp < oo such that for all x€ [0,1], c5< R(X) < Cpa. Thus,
supxeo,1] |RAX) — R(x)| is bounded by

-1 2 -1 2
SUPxe(0,1] Nr ZIIE:I Z?:1 Rikf](r) — (ENy) Zz 1 Ele{ I(\)
-1 Ni p2 2 f
NT Z?:lzjzl Rij,s,](r) - ER]lsJ( x) ﬂ>5~ ( logn/(nhS)) .

SUPye[0,1]

[Ru0]"” - [Rew) ] < sup Ra()-R(ol sup (Reof =04, (Viognluhs)

x€[0,1]

Thus b, [1F

Then supepo 1) {ang+1 174X — 11} is bounded by

a,.,, {{nE (Nl)/NT}l/2 sup

x€[0,1]

(Rao/Reop " = 1]+ |1 = tnev i, 7

< ay,, {{nE(No/NT}”2 sup {R(v)} """ sup \{E(n}] - [Re) \ |1 = (BN, }‘/2]}—0 s (VllogWe+ D)} (logn)/(nhy)).

xe[0,1] x€[0,1]
Proof of Proposition 2—The proof follows from Lemmas A.5, A.7, A.9, (8.7), and
Slutsky’s Theorem.

Proof of Theorem 1—By Theorem 2, l/m(x) = m(X)llco = Oy (), SO

aN;H( sup o L (x)l(x) —m(x)|) p {(nh)' 2 \log(NF g} =o,(1),
xe[0,

]:o,,(l).

a,. | sup o-;l(x)lm(x) —m(x)| - sup o' (%)

x€[0,1] xe[0,1]

3, (0)+E()
k=1

Meanwhile, (3.4) and Proposition 2 entail that, for any € R,

D E+Ex)| - b

k=1

n—oo Ns+1

lim P ia,, | sup o3 (x) < 7p=exp(-2e).
xe[0,1]

Thus Slutsky’s Theorem implies that

lim P { sl ( sup O'I;I(x)W(x) —m(x)| — bNSH] < ‘r} =exp (—2¢77).
x€[0,1]

n—oo
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=-1 1l 1
Let 7=~ log \=3log (1 = )¢ gefinitions of apngr1, a1, and Qg (@) in (2.4) entail
lim P {m(x) € 7i(x) £ 0(x)Qy., (@), ¥x € [0, 1]}
=lim P {Q;jl (@) sup 0';](x)|E(x)+ﬁz(x) —m(x)| < 1}:1 —-a.
n—o0 s+ xe[0,1]
by (3.4). That o, (X)L {m(x) - m(x)} — N (0, 1) for any x € [0, 1] follows by directly
using 7(x) ~ N (0, 1), without reference to supepo,17 |(X)I-
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1=
<
A

Figure 1.
Plots of simulated data scatter points at o= 0.5: (a) 7= 20, (b) /7= 50, and the true curve.
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(e) (d)

Figure 2.

Plots of confidence bands (4.2) (upper and lower solid lines), pointwise confidence intervals
(upper and lower dashed lines), the spline estimator (middle thin line), and the true function
(middle thick line): (@) 1 - a=0.95,7=20, (b) 1 - a=0.95n=50,(c) 1 -a=0.99, n=
20,(d) 1 - a=0.99, n=50.
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Y*E2

Figure 3.

Plots of the piecewise-constant spline estimator (thick line), the data (dots), and (a)
confidence band (4.2) (upper and lower solid lines), the smoothed band (upper and lower
thin lines), (b) pointwise confidence intervals (upper and lower thin lines) at confidence
level 0.95.
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The mean CD4+ cell counts and the confidence limits on each subinterval at simultaneous confidence level

0.95.

Days Mean CD4+ cell counts | Confidence limits

[0, 1) 178.23 [106.73, 249.72]

[1, 4) 20.32 [130.51, 270.13]

[4, 15) 24.62 [171.81, 311.43]

[15, 36) 27.87 [194.70, 349.04]

[36, 71) 299.51 [222.34, 376.68]

[71, 123) 280.78 [203.50, 358.06]

[123, 196] 299.27 [221.99, 376.55]
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