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We address the problem of how simple a solution can be for engijuantum local consistency instance.
More specifically, we investigate how small the rank of thabgll density operator can be if the local constraints
are known to be compatible. We prove that any compatibld ieasity operators can be satisfied by a low rank
global density operator. Then we study both fermionic argbbi versions of théV-representability problem
as applications. After applying the channel-state dualiy prove that any compatible local channels can be
obtained through a global quantum channel with small Krang&.r

PACS numbers: 03.65.Ud, 03.67.Mn, 89.70.Cf

I. INTRODUCTION

Understanding the various correlations and relationshipsngst the different parts of a many body quantum systemds o
of the most difficult challenges in quantum theory. It is welbwn that the reduced density operators defined by partie¢s
characterize subsystems. Consider a system of threeartié andC': If all three two-particle density operatops Z, pA¢
and pP¢ are consistent with some global density operatof©, they must satisfyIr 4 (pAZ) = Trc(pBY), Trp(p??) =
Tre(pA€) and Tr4 (pA9) = Trp(pBY). This is a necessary but not sufficient condition for the texise ofp2¢. As the
particle numberV becomes very large, the correlations between local sulrsgdbecome much more complicated. In general,
local consistency is the problem of deciding whether a go@hection of subsystem descriptions is consistent withesatate
of the global system, or the problem of finding necessary afficient condition for consistency of subsystem desavipsi It
is also called the quantum marginal problem in literativg]. The community observed the relation between the spectfum
bipartite quantum states and certain representationeafytimmetric groups very recently. The consistency conutfor some
special classes of quantum states were then givei-].[ For general states with overlapping margins, the situatemains
unclear.

If the particles under consideration are fermions instefaglbits, the local consistency problem has been known aévthe
representability problem, which arose initially in the 0%6in connection with calculating the ground-state eres@if general
interacting electron§].

It was only recently shown ing] 7] that both deciding the local consistency and deciding dlcall consistency for fermions
are QMA-complete, meaning both the consistency problentlaad’-representability problem are computationally at least as
hard as any other problem in the complexity class QMA. HerdAQs the quantum analogue of the complexity class NP.
Consequently, it is unlikely to have efficient algorithms limcal consistency problems, even on a quantum computet.vary
recently, Wei, et al. proved that the bosonic version offheepresentability problem is also QMA-compleie[

Though the local consistency problem is theoretically hiattie worst case, it is still worth exploring the potentialigions.
There are various approaches scattered through theliteran this subject. Linden, et al. proved that almost eveme-qubit
pure state can be uniquely determined among all states byt party reduced stateg[ A related fermionic version was
discussed in10], whose results indicate that almost any three fermion gtate is uniquely determined among all states by
their two-particle reduced states, though it was not stetedlicitly. Linden et al.’s result was later generalizedNeparticle
systems[1].

In this paper, we will focus on another direction of the locahsistency problem. We are interested in how simple the
solution can be, or more specifically, how small the rank oflation can be. The same question for bipartite quantunesyst
without overlapping margins was discussedif put their approach seems technically difficult to geneealo the case with
overlapping margins. In this work, we consider this problegarding the rank of the solution in a very general settiog,
multipartite quantum systems with overlapping margins.pidside a rank reduction based approach. We also show theg so
useful results from convex analysis can be applied to thiblpm directly, though it leads to a slightly weaker boundrth
ours[L7]. Then we will apply our results to ferminonic and bosonisteyns. Finally local consistency problem for quantum
channels will be addressed.

We now state our main result. For a given finite-dimensionbiiett spacel{, B(#) will denote the space of bounded linear
operators acting oi. For then-fold tensor producH®" and any integei < n, X; andZ; are general Paull -gate and general
Pauli Z-gate fori-th qudit respectively. Formally, the local consistencglgem can be stated as follows.
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Problem 1. Consider a multipartite quantum systefn.As - - - A,, with Hilbert spacet 4, 4,..4, = Ha, ®Ha, ®---QH4,.
Given a set of reduced density operatpgsi = 1,2,--- , k) where eaclp; acts on a subsysteiy of A1 Ay -+ A,, or I; C
{A1, As,--- , A, }. The local consistency problem is to address the existehaglobal density operatos € B(H 4, 4,---4,,)
satisfyingTr;e p = p; foranyl < < k. I{ here is the complement 6f.

An instanceof the local consistency problem is a collection of pairs:educed density operat@; and corresponding
subsystem/;. For any given instancé(p;, I;)}*_, of the local consistency problem, if there is a global dgnsjperator
p € B(Ha,A4,-4,) satistyingTrre p = p; for anyl < i < k, then we say{(p;, I;)}¥_, is acompatibleinstance.

In this paper, we will show that compatible local density i@pers are reduced states of some simple (low rank) glolelitye
operator. More specifically, we have following theorem.

Theorem 1. For any compatible instance of local consistency prob{ém, I;)}%_,, there is a solution with rank no more than
Z§:1 (rank p; )2,

We are primarily interested in instances where the wholeesyssH®" and only no more than-particle reduced states are
known. In this case, the number of reduced states should bmm)thar(Z), the rank is bounded by polynomialinwhile the
rank of a general density operator should be exponential in

The paper is structured as follows. After introducing thguisite background material in sectigrnwe give a proof of above
theorem in sectioil. We then apply these ideas to therepresentability problem in sectioh. In sectionlV we introduce the
notion of consistency of quantum channels. Some examptdafiustrated in sectioiv.

II. PROOF OF MAIN THEOREM

Proof of Theoreni.. Since the local density operators of this instance are knmnpe compatible, we can start from some
solutionp, which is a density operator acting &y, 4,...4,, andTr;e p = p; foranyl <4 < k. Using a spectral decomposition
of p we may write

p=> il ] 1)
J=1
wherer = rank(p) and|¢1), [12), - -, |¢,) are mutually orthogonal unit vectors. We will show that wheis large, then we

can find another solutiop to the same instance angnk(p’) < rank(p).
Consider the spectral decompositions again and write

pi=> Pyl forall 1<i <k @)
j=1
wherer; = rankp; and|1/)§i)>, |w2i)>, e |w§?> are mutually orthogonal unit vectors for aiy
Consider the following set:
M ={X € B(suppp) : IL;(Trse X)II; = O foranyl <i < k}. 3)

Here, for eachi, 11; is a projector osupp p;.
Now, M is a subspace of dimension at lea’t- Zk_l rank’IT;

If 72 — Zf 1 rank®Il; > 1, thenM is not empty. Let's say there is a non-zeYoc M which impliesX' € M too. Thus
both H; = X + Xt andHy = i(X — XT) are traceless Hermitian operatorsi. Note thatH; and H, cannot be zero
simultaneously wheiX is not the zero operator. Without loss of generality, letssumeH = H,(or H2) is non-zero.

H is chosen fromB(supp p), or equivalently, there is somesuch thatp + ¢ > 0 which follows p; + ¢ Try-(H) > 0
for anyi. Thus Hermitian operatdfr;. (H) lies completely inB(supp p;) that impIiesHi(Trlf o)L, = Tr;e H and then
Tr H = TrTr;e H = 0. ' '

Since the operatall = 0, Tr H = 0 contains both positive and negative eigenvalues, the safde forp — AH for A >> 1.
Hence there exists an intermediate value A < oo for which the operatop — AH is nonnegative, but not strictly positive, i.e.
p — AH is a degenerate density matrix we are looking for.

Now, for any solutiorp to a given instancép;, Z; }*_,, if 72 — Zle rank®Il; > 1, we can always find a non-zero traceless
Hermitian operatod € M,and then another solutigt = p — AH to the same instance with rank less thank p . Thus,
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by repeating this procedure until above quadratic inegudthesn’t hold anymore, we will finally end with a solutienwith
rank o < U/Zle (rank p;)?]. O

Corollary 1. For any instance of the local consistency problem with gieeal systems$7;}~_,, if the solution set is nonempty,

then there is a solution with rank no more th@v Zle (dim I;)?].

Remark 1. Barvinok proved that if there is a positive semidefinite makf satisfying

where()q, - - - , Q) are symmetric matrices angd, - - - , g, are complex numbers, then there is a positive semidefinitexmé*
satisfying the same equation system and additiomatiy X * < L@J [12]. The main ingredients of his proof are the duality
for linear programming in the quadratic form space. Aftelpapng Barvinok’s theorem to the local consistency prohlera

will have a similar rank reduction which will lead to a solati with rank no more thar/2 Zle dim®Z;. Thus this result is
weaker than ours.

I11. APPLICATION: N-REPRESENTABILITY PROBLEM

In this section, we will study thé/-representability problem, which is a fermionic analogtithe local consistency problem.
The bosonic version aV-representability is also addressed later.
We first restate thév-representability problem as follows.

Problem 2. Given a system oV fermions where each particle hasenergy levels, and &-fermion statep of size(g) X (Z)
determine whether there exists Aifermion stater such thatlry1.... n (o) = p.

According to the Pauli exclusion principle, no two part&tan occupy the same state, thus we can always assme.
The space ofV-fermion pure states is mathematically described as\tith antisymmetric tensor product €f; with dimen-

sion (Z‘f,) denoted ag\V C. It is the span of allV-fold antisymmetric tensor products of vectars x», - - -, x in C4 which
is defined as
1
xl/\x2/\"'/\$N:ﬁ§5PxP(l)®xP(2)®"'®«TP(N)' (5)

Here, P goes through all permutations 8f indices and p is the signature oP. Soep is 1, if the number of even-order cycles
in P’s cycle type is even, and1 otherwise.

Similarly, the space aV-boson pure states withenergy levels corresponds to theth symmetric tensor product @f; with
dimension(" ¢~ 1), denoted as'~ C,.

For more information abou¥-th symmetric/antisymmetric tensor product, please ref¢t 3.

For the N -representability problem, there is a similar rank redurtts follows.

Theorem 2. Suppose we are given a systemN\ofermions where each particle hasenergy levels and &-fermion density
operatorp of size(i) X (ﬁ) Assume there exists ah-fermion stater such thatlr,,; ... n(o) = p. Then there also exists an

N-fermion density operatar’ with Try1 ... n(0’) = p andranko’ < rank p < (z)

The proof is similar to the proof provided in Sectitin with minor modifications. Observe that the whole rank reidunc
in our approach is processedsnpp(p). After introducing additional symmetry to the global systehe rank reduction also
works by replacingd™~ C, with ANC, or vV Cy.

Similarly, we will also get the following theorem for the msc version.

Theorem 3. Suppose we have a systemNobosons where each particle hdsnergy levels and &-boson density operator
p of size(“TF71) x (“TF71). Assume there exists avi-boson stater such thatlr.1.... (o) = p, then there also exists an

N-boson density operatar’ with Try1.... x(0’) = p andrank o’ < rankp < (“7F71) .

IV. LOCAL CONSISTENCY PROBLEM FOR QUANTUM CHANNELS

In this section, we will investigate a new type of consisterdhe consistency of quantum channels. A quantum channel
is a device which transmits classical bits or quantum statsthematically, it is a linear map which maps any quantuatest
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on some Hilbert spac#; to another state on some Hilbert spd¢e. Furthermore, a quantum channel can be described by a
completely-positive, trace-preserving map

Generally, for a quantum channel from syst&mto 7, we shall think ofH; as part of a closed composite systgén® H}
and?, as part of another closed composite systém= #/ which has same dimension &5 ® . Therefore, the evolution
from H, ® H} to Ho @ H), can be described by some unitary operéfoiThe quantum channdl is then described as

®(p) = Try, (U(p @ [0)(0]34)UT). (6)

By Stinespring’s dilation theorem on completely positiveps,® must take following form
N
O(X) =) KAK] @)
i=1

where Ks are some operators, called Kraus operator®.ofTrace preservation oP is equivalent to the surﬁ:fv:1 KJKZ
equaling the identity operator. The number of Kraus opesatbis no more thamlim #; dim #, and the minimum number of
N is called the Kraus rank @b. In some sense, the smaller the Kraus rank is, the simplexhifuenel is.

The concept of channel consistency is quite intuitive. @erghe following scenario, in which there is a channel freome
large systent{; to some large systef,. Here, the mapping is fro®(#;) to B(*2). A local observer Alice can only gather
information from part ofH, sayX{' and part ofH,, say#4'; therefore, she has information about the partial mappiom f
B(H#") to B(H4'). Another observer Bob has his information about the pamiabping from some3(H?) to someB(HZ).

So do any other observers. Several questions naturally. aHew much information about the global quantum channel can
be known when Alice, Bob and other observers disclose tbedallinformation? If every observer has a description of som
partial mapping, is there a global channel satisfying abthlocal constraints? Can we find some simple channelsatjdbcal
constraints if the local descriptions are known to be coibje?

There are some subtle differences between state consistedcchannel consistency. The most confusing part is, how to
describe part of a quantum channel, or the partial mappiong # local system to another local system? There is no doabt th
part of a quantum stajg described by applying some partial tracesis definitely positive-semidefinite and traceTherefore,
part of a quantum state is again a quantum state. Howevdreiguantum channel setting, the analogue of the above pyoper
is not so straightforward. One may even doubt part of a quamtuannel may not be a quantum channel at all. Thanks to the
channel-state duality, we can define sub-channel of som&uguechannel as the following.

Given any channel : B(#H,) — B(H2), we can always write a corresponding state&/ab be

1 dim H1
7T dimH, p;l p){al ® ¥(|p){al) ®)

where{[i)}"™ "1 is an orthonormal basis 6{,. The statery is called the Choi-Jamiolkowski state @fand the association

above defines an isomorphism between linear maps 8¢f,) to B(H2) and operators iB(#; ® H-), called the Choi-
Jamiolkowski isomorphism. Its rank is equal to the Kraukraino .

Therefore, for any quantum channel: B(H4 ® Hg) — B(Ha @ Hp'), we can define chann@? : B(H4) — B(H))
by taking the reduced density operator of the Choi-Jamiedikd statesy as its Cho-Jamiolkowski statey 4 .

Observe that

dimHap
V) = Tea (g O Trmlplal © Tew W) ) (oo L) ©
P,q=1
1 dimHap
" Gty 2, e (Rl 15) & T W) (10)
~ T W 2o, (11)

U4 acts exactly the same dsdoes betwee(#H 1) and B(#H’,). Hence we call* sub-channel o from B(#H 4) to B(H',).

By adopting above definition, we will address the followingegtion: how simple the global channel can be, or more specif
ically, how small its Kraus rank can be if the sub channelskavn to be compatible. Mathematically, the local consisye
problem for quantum channels can be stated as follows.

Problem 3. Consider two multipartite quantum systemdsA; - - - A,, and B15s - - - B,,, with Hilbert spacesH 4, 4,...4,, =
Ha, @Ha, ®--- @ Ha, andHp,5,..5,, = Hp, @ Hp, @ --- @ Hp,, respectively. Assume a set of local quantum channels
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{®;:1=1,2,---,k} is given. EachP; maps states on Hilbert spaéé; = ®.4,c1, H 4, t0 states on Hilbert spact ;, =
®p,eq, Hs, wherel; C {A1, As,--- , A,y andJ; € {By, Bs,- -+, By }. The local consistency problem for quantum channels
is to address the existence of a quantum cha®neB(H 4, 4,.-.4,,) — B(Hs,5,.--8,,) satisfying®;(p) = Tr ¢ @(p@ﬁ)

foranyp € D(Hy,) foranyl <[ <k.

By taking the Choi-Jamiolkowski states of eakh Problem3 can be converted to the existence of the global density tgrera
Then we can apply Theorefinto the quantum systemd; As - - - A, 8185 - - - B,,, with Hilbert spaceH 4, 4,...4,8,B,--B,, =
Ha, @Ha, @ - @Ha, @ Hp, @ Hp, ®--- @ Hp,,. Since a set of reduced density operatoss(l = 1,2, -- - , k) is given
and eaclvg, acts on a subsystem.J; C {A;, As, -+, Ay, B1, Ba, - -+, By }. According to Theorem, we can always find a

density operatos satisfying the local consistencies anthk o < \/Zl (dim I; dim JZ)Q.

Theorem 4. Assume there exists a global quantum charbel B(H ., 4,..4,) — B(Hg,B,..-5,,) satisfying®;(p) =
Tre ®(p ® m) foranyp € D(H;,) foranyl < I < k. Then there also exists a quantum chanbékatisfying the
L

same local constraints such thét can be expressed with no more th@/@l (dim I; dim .J;)* Kraus operators.

V. SOME EXAMPLES

Example 1. Consider am-qubit quantum systet; As; - - - A,, with Hilbert spaceH 4, ,...4, = C5". We are interested in
then-qubit states such that any:-qubit local density operator gf is é—ﬁ
Obviously,y = é—:; is a trivial candidate with the maximal rarik'.

From Theorend, there exists some-qubit density operatop satisfying same local consistency anak(p) € O(2* (2))
As a corollary, wherk = 2 is fixed, therrank(p) € O(n).

Indeed, fork = 2, there are always pure state (i.e. rapk 1) solutions for anyr > 5. One such example could be a graph
state [L4, 15] |¢,,) on a ring, which is a common eigenstate of eigenvalwé the Pauli operators;;, = {7, 1X,;Z; 1} for
i=1,2,...,n,whereZy = Z,, Z,+1 = Z1. Thatis,g;|1,) = |[¢,) fori =1,2,...,n. Note that

n

1

pn = ln) (| = o [T + 9. (12)
=1

It is then straightforward to see that alylocal density operator of the-particle statep,, is g—g

In general, for any fixed, there do exist-qubit graph states such that aikylocal density operator of the graph stateéif,,
for large enougm [16].

Example 2. Consider a system d¥ bosons where each particle hasnergy levels. The-boson maximally mixed state is
defined as

01+10, 01+ 10
V2 V2

Obviously there exists a non-degenerdtdoson maximally mixed operatMéN) such thafTrs ... 7N(M§3N)) = Mg). Then it

follows from Theorer that there exists anothe¥-boson density operater with Trs ... y(0) = Mg) andrank o < 3.
We can chooséz? < p < 2%tL and leto, to be

M = 2(00)(00] + [11){11] + ) 13)

3p+1—N 2N —3p+1 (it pin=p 1182 AN)) O, iy =plitiz - i)
i 1 WP ) (g T Y [ Ly [N 5 [ [ (14
o | ) | 6(N —p) | IS | 6(];_12) (14)
Notice that
E livia---in) (15)

i1tistotin=p

= [00) Y lia-in) (01 [10) Y fieein) 1) > fis-in), (16)

igetin=p ig+-tin=p—1 igetin=p—2



and then
TI‘3,...,N(O'Z,) (17)
opt1-N ()9 () oN—3p+1  (33)
= o +6(];:12))|00)<00|+76(g:f)|01+10><01+10|+( 6(N —p) + (];Y:f)”llml' (18)
1 01+10 ,01+10
= 5(00){00] + [11)(11] +| 7 ) 7 ). (19)

Therefore,{cr][,}qu< anv+1 1S & family of N-boson density operators with raskand every2-local density operator of any
3 == 3

op is the bosonic maximally mixed stdtég). Furthermore, whedV = 1(mod3), we will haverank(a¥) =2.

VI. CONCLUSION AND FUTURE WORKS

In this paper we addressed the problem of how simple a saluém be for any given local consistency instance. More
specifically, how small the rank of a global density operatm be if the local constraints are known to be compatible. We
provided a reduction based approach to this problem ancegrihhat any compatible local density operators can be satigfith
a global density operator with bounded rank. Then we stuld@h fermionic and bosonic versions of therepresentability
problem as applications. After applying the channel-datity, we proved that any compatible local channels caselbisfied
with a global quantum channel which can be expressed withadl simmber of Kraus operators.

This paper represents a preliminary step toward underistguide structure of solutions to the local consistency [mob
There are many open questions from this approach desemvitigef investigation. For example, though the local cdasisy
is known to be QMA-complete in general, efficient algorithans still possible for some classes of instances. Since we kn
now the existence of solutions is equivalent to the exigeisimple solutions, we can ask if it is possible to find mdfieient
algorithms for these classes? Further, we could ask if qrdgtsa or other descriptions are known for subsystems, hopls
can a solution be?
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