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 

Abstract— Gait initiation Failure (GIF) is the situation in 

which patients with Parkinson’s disease (PD) feel as if their feet 

get “stuck” to the floor when initiating their first steps. GIF is a 

subtype of Freezing of Gait (FOG) and often leads to falls and 

related injuries. Understanding of neurobiological mechanisms 

underlying GIF has been limited by difficulties in eliciting and 

objectively characterizing such gait phenomena in the clinical 

setting. Studies investigating the effects of GIF on brain activity 

using EEG offer the potential to study such behavior. In this 

preliminary study, we present a novel methodology where 

wavelet transform was used for feature extraction and Support 

Vector Machine for classifying GIF events in five patients with 

PD and FOG. To deal with the large amount of EEG data, a 

Principal Component Analysis (PCA) was applied to reduce the 

data dimension from 15 EEG channels into 6 principal 

components (PCs), retaining 93% of the information. 

Independent Component Analysis using Entropy Bound 

Minimization (ICA-EBM) was applied to 6 PCs for source 

separation with the aim of improving detection ability of GIF 

events as compared to the normal initiation of gait (Good 

Starts). The results of this analysis demonstrated the correct 

identification of GIF episodes with an 83.1% sensitivity, 89.5% 

specificity and 86.3% accuracy. These results suggest that our 

proposed methodology is a promising non-invasive approach to 

improve GIF detection in PD and FOG. 

I. INTRODUCTION 

Freezing of gait (FOG) is defined as a brief, episodic 
absence or marked reduction of forward progression of the 
feet despite the intention to walk [1]. In our Timed Up and 
Go experiment, different types of FOG were distinguished 
relating to the clinical situation in which they occurred, such 
as gait initiation failure (GIF), freezing whilst passing 
through a narrow space, freezing whilst dual-tasking, 
freezing on an open runway and freezing during turning [1].  
GIF is a very common situation in which patients with PD 
experience FOG when initiating their first step. The 
prevalence of GIF ranges from 21% to 24% of all witnessed 
FOG in PD [1, 2]. Behavioral manifestations during GIF can 
be observed like as trembling in place, shuffling with 
minimal forward movement, or complete akinesia [1]. Gait 
Initiation is a complex task which requires both motor and 
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cognitive processing to enable the correct selection, timing 
and scaling of movements [3]. From a functional perspective, 
GIF is clinically important as a trigger for FOG because 
initiating gait is frequently attempted every day. The 
increased risk of falls induced by GIF negatively affects the 
quality of life for patients with PD and can result in injury as 
well as nursing home placement.  

In recent years, a number of researches have reported the 
detection of FOG based on the leg oscillations using 
accelerometer, gyroscope and goniometers. However, using 
such sensors based FOG detection systems could not identify 
GIF periods which are not associated with the trembling of 
the legs. Our group previously studied the brain activity 
underlying GIF by analyzing energy power of surface 
ambulatory EEG signals underlying this event [2, 4]. 
However, as data was derived from a large number of 
channels, computational complexity was increased for 
performing further signal processing methods. With the goal 
of developing a faster and better classification system, the 
current paper sought to analyze EEG features to detect GIF 
using principal component analysis (PCA) for data 
dimensional reduction, Independent Component Analysis 
with Entropy Bound Minimization (ICA-EBM) for source 
separation, Wavelet Transform (WT) decomposition for 
feature extraction and Support Vector Machine (SVM) for 
classification. PCA is used to transform a high dimensional 
EEG dataset to a low dimensional orthogonal feature set 
while retaining the maximum information of the original high 
dimensional dataset [5]. ICA-EBM was developed to 
separate the EEG data source to improve the classification 
[6]. 

The main contributions of this paper are the novel 
techniques applied, in which PCA is used for reducing data 
dimension, ICA-EBM for source separation, WT 
decomposition for feature extraction and SVM for 
classification; which has not been explored previously to 
detect GIF in PD. These results suggest that our proposed 
methodology is a promising non-invasive approach for 
improvement of GIF detection.  

II. METHODS 

A. Data Collection and Pre-processing 

EEG data was obtained from five Parkinson‟s disease 
patients who were recruited from the Parkinson‟s disease 
Research Clinic at the Brain and Mind Center, The 
University of Sydney. This study was approved for by The 
Human Research and Ethics Committee, University of 
Sydney. They were tested in their practically-defined „off‟ 
medication state, following overnight (minimum 12 hours 
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since last dose) withdrawal of dopaminergic therapy. The 
subjects demonstrated multiple episodes of GIF (40% of gait 
initiations elicited a GIF) during a structured series of Timed 
Up and Go tasks. Good Starts (GS) is defined as the 2-second 
period after the patients were able to effectively initiate the   
first step. GIF is defined as the period when the patients tried 
to take a first steps but failed to do so. Both were determined 
according to the time onset and offset as scored on the video 
during the TUG tasks. 

Based on our previous FOG findings, EEG   data    was   
acquired from 15 electrodes using a Bio semi Active Two 
system [4]. These electrodes positioned over the following 
cortical regions: frontal F3, F4, FC1, FC2 (motor planning 
and working memory), central C3, C4, CP1, CP2, CZ (motor 
execution), parietal P3, PZ, P4 (sensory integration) and 
occipital O1, OZ, O2 (visual area). References signal was 
taken by averaging 2 electrodes placed on the ear lobes. The 
recording was segmented to 1-second durations and digitized 
at 512 Hz. 

In this study, 66 seconds of EEG data samples of GS 
were matched to 66 seconds of data samples of GIF as 
recorded from five PD patients. Data samples were then 
filtered using band-pass filter at 0.5-50 Hz. Eye movement 
and heart rate signals artifacts were eliminated using 
Automatic Artifact Removal (AAR) in the EEGLab from all 
electrode locations of raw EEG data [4]. 

B. Feature Extraction   

Due to the strengths in time-frequency method, WT was 
chosen to extract the EEG data. WT is defined as the 
convolution between the signal and wavelet function 
generated by dilations and translation of scaled mother 
wavelet [7]. In this research, the discrete wavelet transforms 
(DWT) based on dyadic scales and positions is used [7]. This 
is computed as  
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where    denotes the scale and      denotes the time 
localization and   denotes the mother wavelet function. 

The wavelet decomposition for an EEG signal x (t) at 
scales j, time point k could be calculated as: 
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where  ( )  (   )           ( ) denotes approximation 

coefficients, detail coefficients, scaling function, and wavelet 
functions, respectively.  

Daubechies wavelet of order 4 (db4) were selected as the 
wavelet function since its smoothing feature has been 
confirmed to work well in discovering changes of EEG 
signals [7]. For EEG sampled at 512Hz, a six level 
decomposition (d1, d2, d3, d4, d5, d6) were computed by 
squaring and summing the wavelet coefficients of the 
decomposed level. Four levels of coefficients were 
corresponded approximately to our four EEG sub-band, d6 
(theta: 4-8 Hz), d5 (alpha: 8-13 Hz), d4 (low beta: 13-21 Hz), 
d3 (high beta: 21-38 Hz); which were used for further 

analysis. In order to eliminate differences between electrodes 
and individual subjects, a Z-transformation was applied to 
normalize EEG data.  

C.  Principal Component Analysis (PCA) for dimensional 

reduction 

The computational complexity increases with a higher 
dimensional dataset. Therefore, PCA was applied to decrease 
the dimension dataset into a lower dimension dataset that still 
covers enough information [5, 9].   

Given a raw EEG dataset    and ∑   
 
    , with M 

denoting the number of EEG samples, the covariance matrix 
C of PCA was computed as:  
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where     
  denotes a vector of N x N matrix, with N 

denoting the number of EEG channels. PCA calculated the 
eigenvector as  

λµ =Cµ                                (3) 
where µ denotes the eigenvectors of C and λ denoted the 
eigenvalues. The principal component of     as the 
orthogonal transformation of    is calculated as followings 
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Principal components contain the maximum variance in 
the data. The origin of the new coordinate system is located 
in the center of the data points. The first PC points in the 
direction of highest variance, the second PC points in the 
direction of second highest variance and so on. The variances 
captured for the corresponding PCs were calculated as well. 
The eigenvectors are ranked in a descending order of 
eigenvalues. By choosing only the first few eigenvectors, 
PCA performed a dimension reduction from high 
dimensional EEG data into low dimensional feature 
containing only a few principle components, but that still 
contain enough information of the original data. 

D. Source separation using ICA-EBM 

Next, the ICA-EBM was used to separate sources. ICA is 
one of the Blind Source Separation algorithms. It worked by 
separating the mixed information into independent 
components [6]. ICA-EBM provides flexible density 
matching through the use of contrast functions based on the 
maximum entropy principle. ICA-EBM separated both sub- 
or super-Gaussian mixtures using only a small class of 
nonlinear functions. After pre-processing using PCA and 
ICA-EBM, the 6 PCA and ICA separated data were extracted 
in the form of wavelet transform and fed into our classifier. 

E. Classification 

The significant maximum (      ) and mean value of 
wavelet decomposition of 4 sub-bands from each electrode 
taken from two events were chosen as the features to detect 
GIF. We utilized Support Vector Machine (SVM) to detect 
GIF because of its accuracy and ability to deal with a large 
number of predictors [8]. The significant features were 
divided into half portions, one for the training set and the 
same amount for the testing set. SVM with a Radial Basis 
Function (RBF) kernel is computed as follows [8].  
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where x ,k,    and     denote a random vector, support vector 
index, support vector centroid and support vector radius, 
respectively. JS denotes the Jensen-Shannon (JS) divergence 
between x and   . 

The    divergence is a symmetrized and smoothed 
version of the Kullback-Leibler (KL) divergence.    
divergence is calculated as  
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where P, Q denote discrete probability distribution,               
  = ( +Q) / 2 denotes the central probability mass function 
and KL divergence is computed as 
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A particle swarm ensemble clustering algorithm known as 
Ensemble Rapid Centroid Estimation (ERCE) was used for 
estimating the parameters for the RBF kernel [8]. When using 
ERCE,    and    could be inferred from the training data by 
using the following four steps: 

1. Execute ERCE to cluster the training set to an 
arbitrary number based on JS distance. 

2. Aggregate the ensemble clustering results using 
average linkage to get the final clustered sets   . The 
corresponding centroid vector    was computed as:  
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3. The RBF kernel radius    was taken as the square 
root of conditional JS divergence, which is given as 
follows 
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4. The SVM was then trained using the LS algorithm 

III. RESULTS  

A. Feature Extraction Results 

Figure 1 shows the time-frequency distributions in two 
events GS and GIF from one PD patients using EEGLab 
toolbox.  In this analysis, we explored the mean event-related 
changes in spectral power at each time during the epoch and 
at each frequency in such PD patient. It is observed that 
significant increase in power occurred at low beta (13-21 Hz) 

 

Figure 1.  Time-frequency distribution for GS and GIF of motor cortex C4. 

TABLE I.  FEATURE EXTRACTION 

 Band GS GIF Significant 

  (      ± std)*0.1  (    ± std)*0.1  

F3 hβ 0.068±0.072 0.076±0.061 * 

F4 α 0.132±0.067 0.113±0.092 * 

C3 hβ 0.091±0.079 0.10±0.065 * 
C4 hβ 0.091±0.079 0.107±0.065 * 

CP1 hβ 0.088±0.072 0.119±0.066 ** 

CP2 hβ 0.088±0.072 0.119±0.079 * 

P3 θ 0.359±0.202 0.377±0.158 * 
 hβ 0.112±0.075 0.150±0.077 ** 

PZ hβ 0.114±0.077 0.150±0.093 * 

P4 hβ 0.084±0.061 0.115±0.055 ** 

O1 hβ 0.203±0.097 0.252±0.096 ** 

O2 lβ 0.197±0.115 0.224±0.097 * 

 hβ 0.199±0.095 0.242±0.093 ** 

*:      Significant at   p ≤ 0.05 and Cohen’s d < 0.4 
**:    Significant at p ≤ 0.001 and Cohen’s d ≥ 0.4 

 

and high beta (21-38 Hz) frequency bands during GIF. 

For the feature extraction, 132 seconds from the two 
events GS and GIF (66 seconds each) from all 5 PD patients 
were analyzed. Table I shows the significant maximum 
amplitude from 15 locations based on four EEG frequency 
bands activities. A Wilcoxon signed-rank test with p-value ≤ 
0.001 and a Cohen‟s effect size d ≥ 0.4 were used to 
investigate significant differences between periods of GS and 
GIF. A decrease in alpha was found in F4 and an increase in 
theta was found in P3. However, overall it is apparent that 
increases in high beta frequency throughout the cortical brain 
regions underlie GIF compared to Good starts. More 
specifically, in the context of GIF, high beta activity 
experienced the largest significant rise in parietal regions P3 
(d=0.5013), P4 (d=0.5378) and occipital regions O1 
(d=0.499), O2 (d=0.4577). This finding is similar to our 
previous studies using PSD for analysis [2, 4]. 

B. PCA, ICA-EBM and input for classification 

The collected EEG dataset comprised of a matrix with 
dimension of 15 × 66 × 512 (number of EEG channels × 66 
seconds × 512 data points) for both GIF and GS. These 
matrices were fed into the PCA process to reduce the data 
dimension. The PCA transformed the original coordinate 
system into new coordinates called principal components 
(PCs). Eigenvalues values are shown in a scree plot (see 
Figure 2), which presents percent variance captured versus 
number of principal components. It can be seen that with 6 
PCs, it already covered more than 93% of the variance of the 
original of 15 EEG channels. PC 1 accounted for 64.08 % of 
the total variation in the data and PC 2 accounted for 15.07% 
of the total variation in the data. This study applied a 
threshold of 93%, which generated orthogonal transformation 
from PC1 to PC6, to be used for further processing.  

After applying the PCA, the original high dimension of 
the EEG dataset was reduced from 15 × 66 × 512 (number of 
EEG  channels  ×  second  of  data  ×  data  point  per second) 

 

Figure 2.  Scree plot of the principal components 



  

to 6 × 66 × 512 (number of PCs × second of data ×data point 
per second) for GIF and a similar matrix for GS stages. Such 
a reduced dataset dimension resulted in a lower 
computational complexity; here-after called the 6 PCs EEG 
data. Next, the 6 PCs EEG data was fed to the ICA-EBM, 
resulted in the 6-channels ICA separated sources. These 
optimized sources were further segmented for feature 
extraction using wavelet transform. In order to build a faster 
and better classification system, only significant statistical 
different features between two groups of data (p-values < 
0.05) were chosen as input for the GIF detection. 

C. Classification results 

For comparison purposes, the classification result from 
the original 15 EEG channels without the use of PCA is also 
reported. Table II shows the classification result for GIF 
detection. The classification (with PCA) using 6 PCs EEG 
data resulted in a sensitivity of 80.6%, a specificity of 78.9% 
and an accuracy of 79.7%, while the classification using 
original 15 EEG channels (without PCA) resulted in a 
sensitivity of 80.7%, a specificity of 80.6% and an accuracy 
of 80.6%. The results thus confirmed that the PCA 
successfully reduced the dimension of the EEG data, 
provided similar accuracy (slightly improved) accuracy as 
compared to the original dataset (without PCA) for GIF 
detection. Further improvements were obtained when using 
the combination of ICA-EBM as the source separator is used. 
These results (with PCA, ICA-EBM) achieved a good 
sensitivity of 83.1%, specificity of 89.5% and an accuracy of 
86.3% for detecting GIF. 

IV. DISCUSSION 

In this paper we compared ambulatory EEG during Gait 
Initiation Failure and Good Starts in patients with PD and 
who had FOG. The fast temporal changes occurring in the 
brain during GIF were found to be associated with an overall 
increase in high beta activities over frontal, central, parietal 
and occipital cortical locations. FOG has previously been 
associated with high beta oscillations in the subthalamic 
nucleus, which cohere with both supplementary and primary 
motor areas [3]. Together these may constitute inhibitory 
control over motor actions when response conflict arises [3]. 
This could explain the high beta frequencies found in frontal 
and central cortical regions during GIF in the current study. 
High beta oscillation in parietal and occipital locations 
support the notion that PD patients with GIF suffered from 
impaired sensory integration and thus had to gain more 
information from the environment to initiate gait [3]. 

The classification results indicated that the use of PCA 
for data dimension reduction, ICA-EBM for source 
separation, wavelet for feature extraction and Support Vector 
Machine for classifier achieved the best performance 
indicators for GIF detection, with sensitivity increasing by 
2.4% (from 80.7% to 83.1%) and accuracy increasing by 
5.7% (from 80.6% to 86.3%) as compared with the case 
without using PCA and ICA-EBM. This finding therefore 
suggests that PCA was successfully applied for data 
dimensionality reduction, but still retained sufficient 
information   of   the        original data   which   are    benefits 
for solving big data dimension problems in such EEG studies 
[9].   

TABLE II.  CLASSIFCATION RESULTS   

PCA ICA-EBM Dimension Training Testing 
   Sen Spe Acc Sen Spe Acc 

No No 15 channels 81.0 80.8 80.9 80.7 80.6 80.6 

Yes No 6 PCs 81.0 79.3 80.1 80.6 78.9 79.7 

Yes Yes 6 PCs 83.4 89.7 86.6 83.1 89.5 86.3 

Sen: Sensitivity; Spe: Specificty; Acc: Accuracy 

V. CONCLUSION 

We have successfully used EEG signals to investigate 
brain dynamic changes underlying gait initiation failure in 
PD and detected these events with high performance. The 
preliminary study provides optimism for the development of 
a real-time device for GIF detection that could be employed 
in everyday walking situations in PD patients. Further 
research should focus on optimizing the above techniques for 
a wider pool of participants and also investigate the efficacy 
of GIF detection system in real time. It is hoped that an 
increased understanding of underlying neurobiology will 
ultimately promote the development of novel therapies and 
technologies to assist the management of FOG in PD. 

ACKNOWLEDGMENT 

The authors would like to dedicate this work to the 
memory of Dr A.M. Ardi Handojoseno who contributed 
significantly to our research in Parkinson‟s disease.  His 
intellect, kindness and compassion will always remain deeply 
in our hearts. 

REFERENCES 

[1] J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. 
Hausdorff, and N. Giladi, "Characterization of freezing of gait 

subtypes and the response of each to levodopa in Parkinson's disease," 

European Journal of Neurology, vol. 10, pp. 391-398, 2003 

[2] A. M. Ardi Handojoseno, J. M. Shine, T. N. Nguyen, Y. Tran, S. J. G. 

Lewis, and H. T. Nguyen, "Analysis and Prediction of the Freezing of 

Gait Using EEG Brain Dynamics," Neural Systems and Rehabilitation 
Engineering, IEEE Transactions on, vol. 23, pp. 887-896, 2015 

[3] M. J. Georgiades, M. Gilat, K. A. Ehgoetz Martens, C. C. Walton, P. 
G. Bissett, J. M. Shine, et al., "Investigating motor initiation and 

inhibition deficits in patients with Parkinson‟s disease and freezing of 

gait using a virtual reality paradigm," Neuroscience, vol. 337, pp. 153-
162, 2016 

[4] Q. T. Ly, A. M. A. Handojoseno, M. Gilat, N. Nguyen, R. Chai, Y. 
Tran, H. T. Nguyen et al., "Identifying montages that best detect the 

electroencephalogram power spectrum alteration during freezing of 

gait in Parkinson's disease patients," in 2016 38th Annual 
International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), pp. 6094-6097, 2016 

[5] U. R. Acharya, S. V. Sree, A. P. C. Alvin, and J. S. Suri, "Use of 
principal component analysis for automatic classification of epileptic 

EEG activities in wavelet framework," Expert Systems with 
Applications, vol. 39, pp. 9072-9078, 2012 

[6] X. L. Li and T. Adali, "Independent Component Analysis by Entropy 

Bound Minimization," IEEE Transactions on Signal Processing, vol. 
58, pp. 5151-5164, 2010 

[7] C.S. Burrus, R.A. Gopinath, and H.Guo, Introduction to wavelets and 
wavelet transforms: a primer, New Jersey: Prentice-Hall,pp.2-7, 1998. 

[8] M. Yuwono, S. Su, B. Moulton, Y. Guo, and H. Nguyen, “An 
algorithm for scalable clustering: Ensemble rapid centroid 

estimation,” in Evolutionary Computation (CEC), 2014 IEEE 

Congress on, pp. 1250–1257, 2014 

[9] R. Chai, G. Naik, T. N. Nguyen, S. Ling, Y. Tran, A. Craig, et al., 

"Driver Fatigue Classification with Independent Component by 
Entropy Rate Bound Minimization Analysis in EEG-based System” 


