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FRACTIONAL EULER LIMITS AND THEIR APPLICATIONS∗
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Abstract. Generalizations of the classical Euler formula to the setting of fractional calculus are
discussed. Compound interest and fractional compound interest serve as motivation. Connections
to fractional master equations are highlighted. An application to the Schlögl reactions with Mittag-
Leffler waiting times is described.
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1. Introduction. Euler’s famous limit formula states, as n→∞,(
1 +

1

n

)n
−→ exp(1) = e ≈ 2.71828 . . . .(1)

Euler (Introductio, 1748) was motivated by quandaries such as if a “man borrowed
400.000 florins at the usurious rate of five percent annual interest . . . ” [58]. Indeed,
the special number e of calculus and possibly also the formula (1) may have been
discovered in this way in 1683, although not by Euler; it was another Swiss mathe-
matician, Bernoulli, in connection to his own studies of compound interest. Others
certainly made contributions, including Mercator’s earlier work on the logarithm. Eu-
ler’s limit is one way to introduce exponential growth: as the discrete compounding
intervals become more frequent they tend to a continuous exponential limit. For clar-
ity, in Euler’s example the principal is P = 400.000 and the interest rate is r = 0.05,
and if the term of the loan was for one year with n compounding periods, then the
total repaid after one year would be

P
(

1 +
r

n

)n
.

For example, n = 12 if compounded monthly, n = 365 if compounded daily, and the
limit n→∞ would correspond to compounding continuously.

Such examples of compounding processes are memoryless in the sense that the
future is conditionally independent of the past, given the present. Other processes
have memory and depend on their history. The fractional calculus [50, 9, 23, 4, 28,
39, 45, 43, 44, 48, 16, 32, 8, 29], unknown to Euler (though his oeuvre is related to
its origins), offers a mathematical framework for such processes. That involves a gen-
eralization of the derivative to a fractional derivative, alongside which the continuous
exponential function is generalized to a continuous Mittag-Leffler function:1

(2) Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
.
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1Eα(z) in (2) is the one-parameter Mittag-Leffler function, whose namesake completed his thesis

at Uppsala University, while the two-parameter Mittag-Leffler function, Eα,β(z), which we touch on
in (33), was introduced by Anders Wiman, who also shares a connection to Uppsala [22, 47, 46].
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Table 1
Comparing representations of exponential functions and of Mittag-Leffler functions.

Exponential et Mittag-Leffler Eα(t)

Taylor series

∞∑
n=0

tn

n!

∞∑
k=0

tk

Γ(αk + 1)

Cauchy integral
1

2πi

∫
C
ez

1

z − t
dz

1

2πi

∫
C
ez

zα−1

zα − t
dz

Euler limit lim
n→∞

(
1 +

t

n

)n
?

Here α smoothly interpolates between the usual calculus at one extreme (α = 1) and
an ever “more fractional calculus” toward the other extreme (α→ 0). In this article,
always 0 ≤ α ≤ 1. The familiar power series for the exponential, E1(t) = 1 + t/1! +
t2/2!+· · · , is recovered when α = 1. Fractional processes require specialized numerical
algorithms [49, 59] and we use codes of Garrappa [19] for (2). Table 1 collects various
representations of these functions. A missing entry suggests a question: What might
be the fractional generalization of the discrete limiting process in Euler’s famous limit
formula? This question will eventually lead us to the resolvent but we begin with
more elementary approaches.

1.1. A recursive formulation. Revisit Euler’s formula, recursively:2

y0 = 1,

yj = (1 + h) yj−1.(3)

It is common to allow a time parameter t in Euler’s limit formula (1), which often
appears as

lim
n→∞

(
1 +

t

n

)n
= exp(t).

This is accommodated in (3) by setting the step size to be h = t/n for fixed t. The
limit n → ∞ is the same as h → 0, with t held constant. This recursive formulation
certainly has the property that we expect: yn → exp(t) as n→∞.

In fact, (3) is precisely the Euler method for approximating the simple differential
equation dy/dt = y with familiar solution y(t) = exp(t) when y(0) = 1. Finite
differences of the continuous equation dy/dt = y lead to the discrete approximation

(4)
yj − yj−1

h
= yj−1.

Rearranging yields the Euler formula. Comparing Taylor series shows that the local
error over a single time step of size h is O(h2), but errors accumulate over the many
steps it takes to reach yn so by the last step the global error, yn − exp(t), is O(h).

2Various interpretations of compound interest are possible. A different candidate, in which the
interest rate is not fixed, could come by setting rj = t/j and replacing (3) with yj = yj−1(1 + rj). A
solution is possible in terms of special functions, yn = y0Γ(n+1+t)(Γ(n+1)Γ(1+t))−1 = (tB(t, n+
1))−1 (where ∂/∂xB(x, y) = B(x, y)(Ψ(x) − Ψ(x+ y)) and Ψ(x) = d/dx ln Γ(x) = Γ′(x)/Γ(x) is the
digamma function), although such alternatives are not further explored here.
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This is first order accuracy: convergence is slow and Euler’s formula is not usually a
good numerical choice. Nevertheless, it remains pertinent to compound interest.

Stability3 is another important property of a numerical method that is related
to compound interest. For example, for the stable continuous equation dy/dt = −y
with solution in terms of exponential decay y(t) = e−ty(0), stability requirements
place a restriction on the step size, |1−h| < 1, of the explicit Euler forward difference
construction yj = (1−h)yj−1. Stability in relation to backward differences arises later
in (10) and (43). Errors accumulate in a way that is analogous to compound interest
on a bank account. Errors made early contribute more to the final error. Ensuring
numerical stability is tantamount to ensuring that the “compound interest” on those
local errors does not grow too usuriously.

1.2. A candidate for a fractional Euler formula. A first candidate answer
to our motivating question from the Introduction could be, again recursively,

y0 = 1,

yj = (1 + hαΓ(1− α) ) yj−1 +
yj−2 − yj−1

2α
+ · · · +

y0 − y1

jα
.(5)

Here Γ(z) =
∫∞

0
xz−1 exp(−x)dx is the Gamma function that generalizes the usual

factorial function n! from the integers to complex numbers. To arrive at (5), generalize
the simple finite difference construction (4) that led to Euler’s limit.

Begin by defining the Caputo fractional derivative Dα
t of order α via its action

on a smooth function

(6) Dα
t f(t) ≡ 1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds

and introduce a time-fractional generalization of our simple differential equation

(7) Dα
t y = λy with solution y(t) = Eα(λtα)y(0).

This fractional analogue offers a continuous target for a discrete process. Set λ = 1
for simplicity and discretize both sides of Dα

t y = λy. By quadrature on the integral
in the Caputo derivative, this procedure results in

1

Γ(1− α)
h

(
(y1 − y0)/h

(jh)α
+ · · ·+ (yj − yj−1)/h

(h)α

)
= yj−1.

Rearranging yields the proposal (5). Importantly, (5) converges to the solution of the
fractional differential equation in terms of the Mittag-Leffler function. For 0 < α < 1,
yn → Eα(tα), as expected.

Figure 1 compares the usual notion of compound interest with what might be
named “fractional compound interest.” Concerning this candidate (5), we note the
following: (i) The powers of (1+h) present in the Euler limit are generalized to powers
of (1 + hαΓ(1−α)) in (5). (ii) Convergence of the Euler limit is slow, but convergence
of the fractional generalization is even slower. Convergence also depends on α. The

3Our one-step method is too simple but in more general settings the wider significance of this
property arises in a fundamental meta-theorem of numerical analysis: stability and consistency imply
convergence. This may be attributed to Lax in a setting of linear PDEs, while for our ODE setting
it may be attributed to Dahlquist, who also shares an Uppsala connection and was an academic
grandson of Anders Wiman [36, 26].

D
ow

nl
oa

de
d 

08
/1

4/
17

 to
 1

38
.2

5.
16

8.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

450 SHEV MACNAMARA, BRUCE HENRY, AND WILLIAM MCLEAN

time   (t)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

, = 0.3

Continuous  Mittag-Leffler E
,
(t,)

Discrete approximation

time   (t)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7 Continuous exponential exp(t))
Discrete approximation

Fig. 1. Left: Fractional compound interest is a Mittag-Leffler function when interest is com-
pounded continuously, or it is the fractional generalization proposed here in (5) when interest is
compounded in discrete time steps. Right: For reference, also shown is the usual interpretation
of compound interest as an exponential function when compounded continuously, or as the Euler
formula (1) when compounded discretely. Notice the difference in scales.

singularity in the Gamma function Γ(1 − α) as α → 1 is one numerical issue—this
recursion is not a good numerical method for computing the Mittag-Leffler function.
(iii) The Euler limit (3) is memoryless, requiring only the present value yj−1 to advance
to the next value of yj , but the fractional generalization (5) requires the whole history
of values y0, . . . , yj−1 in order to advance. (iv) Undergraduate calculus textbooks
proceed via logarithms to derive the Euler limit, so a different approach to generalizing
the Euler limit, not explored here, could come via a fractional generalization of the
logarithm log(t) =

∫ t
1

1
u du.

Fractional decay. A fractional generalization of the usual exponential decay pro-
cess is modeled by Dα

t y = −y(t), with solution y(t) = Eα(−tα)y(0). The same
approach to discretization that led to (5) now leads to the recursive formulation:
y0 = 1, and

(8) yj = (1 − hαΓ(1− α) ) yj−1 +
yj−2 − yj−1

2α
+ · · · +

y0 − y1

jα
.

This is the counterpart to (5) when the argument to the Mittag-Leffler function is
negative. Apart from a minus sign in the first term in parentheses, it is otherwise
identical with (5): the “memory terms” (connected to a memory function later in
(61)) have the same form in both growth and decay versions.

1.3. A Grünwald–Letnikov approach. The binomial term (1 + h)n that ap-
pears in the Euler limit suggests another approach to its generalization could come
via the Grünwald–Letnikov (GL) derivative, which defines fractional derivatives via
a fractional generalization of a binomial-like expansion. With this in mind, another
way to express the same fractional model Dα

t y = λy in (7) is

(9) y(t) = y(0) + λIαy,

where Iα is the GL fractional integral operator.4 (Indeed, one way to formalize the
notion of solution to Dα

t y = λy is as a solution of the Volterra integral equation y(t) =

y(0) +
∫ t

0
k(t − u)λy(u)du, where k(t) = tα−1/Γ(α) is a memory-like function. This

4There are different conventions for defining fractional derivatives, which vary in details of how
they handle initial conditions, but there is little distinction in relation to fractional integrals.
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integral displays the causal nature of the problem: the solution at the present time
can be computed using only information from the past, without needing information
from the future.) Hence (9) is another representation of the Mittag-Leffler function.

A Grünwald–Letnikov approach to fractional calculus is attractive because the
construction is discrete from the beginning (analogous to the way that the usual
calculus begins, as continuous limits of finite difference constructions), unlike other
approaches (such as Riemann–Louiville), which begin with continuous integer-order
integrals or derivatives. Set λ = 1, h = t/n, and replace the continuous integral Iα

in (9) by the discrete GL construction to obtain yn = y0 + hα
∑n
j=0(−1)j

(−α
j

)
yn−j .

Solving for yn gives another candidate for a fractional Euler formula:

(10) yn =
1

(1− hα)

(
y0 + hα

n−1∑
j=0

wn−jyj

)
.

This is an implicit numerical scheme coming from backward differences (revisited
later in (43)) in the GL construction, so compared to (5), we expect better stability
properties from this GL scheme (10). The weights are wj = (−1)j

(−α
j

)
. Setting y0 = 1,

(10) does satisfy yn → Eα(tα), as expected.

2. A Cauchy integral representation. Guiding the search for a discrete con-
struction of a fractional Euler limit has been the principle that it should converge to
a continuous Mittag-Leffler function. A discretization of the Cauchy integral repre-
sentation of the Mittag-Leffler function offers another path to this end.

To get from a series representation of the Mittag-Leffler function (2) to the Cauchy
integral representation, start with a Laplace transform of the series for Eα(λtα), term
by term. The result is a geometric series that sums to the desired transform

(11) L{Eα(λtα)} =
sα−1

sα − λ
=

1

s− s1−αλ
.

The special case λ = −1 arises often: L{Eα(−tα)} = sα−1/(1 + sα) = (s1−α + s)−1.

Here the Laplace transform is f̂(s) = L{f(t)} ≡
∫∞

0
exp(−st)f(t) dt, and the inverse

transform is f(t) = L−1{f̂(s)} ≡ (2πi)−1
∫
C exp(st)f̂(s)ds, where the contour C is a

line parallel to the imaginary axis and to the right of all singularities of f̂ . The inverse
transform gives

Eα(λtα) = L−1 {L {Eα(λtα)}} =
1

2πi

∫
C
est

sα−1

sα − λ
ds

and after a change of variables this leads to Mittag-Leffler’s representation in Table 1:
Eα(z) = (2πi)−1

∫
C e

ssα−1(sα − z)−1ds. The contour C must enclose all singularities
and branch points.

2.1. Revisiting the Cauchy integral on a branch cut. Put z = λtα in
Table 1 to focus on

(12) Eα(λtα) =
1

2πi

∫
C
es

sα−1

sα − λtα
ds.

By collapsing the contour to the real axis (Figure 2) we will now arrive at another
representation, in (13) and (21). There are two cases: Eα(+λtα) is treated separately
from Eα(−λtα).
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ABCD

Fig. 2. Deforming the contour of Mittag-Leffler’s representation in (12) to collapse the integral

to the real axis. Nearby A, there is a pole on the real axis at z = tλ
1
α . The displayed contour

corresponds to the case when the argument to the Mittag-Leffler function is positive and accompanies
the representation of Eα(+λtα) in (17).

s
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3. Left: The probability density w−(s) of (14) appearing in the integral representation of
the Mittag-Leffler function with a negative argument (13). Right: The function v(x) = sw−(s) with
the substitution s = exp(x), as described near (18). Parameters: α = 0.9, λ = 1.

2.1.1. A negative argument: Eα(−λtα). This representation is well-known:

(13) Eα(−λtα) =

∫ ∞
0

w−(s) exp(−st)ds.

Here w−(s) is the probability density

(14) w−(s) ≡ λ sin(απ)

π

sα−1

s2α + 2λsα cos(απ) + λ2
≥ 0.

Equation (13) shows the Mittag-Leffler function as a mixture of exponentials. An
example of the weighting, w−, of the components in that mixture is shown in Figure 3
(left). As α→ 1 the weighting converges to Dirac’s delta distribution δ(s−λ) centered
at λ, so that the “mixture” becomes a pure exponential with rate λ, and the Mittag-
Leffler function Eα(−λtα) smoothly transforms to the exponential function exp(−λt).
From (13), L{Eα(−λtα)} is “the Laplace transform of the Laplace transform of w−”:

(15) L{L{w−(s)}} = L{Eα(−λtα)} =
sα−1

λ+ sα
.

2.1.2. A positive argument: Eα(+λtα). Although (13) displays two purely
real representations, recognizing equality seems to have come historically by passing
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through the imaginary domain, in line with Hadamard’s dictum [35], as we now do
again for Eα(+λtα).

The contour integral is the sum of the contributions from the four parts marked
A, B, C, and D of the deformation of the contour in Figure 2. There is a pole on
the real axis at z = tλ

1
α . Deforming the path near A shows this pole contributes a

residue of exp(tλ
1
α )/α. Combined, the paths marked by B cancel to make zero net

contribution. The path nearby the origin marked by C can be deformed to approach
a circle that makes zero contribution. The origin is a branch point and the negative
real axis is a branch cut. This is because (12) involves a term of the form

sα ≡ exp (Log|s|+ iArg(s)) ,

which is analytic on C\(−∞, 0]. The two semi-infinite paths, displayed on either
side of the negative real axis, near D, do not cancel because of the discontinuity
across the negative real axis. For s on the negative real axis, think of s = x and
sα = (−x)αeiArg(s)α, where Arg(s) = +π on the path coming from above the real axis
and Arg(s) = −π on the path from below. The two paths contribute:

1

2πi

∫ 0−

−∞

(−x)α−1e−iπ(α−1)

(−x)αe−iπα − λtα
exdx +

1

2πi

∫ −∞
0+

(−x)α−1eiπ(α−1)

(−x)αeiπα − λtα
exdx.

The change of variables x → −x converts this to an integral on the positive real
axis and manipulation brings that integral to the form −

∫∞
0
w+(s) exp(−st)ds with

weighting w+ in (16):

w+(s) ≡ −(−λ)
sin(απ)

π

sα−1

s2α + 2(−λ)sα cos(απ) + (−λ)2
≥ 0.(16)

The minus signs in (16) emphasize that w+(s) can be obtained from w−(s) in (14) by
merely changing the sign of λ and by including one more overall sign change. Putting
all the pieces together gives

(17) Eα(+λtα) =
exp(tλ

1
α )

α
−
∫ ∞

0

w+(s) exp(−st)ds.

It will be helpful to identify some properties of (17).
Completing the square shows the denominator is positive, and thus for 0 < α < 1,

the weighting function w+(s) is positive. For moderately large t, the dominant con-

tribution to Eα(+λtα) in (17) comes from exp(tλ
1
α )/α, while the branch cut integral

is the smaller moiety. As α→ 1, the Mittag-Leffler function tends to the exponential
so the contribution from the integral in (17) tends to zero.

When numerically integrating either density w−(s) or w+(s), a challenge may
arise due to the the scaling as s→ 0+, and due to slow decay as s→∞ (Figure 3, left,
illustrates this only for w−(s) but the situation for w+(s) is very similar). A possible
remedy is to let v(x) = sw+(s) with the substitution s = exp(x). In the new variables
the scalings go exponentially to zero (Figure 3, right): v(exp(x)) = O(exp(−α|x|)) as
|x| → ∞. For example, we can numerically evaluate the integral on the right of (with
ds = sdx)

(18) 0 ≤ C ≡
∫ ∞

0

w+(s)ds =

∫ ∞
−∞

v(x)dx,
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which can reasonably be handled by first truncating to a finite subset of the real line
and then using an equally spaced quadrature rule such as the trapezoidal rule.

It transpires that

(19) C =
1

α
− 1

is a normalization constant for the probability density

(20) W+(s) ≡ 1

C
w+(s) =

α

1− α
w+(s).

For example, if α = 1/2, then C = 1, and comparing (14) and (16), this is a special
case where the densities are the same: W+ = w+ = w−. The representation of the
Mittag-Leffler function (17) becomes

(21) Eα(+λtα) =
exp(tλ

1
α )

α
− 1− α

α

∫ ∞
0

W+(s) exp(−st)ds.

The last term in (21) is a mixture of exponential distributions

(22) φW+
(t) ≡

∫ ∞
0

W+(s) exp(−st)ds.

Compared to a pure exponential distribution, this W+-mixture has heavier tails, as
does the Mittag-Leffler distribution (Figure 4). Thus, collapsing the Cauchy integral
to the real axis leads naturally to a density W+ associated with a Mittag-Leffler
function of a positive argument, analogous to the way that w− arises from the Cauchy
integral associated with a negative argument. Connections to Wright functions and
to Fox H-functions are important but not discussed here [40, 42]. Next, we derive
formulas to facilitate sampling from the W+ density.

 survival time 
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Survival distribution

 Exponential
 Mittag-Leffler
 W+ mixture

Fig. 4. Comparison of survival times from three distributions. (i) A pure, unit rate ex-
ponential distribution. (ii) A Mittag-Leffler distribution, which is the mixture of exponentials in∫∞
0 w−(s) exp(−st)ds of (13) with the probability density w−(s) of (14). (iii) The mixture of expo-

nentials φW+
(t) =

∫∞
0 W+(s) exp(−st)ds in (22) with density W+ as in (20). Parameters: α = 0.9,

λ = 1.
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The cumulative distribution function. To study the function G introduced below
in (26), we begin by defining the functions

g(s) ≡
∫ s

0

w+(σ) dσ for 0 < s <∞

and

(23) g̃(s) ≡ 1

2απ
ArcTan

(
−λ+ sα − 2λ cos(απ)

λ+ sα − 2λ cos(απ)
tan

απ

2

)
− 1

2απ
ArcTan

(
λ+ sα

−λ+ sα
tan

απ

2

)
.

The former is continuous but if 0 < α < 1/3, then the latter is discontinuous at the
points

s1 ≡
(
2λ cos(απ)− λ

)1/α
and s2 ≡ λ1/α;

indeed, with C in (19),

(24) g(s) = C +


g̃(s)− 1

α if 0 < s < s1,

g̃(s)− 1
2α if s1 < s < s2,

g̃(s) otherwise (s2 < s).

However, if 1/3 < α < 1, then s1 becomes imaginary and

(25) g(s) = C +

{
g̃(s)− 1

2α if 0 < s < s2,

g̃(s) otherwise (s2 < s).

We are allowing ArcTan(±∞) = ±π/2 at the singularities s1 and s2. Observe that
C → 0 as α → 1, and at the other extreme, C → ∞ as α → 0. The larger C is, the
“more fractional” the calculus.

At last, with C = g(∞) as in (18) and (19), define G : (0,∞)→ (0, 1) by

(26) G(T ) ≡
∫ T

0

W+(s)ds =
g(T )

C

so that G is the cumulative distribution function associated with W+ of (20). As
usual, the inverse function G−1 : (0, 1) → (0,∞) is defined by the property that,
when u = G(T ), we have T = G−1(u). The inverse is the positive real root

(27) T = G−1(u) = (Q(Cu))
1
α = Q

1
α ,

where Q : (0, C)→ (0,∞) is given by

Q(v) = λ
sin(απ(1 + 2v))− sin(απ)

sin (2απ(1 + v))
.(28)

A Laplace transform associated with W+. Let (22) define a survival distribution.
The Laplace transform of this survival function is the Laplace transform of the Laplace
transform of W+: φ̂W+

(t) = L
{
φW+

(t)
}

= L{L{W+(s)}} . By (21), φW+
(t) =

α(1− α)−1(exp(tλ
1
α )/α− Eα(+λtα)) so L

{
φW+

(t)
}

=

α

1− α

(
1

α
L
{

exp(tλ
1
α )
}
− L{Eα(+λtα)}

)
=

α

1− α

(
1

α(−λ 1
α + s)

− sα−1

−λ+ sα

)
.
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Unlike for the exponential function or for the Mittag-Leffler function, the authors do
not know if the corresponding ratio of transforms (significant later in (49)), K̂W+

(s) =

φ̂W+
(s)/ψ̂W+

(s) = φ̂W+
(s)/(sφ̂W+

(s)− 1), has a simple interpretation.

2.2. A fractional Euler limit, again. Inspired by the representation of the
continuous Mittag-Leffler function as a mixture of exponentials in (13) for a negative
argument, or (21) for a positive argument, it is natural to ask the question: Is it
possible to write the discrete fractional limit in the form of a weighted sum of regular
Euler limits? The answer is “yes” and here are two examples.

Fractional decay, again. Instead of (8), we now propose a different discrete frac-
tional generalization of the Euler formula, namely,

(30)
∑
k

wk(1− skt/n)n.

Fractional growth, again. Likewise, instead of (5), we also now propose a frac-
tional generalization of the Euler formula in the case of a positive argument, namely,

(31)

(
1 + (tλ

1
α )/n

)n
α

− 1− α
α

∑
k

Wk(1− skt/n)n.

In both cases of decay and of growth, it is desirable that the proposed sum
converges to the corresponding integral for large n. That integral is (13) in the case
of decay, or (21) in the case of growth. That is, it is desirable to have both the
following discrete-to-continuous limits, as n → ∞: (i) wk −→ w(s) and (ii)∑
k wk(1 − skt/n)n −→

∫∞
0
w(s) exp(−st)ds. Here the range of k values would

depend on n, and w = w− of (14) in the case of decay, or w = W+ of (20) in
the case of growth. Always, the discrete weights wk = w(sk) integrate to one, i.e.,
wk > 0 and 1 =

∑
k wk(sk − sk−1). We have merely suggested the general form

in (30) and (31)—these formulations can be interpreted as quadrature rules applied
to corresponding integrals so there remains the potential for myriad variations in the
details not specified here, such as the spacing and the number of grid points sk. These
would not usually be good numerical schemes for the reasons highlighted in Figure 3.
However, as a weighted sum of regular Euler limits, this form is an especially satisfying
fractional generalization.

2.3. Complete monotonicity. A smooth function f is completely monotone if
all derivatives are monotone: (−1)nf (n) ≥ 0. Exponential decay, e−t, is the prototyp-
ical example. Bernstein’s theorem tells us that all completely monotone functions are
representable as a mixture5 of exponentials; being completely monotone is equivalent
to being the real Laplace transform of a nonnegative function. For the Mittag-Leffler
function with a negative argument, this nonnegative function w is explicitly known
in (13) and (14).

The Mittag-Leffler function with a positive argument does not have the completely
monotone property. However, the weighting functions w+(s) in (16) or W+ in (20)
are positive so φW+ =

∫∞
0
W+(s) exp(−st)ds, the transform of W+ in (22), does have

the property. Thus (21) shows us the Mittag-Leffler function of a positive argument
as a combination of two functions, one of which is completely monotone.

5A mixture usually refers to a finite sum, or at most countably infinite sum, whereas here in our
integral with an exponential kernel we are allowing an uncountably infinite, continuous “mixture”
or compound distribution.
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Both the exponential and the Mittag-Leffler function are entire functions, and
both are completely monotone in the case of a negative argument, and both lose this
monotone property in the case of a positive argument. Among our candidates for the
fractional generalization of the Euler limit, (30) is more amenable to emphasizing such
shared properties of the exponential and the Mittag-Leffler function. As an example,
suppose t > 0 and λ > 0 so for all sufficiently large n, 0 < (1 − λt/n) < 1. A very
useful application of the Euler limit formula (1 − λt/n)n −→ exp(−λt), is to make
clear that the exponential of a negative argument satisfies 0 < exp(−λt) < 1. The
Mittag-Leffler function shares this property:

0 < Eα(−λtα) < 1.

Representations of the Mittag-Leffler function as a weighted integral of exponentials
where the weight is a nonnegative density as in (13), or the discrete fractional Euler
limit in (30), make it clear that the Mittag-Leffler function does indeed have this
property. In contrast, although the fractional generalizations in (5) or (10) have their
own virtues, it is nearly impossible to discern this important property from those
formulations. This makes a discretization such as suggested by (30) a more attractive
fractional generalization.

3. A probabilistic interpretation.

3.1. Sampling from Mittag-Leffler distributions or the W+ mixture. A
Mittag-Leffler distribution is characterized by three functions. The survival time is

(32) φ(t) = Eα(−λtα)

so the waiting time density (ψ(t) = −dφ(t)/dt = −dEα(−λtα)/dt) is

(33) ψ(t) = λtα−1Eα,α(−λtα),

where Eα,β(z) ≡
∑∞
k=0

zk

Γ(αk+β) is the two-parameter Mittag-Leffler function, and the

cumulative distribution function (cdf(t) = 1− φ(t) =
∫ t

0
ψ(s)ds) is

(34) cdf(t) = 1− Eα(−λtα).

All three functions are nonnegative and, as a probability density, 1 =
∫∞

0
ψ(t)dt.

Putting α = 1 in these formulas recovers the survival time distribution, cdf , and
waiting time density, corresponding to an exponential distribution with parameter λ
and mean value 1/λ. Unlike the exponential case, (33) shows that the Mittag-Leffler
function and hence also the solution of (7) are not differentiable at t = 0+. In general
care must be taken when differentiating near zero, as happens later in (54).

The survival time (32) is also a mixture of exponentials, φ(t) = Eα(−λtα) =∫∞
0
w−(s) exp(−st)ds ((13), (14)). Such mixtures are amenable to methods for fast

simulation of geometric stable distributions involving products of independent random

variables [8, 33, 18, 32, 31]. Let F (T ) ≡
∫ T

0
w−(s)ds denote the cumulative distribu-

tion function of w−(s). Given u ∈ (0, 1) the inverse function, that solves F (T ) = u

for T , is known to be T = F−1(u) = λ
1
α (sin(πα)/ tan(πα(1 − u)) − cos(πα))

1
α . This

permits the known fast sampling procedure for the Mittag-Leffler distribution, via

(35) τ ← −
(

1

λ

) 1
α
(

sin(πα)

tan(πα(1− u1))
− cos(πα)

) 1
α

log(u2).
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458 SHEV MACNAMARA, BRUCE HENRY, AND WILLIAM MCLEAN

Here u1 and u2 are independent samples from the uniform distribution on (0, 1). As
α → 1, (35) reduces to the familiar formula τ ∼ − log(u)/λ for sampling from an
exponential distribution with density λ exp(−λt).

One way to understand (35) is as the product of two independent random vari-
ables, Z = XY , with density fZ(z) =

∫∞
−∞ fX(x)fY ( zx )|x|−1dx. Now read (35) asXY ,

where X ∼ (sin(πα)/ tan(πα(1 − u1)) − cos(πα))
1
α is the inverse transform method

for sampling from a density fX(x) = w−,1(x), and where w−,1 is (39) (the special case
of the density with λ = 1 in (14), but note that this does not assume λ = 1 in (35))

and where Y ∼ − log(u2)/λ
1
α is the familiar inverse transform method for sampling

from an exponential distribution with density fY = λ
1
α exp(−λ 1

α y). Then fZ(z) =∫∞
0
w−,1(x)λ

1
α exp(−λ 1

α
z
x )|x|−1dx. With the change of variables s = 1/x this be-

comes fZ(z) =
∫ 0

∞ w−,1(1/s)λ
1
α exp(−λ 1

α sz)s(−s2)ds. Noticing w−(s) = s2w−(1/s)
and replacing z by t this becomes

(36)

∫ ∞
0

w−,1(s)sλ
1
α exp(−sλ 1

α t)ds.

This is −d/dt
∫∞

0
w−,1(s) exp(−sλ 1

α t)ds = −dEα(−λtα)/dt = −dφ(t)/dt, which is
the derivative of the representation of φ(t) in (40). Thus (36) is another representation
of ψ(t) because the waiting time density of (33) is always −dφ(t)/dt. This confirms
(35) does indeed sample Mittag-Leffler waiting times.

Instead of the above product form, we could think of the Mittag-Leffler density
(36) as a sum of densities of exponential random variables. This suggests a recipe:

sample the exponential random variable with parameter sλ
1
α , where s is sampled

according to the density w−,1(s). The recipe could instead just as well sample the
exponential random variable with the parameter in which s is replaced by 1/s. This is

because the same change of variables shows ψ(t) =
∫∞

0
w−,1(s)sλ

1
α exp(−sλ 1

α t)ds =∫∞
0
w−,1(s)λ

1
α s−1 exp(−λ 1

α s−1t)ds. The sampling formula displayed in (35) corre-
sponds to the latter choice.

This same pattern that works for Mittag-Leffler also works for the survival func-
tion φW+

(t) =
∫∞

0
W+(s) exp(−st)ds (Figure 4, (22)), which is also a mixture of

exponentials. Fortunately, we identified both the cumulative distribution of W+ in
(26) and its inverse in (27) and (28). Thanks to (28) we again have a fast Monte Carlo
procedure to sample waiting times from the W+ mixture: C ← 1

α − 1, v ← Cu1, and

(37) τ ← −
(

1

λ

) 1
α
(

sin(απ(1 + 2v))− sin(απ)

sin (2απ(1 + v))

) 1
α

log(u2),

where u1, u2 are independent uniform random variables on (0, 1).

3.2. Matrix arguments and the special density when λ = 1. The notation
w− suppresses the dependence of the density on the parameters α and λ. Put λ = 1
in (13) to obtain

(38) Eα(−tα) =

∫ ∞
0

w−,1(s) exp(−st)ds,

where w−,1(s) is the special case of the probability density w−(s) when λ = 1 in (14):

(39) w−,1(s) ≡ sin(απ)

π

sα−1

s2α + 2sα cos(απ) + 1
≥ 0.
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Make the replacement t← λ
1
α t (now allowing λ to take any positive value) to obtain

(40) Eα(−λtα) =

∫ ∞
0

w−,1(s) exp(−sλ 1
α t)ds.

Alternatively, we could arrive at (40) by the change of variables s← λ
1
α s in (13) and

by noticing λ
1
αw−(λ

1
α s) = w−,1(s). Compared to the representation of Eα(−λtα)

in (13), here in (40) the weighting density w−,1(s) does not depend on λ (but the

exponential exp(st) in (13) has been replaced by something that does, exp(−sλ 1
α t),

so the dependency has been “moved” from the weighting density to the exponential).
A Mittag-Leffler matrix function. There are various issues when defining a matrix

function [24]. When defining a Mittag-Leffler function of a matrix A ∈ Rn×n, one
possibility is a series that replaces z ∈ C with A in (2), while another possibility is to
apply the scalar Mittag-Leffler function to eigenvalues together with a diagonalization.
Alternatively, if the eigenvalues of the matrix are positive (recall that the exponential
mixture representations (13) and (21) coming from the Cauchy integral have different
forms depending on the sign of the argument), then it will usually be meaningful to
make the replacement λ← A in (40) to express the Mittag-Leffler function of a matrix
as a weighted sum of exponentials of a power of that matrix.

A graph Laplacian matrix. Always in this article a matrix A has two properties:

i. Off-diagonal entries that are positive or zero: aij ≥ 0 (i 6= j).

ii. Diagonal entries that ensure columns sum to zero: ajj = −
∑
i,i 6=j aij .

When symmetric, this matrix is the familiar graph Laplacian. Many authors use this
same terminology for both symmetric and nonsymmetric cases. Such a matrix is an
example of a sectorial operator with all eigenvalues in the left half of the complex
plane. We often further assume the matrix A has distinct, negative, and real eigen-
values and one zero eigenvalue. With this notation6 it is the matrix (−A) that we
think of as “positive” (!) so the representation is

(41) Eα(Atα) =

∫ ∞
0

w−,1(s) exp(−s(−A)
1
α t)ds.

This representation (41) emphasizes the role of (−A)
1
α , and there are important con-

nections to subordination (allowing a solution for a particular α to be represented as
an integral of the solution corresponding to a different α, for example, and related to
the monotone properties of section 2.3) and to powers of operators not discussed here
[27, 60, 1, 6, 21, 12], [51, Chap. 4].

When α = 1, w−,1 is the Dirac distribution centered at 1 so that (41) is the
familiar matrix exponential exp(At). For this class of matrices, exp(At) is a stochastic
matrix (columns are probability vectors) associated with a Markov process on discrete
states in continuous time. To see that the entries of the matrix exponential are all
nonnegative, we could first examine the Taylor series to confirm this at small times,
t� 1, and then the semigroup property brings confirmation for all time t > 0. When
α 6= 1, (41) is the Mittag-Leffler function of the matrix. Notice that (1, 1, . . . , 1)A =
(0, 0, . . . , 0) and (1, 1, . . . , 1)I = (1, 1, . . . , 1), so multiplication of the Taylor series on
the left by a row vector of ones quickly shows that columns of Eα(Atα) always sum

6A numerical analyst will be frustrated, preferring the opposite sign convention. The reason for
this choice of signs is that it is common in the Markov process literature to denote an infinitesimal
generator this way, although the usual “Q-matrix” is the transpose of A.
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to one. If we could show that all entries of the Mittag-Leffler function of a graph
Laplacian matrix are nonnegative (and they are!), then we would know that Eα(Atα)
is also a stochastic matrix. Unlike the exponential case, though, we do not have the
semigroup property. Nevertheless the Taylor series still confirms nonnegativity for
small times, because Eα(Atα) ≈ I+ tαA+O(t2α), off-diagonals are nonnegative, and
for small t the identity matrix more than compensates for the negative diagonal of A.

A special 2× 2 matrix example. For a, b > 0, the diagonalization(
−a b
a −b

)
=

(
b 1
a −1

)(
0 0
0 a+ b

) (
−1 −1
−a b

)
1

a+ b

shows −(−A)
1
α = A(a+ b)

1
α−1 is still a graph Laplacian

−(−A)
1
α =

(
−a b
a −b

) 1
α

=

(
−a b
a −b

)
(a+ b)

1
α−1.

Analogous to the scalar fractional Euler generalization (30), to accommodate a matrix
(30) could become a discretization of (41):

(42)
∑
k

wk

(
I +
−sk(−A)

1
α t

n

)n
.

Here wk = w−,1(sk) ≥ 0 is a discretization of (39). For all sufficiently large n the

entries of (I − sk(−A)
1
α t/n) are nonnegative. Thus we see via (42) or (41) that the

Mittag-Leffler function is a stochastic matrix. Similar to the numerical method of
uniformization, the matrix (I − sk(−A)

1
α t/n) can be interpreted as a first order ap-

proximation of a Markov process in continuous time by a Markov process in discrete
time. We can interpret Eα(Atα) (which may itself be a semi-Markov process [52]) as a
weighted sum of related Markov processes. Denote (20) with λ = 1 by W+,1(s) and re-

arrange (21) to P = α
1−α ( exp((−A)

1
α t)

α −Eα(−Atα)) =
∫∞

0
W+,1(s) exp(−s(−A)

1
α t)ds.

If −(−A)
1
α is also a graph Laplacian, then similarly P must also be a stochastic

matrix.

3.3. A Mittag-Leffler function of a graph Laplacian is a stochastic ma-
trix. Instead of the explicit, forward difference (4) that led to our first candidate, we
could replace (4) by an implicit, backward difference of the same continuous equation,
dy/dt = y. (In fact the backward differences of the Grunwäld–Letnikov approach in
section 1.3 are one avenue to the fractional resolvent that we now describe [7].) That
leads to the discrete approximation (yj − yj−1)/h = yj . Set h = t/n. Recursively,

yn = (1− t/n)
−n

. This is another Euler formula, similar to that in Table 1. Both
converge to the same exponential limit,

(43) lim
n→∞

(
1 +

t

n

)n
= lim

n→∞

(
1 −

t

n

)−n
= exp(t).

However, the latter representation is more suggestive of the important connection to
the resolvent (sI − A)−1. This resolvent matrix at s is defined whenever s is not an
eigenvalue and is involved in solutions of dy/dt = Ay, via an Euler limit

(44)

(
I− t

n
A
)−n

−→ exp(At).

D
ow

nl
oa

de
d 

08
/1

4/
17

 to
 1

38
.2

5.
16

8.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRACTIONAL EULER LIMITS AND THEIR APPLICATIONS 461

Central to the Hille–Yosida and related theorems for semigroups is the relation-
ship between the resolvent and the exponential of the infinitesimal generator A.
Namely, the resolvent is the Laplace transform of the exponential: (sI − A)−1 =∫∞

0
exp(−st) exp(At)ds. The Mittag-Leffler functions do not have the semigroup prop-

erty but the essence of the relationship can be generalized to express the Laplace
transform of the Mittag-Leffler function, Eα(Atα), in terms of the resolvent:

(45) sα−1(sαI− A)−1 = L{Eα(Atα)} =

∫ ∞
0

e−stEα(Atα)ds.

The scalar version of (45) appears in (11) and very similar steps lead to (45). Thus
we can now take the inverse Laplace transform of (45) to express the Mittag-Leffler
function in terms of the resolvent. This could lead to what amounts to the same
representation as in (12): Eα(Atα) = 1

2πi

∫
C e

ssα−1(sαI − Atα)−1ds. But a different
representation appears by instead using the Post–Widder inversion formula:

f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1
(

dn

dsn
f̂

)(n
t

)
.

That inversion formula comes from the usual rule for Laplace transforms that the nth
derivative in the s-domain, f̂ (n)(s), is paired with (−1)ntnf(t) in the time domain,
and by noticing the right side is a Laplace transform

∫∞
0
ρn(s)f(s)ds that tends to

f(t), because the ρn = (1/n!)(n/t)n+1sn exp(−ns/t) that arise tend to a Dirac delta
distribution. This leads to Bajlekova’s representation [7, Prop. 2.11] of Eα(Atα):

(46) lim
n→∞

1

n!

n+1∑
k=1

bk,n+1 (I− (t/n)αA)
−k
.

The bk,. are the positive constants in the nth derivative dn/dsn (sα−1 (sαI− A)
−1

) =

(−1)ns−n−1
∑n+1
k=1 bk,n+1 (sα (sαI− A))

−k
that Post–Widder requires.

Representation (46) is a generalization of (44) and in that sense it is yet another
fractional generalization of the Euler formula. Although (46) would not usually be a
good numerical scheme, it can be usefully applied to affirmatively answer our earlier
question concerning nonnegativity of the Mittag-Leffler function of a graph Lapla-
cian, Eα(Atα). First note the pattern of ± signs of the graph Laplacian A implies
the following simple pattern of signs in (I− (t/n)αA): positive entries on the main
diagonal, and negative entries off the main diagonal (although possibly zero entries
are allowed). That pattern is displayed here on the left of (47) for the 3× 3 case:

(47)

 + − −
− + −
− − +

−1

=

 + + +
+ + +
+ + +

 .

If a matrix with this pattern of signs has sufficiently large entries on the main diagonal,
then all entries of the inverse of that matrix are positive. That “inverse positive” prop-
erty displayed schematically in (47) is a fact of linear algebra [55], related to the class
of M -matrices [10], and it has a generalization to operators. Applied to our examples
(for all sufficiently large n when the diagonal entries are relatively large enough) the

pattern of signs (47) implies that all entries of (I− (t/n)αA)
−1

are nonnegative. Pow-

ers of a nonnegative matrix are of course nonnegative so (I− (t/n)αA)
−k

is likewise
nonnegative. Representation (46) now shows that all entries of Eα(Atα) are nonneg-
ative. Having already established unit column sum, we have shown the Mittag-Leffler
function of a graph Laplacian, Eα(Atα), is indeed a stochastic matrix.
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3.4. Random walks on a graph Laplacian. A continuous time random walk
(CTRW) [30] on the set of states {1, 2, . . . , n} is associated with the n × n graph
Laplacian matrix A as follows. Having just arrived at a state j, the walker waits in
that state for an amount of time that is a random variable with a state-dependent
probability density ψ(j, t). We have ψ(j, t) > 0 and 1 =

∫∞
0
ψ(j, t)dt because ψ is a

density. The walker then immediately moves to a different state i with probability

(48) λ(i, j) =
aij
|ajj |

(i 6= j).

We also define λ(j, j) = λjj = |ajj | (unlike the convention λjj = 0 of some authors).
Notice that the properties of the matrix ensure that λ(i, j) > 0 and 1 =

∑
i,i 6=j λ(i, j).

The memory function. This CTRW is a Markov process if and only if the waiting
time in all states is an exponential random variable, so that ψ(j, t) = ajj exp(−ajjt).
In that special case the master equation that governs the evolution of the probability

p(j, t) of being in state j at time t is d
dt
p(t) = Ap(t) with solution p(t) = exp(At)p(0),

where p(t) is a vector with entries p(j, t). Next, we examine the master equation
that governs the probability associated with this CTRW in the more general case
that does not make assumptions about the form of the waiting time density—it need
not be exponential, for example, in which case the process is not Markov and must
therefore exhibit some form of memory. That notion of memory turns out to be made
mathematically precise by the ratio of the Laplace transform of the survival function
to that of the waiting time density:

(49) K̂(s) =
ψ̂(s)

φ̂(s)
=
sφ̂(s)− 1

φ̂(s)
.

Mainardi et al. termed (49) the memory function of the process (although they work
with the reciprocal of our notation) [41], and it characterizes the generalized master
equation (58) that we describe next.

3.5. A generalized master equation for waiting times that are not ex-
ponential. It is difficult to generalize to arbitrary waiting times by working with the
probability density description alone. Others have overcome this by a finer description
of the process in terms of a flux, and we follow a very similar derivation here. This
use of a flux after n steps is analogous to the way subordinators and random time
change representations are used in stochastic process theory to connect absolute time
to the random number of steps that occur. It is also analogous to derivations of the
classical heat equation that do not simply work with temperature alone, and require
a notion of heat flux [16, 53, 3, 14, 34, 51], [30, Chap. 5].

Define qn(j, t) ≡ probability density to arrive at site j at time t, after exactly
n steps. This nonnegative flux measures the “rate of flow of probability in” to the
state. Initially (t = 0) assume the particle is in state j0 and that the particle only just
arrived, so q0(j, t) ≡ δj,j0δ(t), where δ denotes Dirac’s delta distribution. Sum over
all steps to get a total flux q(j, t) ≡

∑∞
n=0 qn(j, t). It is convenient to have notation

for the total flux minus the initial flux

(50) q+(j, t) ≡
∞∑
n=1

qn(j, t) = q(j, t)− q0(j, t) = q(j, t)− δj,j0δ(t).
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Recursively, for n ≥ 1,

(51) qn+1(j, t) =
∑
i,i6=j

∫ t

0

qn(i, u)Ψ(j, t, i, u)du,

where Ψ(j, t, i, u) ≡ probability density to arrive at site j at time t in one step, given
it arrived at site i at time u. Put (51) in (50) and swap order of summation q+(j, t) =∑∞
n=1(

∑
i 6=j
∫ t

0
qn−1(i, u)Ψ(j, t, i, u)du) =

∑
i6=j
∫ t

0
(
∑∞
n=1 qn−1(i, u))Ψ(j, t, i, u)du. If

we substitute
∑∞
n=1 qn−1(i, u) =

∑∞
n=0 qn(i, u) = q(i, u) and assume the functional

form Ψ(j, t, i, u) = λ(j, i)ψ(i, t− u), where ψ(i, t) ≡ probability density to leave site i
at time t, given it arrived at site i at t = 0 is the waiting time, then

(52) q+(j, t) =
∑
i 6=j

λ(j, i)

∫ t

0

q(i, u)ψ(i, t− u)du.

The probability density p(j, t) to be at state j at time t, is related to the flux by

(53) p(j, t) =

∫ t

0

φ(j, t− u)q(j, u)du,

where the survival time φ(j, t) ≡ the probability to remain at site j for all times
in (0, t), having just arrived at t = 0. Using (50) gives p(j, t) = δj,j0φ(j, t) +∫ t

0+ φ(j, t − u)q+(j, u)du, where the integral with lower limit 0+ means limε→0+

∫ t
ε
.

Differentiating,

d

dt
p(j, t) = δj,j0

d

dt
φ(j, t) +

d

dt

∫ t

0+

φ(j, t− u)q+(j, u)du

= δj,j0(−ψ(j, t)) + φ(j, t− t)q+(j, t) +

∫ t

0+

(−ψ(j, t− u))q+(j, u)du

= −
∫ t

0+

ψ(j, t− u)q(j, u)du+
∑
i 6=j

λ(j, i)

∫ t

0

q(i, u)ψ(i, t− u)du.(54)

Note φ(j, t− t) = φ(j, 0) = 1. We also used (50), (52), and the multivariate chain rule
to differentiate the integral.

We now have two equations involving the probability density: (53) and (54).
Take the Laplace transform of both. The first equation, (53), is a convolution so the

transform is a product of transforms: p̂(j, s) = φ̂(j, s)q̂(j, s). Multiply by ψ̂(j, s) and

divide by φ̂(j, s) to get

(55) q̂(j, s)ψ̂(j, s) =
ψ̂(j, s)

φ̂(j, s)
p̂(j, s) = K̂(j, s)p̂(j, s),

where the state-dependent version of the memory function (49) now appears,

(56) K̂(j, s) ≡ ψ̂(j, s)

φ̂(j, s)
.

The second equation (54) involves a derivative on the left and convolutions on the
right so the Laplace transform is

sp̂(j, s)− p(j, 0) = −ψ̂(j, s)q̂(j, s) +
∑
i 6=j

λ(j, i)ψ̂(i, s)q̂(i, s).

D
ow

nl
oa

de
d 

08
/1

4/
17

 to
 1

38
.2

5.
16

8.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

464 SHEV MACNAMARA, BRUCE HENRY, AND WILLIAM MCLEAN

Use (55) and (56) to replace ψ̂(i, s)q̂(i, s) by K̂(i, s)p̂(i, s):

(57) sp̂(j, s)− p(j, 0) = −K̂(j, s)p̂(j, s) +
∑
i 6=j

λ(j, i)K̂(i, s)p̂(i, s).

Take inverse Laplace transforms to finally arrive at the desired master equation

d

dt
p(j, t) = −

∫ t

0

K(j, t− u)p(j, u)du+
∑
i 6=j

λ(j, i)

∫ t

0

K(i, t− u)p(i, u)du.(58)

This master equation does not assume exponential waiting times. The waiting times
may have different functional forms in different states. In the special case of exponen-
tial waiting times, K̂(j, s) = λjj in (57) so the K(j, t) appearing in the convolutions
in (58) are Dirac delta distributions and (58) collapses to the usual master equation
d
dt
p(t) = Ap(t).

3.6. Mittag-Leffler waiting times have Mittag-Leffler matrix functions
for master equations. Now specialize the general master equation (58) to Mittag-
Leffler waiting times: state j has survival function φ(j, t) = Eα(−λjjtα) [25]. The
following steps are very similar to [41], although here we work with a matrix. By (15),

φ̂(j, s) = L{L{w−(s)}} = L{Eα(−λjjtα)} =
sα−1

λjj + sα
.

The transform of its derivative ψ = − d
dtφ is sφ̂(s)−1 so ψ̂(j, s) =

λjj
λjj+sα

. The memory

function (56) is thus

K̂(j, s) = λjjs
1−α.

Substitute into (57): sp̂(j, s) − p(j, 0) = −λjjs1−αp̂(j, s) +
∑
i 6=j λ(j, i)λiis

1−αp̂(i, s).

Then divide both sides by s1−α, so

(59) sαp̂(j, s)− sα−1p(j, 0) = −λjj p̂(j, s) +
∑
i6=j

λ(j, i)λiip̂(i, s).

The right side is precisely the matrix-vector product Ap̂ (recalling (48)). We recognize
the left as the Laplace transform of a Caputo fractional derivative:

L
{

dα

dtα
f(t)

}
= sαf̂(s)− sα−1f(0+).

Thus, after an inverse transform, the master equation is dα

dtα
p(t) = Ap(t). We may

also write this as the matrix-vector version of the scalar model fractional equation (7)
from the Introduction (although (60) corresponds to the fractional decay case)

(60) Dα
t p = Ap with solution p(t) = Eα(Atα)p(0).

Conclusion: Mittag-Leffler waiting times go together with a Mittag-Leffler func-
tion of the (graph Laplacian) matrix. This is also a second proof of our earlier obser-
vation near (47) that a Mittag-Leffler function of a graph Laplacian is a stochastic
matrix.
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3.7. A remarkable class of nonnegative matrix functions. While (58)
boasts generality, it does not make apparent the simple structure of important special
classes of solutions. Let us now elucidate one such special class, in terms of matrix
functions. The algebra that permits the simplified form of (59) and thus (60) is the old

idea of separation of variables: K̂(j, s) = k̂(s)g(j). The generalized master equation
then reads

1

k̂(s)
(sp̂(j, s)− p(j, 0)) = −g(j)p̂(j, s) +

∑
i 6=j

λ(j, i)g(i)p̂(i, s).

The right is Ap̂ where the main diagonal entries are ajj = −g(j). In the time domain,
the left is

(61)

∫ t

0

1

k(t− u)

dp

du
du.

The Caputo derivative (6) corresponds to a well-understood example

(62) k(t) ≡ tαΓ(1− α),

and the memory terms appearing in our first candidate for the fractional Euler formula
(5) can now be understood as coming from a discretization of the corresponding
convolution (61) with that particular form of k.

Solutions are matrix functions, computed as the inverse Laplace transform of

(63)
1

k̂(s)

(
s

k̂(s)
I− A

)−1

.

Numerical inversion of (63) is well suited to Cauchy contour integral methods, al-
though further research is required to address issues associated with pseudospectra of
graph Laplacians [37, 57] and to tailor those methods to various forms of the memory

function k̂. As probabilities, these solutions are nonnegative, so exploring separable
forms of the memory function gives rise to a large class of nonnegative matrix func-
tions. Indeed, these functions output stochastic matrices. Confirming unit column
sum might again come by multiplying a Taylor series in powers of A on the left by a
row vector of ones. That the first term in such a series should be simply I might be
established by applying the usual Laplace transform rule that f(0+) = lims→∞ sf̂(s)
to (63). More interestingly, the very special nonnegativity property is explained as
variations of the algebraic structure elucidated in (46) and (47). Inversion of the
Laplace transform (63) could express the solution in terms of a resolvent, and then
the key observation displayed in (47) is that our graph Laplacian is an example of a
resolvent positive operator [2, 5]: for large positive s, all entries of the resolvent matrix
(sI − A)−1 are nonnegative. The resolvent shares the completely monotone proper-
ties of section 2.3, and the usual Euler formula in terms of the resolvent (44) quickly
shows solutions of the corresponding Cauchy problem preserve positivity. Further
exploration of fractional Euler formulas (as variations of (42) or (46)), and further
exploration of algebraic structures of master equations including Toeplitz or Hankel
structures and other splittings [56, 54], therefore seems promising.
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4. Application to the Schlögl reactions. The Schögl model consists of four
reactions:

1. B1 + 2X → 3X, k1 = 3× 10−7,
2. B1 + 2X ← 3X, k2 = 1× 10−4,
3. B2 → X, k3 = 1× 10−3,
4. B2 ← X, k4 = 3.5.

Here B1 = 1 × 105 and B2 = 2 × 105 are constants that model buffered species. We
choose the initial condition X(0) = 247, which in the deterministic version of the
model lies on the separatrix between the two basins of attraction of the lower steady
state (at about 85) and of the higher steady state (at about 565). The stochastic
model exhibits a bimodal distribution (Figure 5). Fedotov also uses this model as an
example, in a physically comprehensive discussion [16].

Such reactions can be modeled in the framework of the chemical master equa-
tion, which is a memoryless Markov process with exponential waiting times [20, 15].
Waiting times different from the usual exponential choice could model some form of
anomalous diffusion, although there are many issues associated with a careful phys-
ical interpretation [16, 11]. Operationally, experimentation with different waiting
times comes by simply changing the simulation of the waiting time in the usual Gille-
spie stochastic simulation algorithm, while keeping all other steps in the algorithm
the same [20]. As an example, Figure 5 incorporates Mittag-Leffler waiting times
(α = 0.7) in simulations of the Schlögl reactions, so the generalized master equation
is (60). The waiting time between reactions is simulated via (35):

(64) τ ← −
(

1

a

) 1
α
(

sin(πα)

tan(πα(1− u1))
− cos(πα)

) 1
α

log(u2),

where u1, u2 are drawn from independent uniform random variables on (0, 1), and
where a is the usual sum of the propensities of the reactions in the current state.

For this model there are some numerical issues associated with truncation to a
finite state space [38] and with stationary distributions [13], although numerical exper-
iments indicate good accuracy here. The Mittag-Leffler waiting times manifest them-
selves in the very long pauses between consecutive reactions (Figure 5, right). With
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Fig. 5. Left: The Schlögl reactions with Mittag-Leffler waiting times have a Mittag-Leffler
solution (60) coming from the generalized master equation (58). This is distinctly different from the
solution of the usual master equation with exponential waiting times. Right: Gillespie-like stochastic
simulations of the Schlögl reactions, with the usual exponential waiting times, and also with Mittag-
Leffler waiting times (64).
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the usual exponential waiting times the solution of the associated master equation
is only bimodal, but the Mittag-Leffler solution exhibits a third mode at ≈ 247 that
persists for a very long time (Figure 5).

The generalized master equation (58) invites further experimentation with differ-
ent waiting times leading to processes with memory. One form of memory could come
from the W+ mixture in (22). A fast Monte Carlo method to sample from that W+

mixture is provided in (37). The generalized master equation would be (58) with a

particular memory function K̂W+(s) = φ̂W+(s)/(sφ̂W+(s) − 1), with transform φ̂W+

available in (29).

Discussion. Our fractional usury was motivated in part by a quest for the “right”
notion of fractional compound interest, a subject that deserves more attention. With
this in mind, various candidates for a fractional generalization of the closely related
Euler formula have been discussed. This led to a list of three candidates to replace the
missing entry (denoted by a question mark) in Table 1: (5), (10), and (30)–(31). These
were based, respectively, on generalizing the discrete construction that leads to the
usual Euler limit (5), a Grünwald–Letnikov approach (10), or a Cauchy integral (30)–
(31). That all candidates be discrete and converge to the continuous Mittag-Leffler
function has served as a guiding principle. Both a Cauchy-like formulation (30)–(31)
and a formulation in terms of the resolvent (46) are attractive because they have the
satisfying form of being a weighted sum of regular Euler formulas. Together with the
observation that the graph Laplacian is a resolvent positive operator, with pattern of
signs as in (47), one application of these fractional Euler formulas is to show that the
Mittag-Leffler function of a graph Laplacian is a stochastic matrix. Generalizations of
other exponential properties to the Mittag-Leffler setting are destined. For instance,
the Golden–Thompson inequality [17] states that, for Hermitian matrices A and B,
trace (exp(A+B)) ≤ trace (exp(A) exp(B)) . The inequality fails when the exponen-
tial function is replaced by the Mittag-Leffler function, as a scalar example quickly
shows E1/2(1 + 1) = exp((1 + 1)2)erfc(−(1 + 1)) ≈ 109 6≤ 5× 5 ≈ E1/2(1)× E1/2(1),
but less näıve generalizations might be possible. Finally, continuing this theme, we
have elucidated connections to master equations that generalize the usual exponential
waiting times to Mittag-Leffler waiting times, exemplified by applications to modeling
and simulation of chemical reactions.

Acknowledgment. We thank Arieh Iserles for very helpful comments on the
manuscript.
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