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Abstract 
 

Information and energy can be transferred over the same radio-frequency channel. In the power-splitting (PS) 

mode, they are simultaneously transmitted using the same signal by the base station (BS) and later separated at the 

user (UE)’s receiver by a power splitter. In the time-switching (TS) mode, they are either transmitted separately in 

time by the BS or received separately in time by the UE. In this paper, the BS transmit beamformers are jointly 

designed with either the receive PS ratios or the transmit TS ratios in a WIPT-enabled multicell network. Imposing 

UE harvested energy constraints, the design objectives include (i) maximizing the minimum UE rate under the BS 

transmit power constraint, and (ii) minimizing the maximum BS transmit power under the UE data rate constraint. 

New iterative algorithms of low computational complexity are proposed to efficiently solve the formulated difficult 

nonconvex optimization problems, where each iteration either solves one simple convex quadratic program or one 

simple second-order-cone-program. Simulation results show that these algorithms converge quickly after only a few 

iterations. Notably, the transmit TS-based WIPT system is not only more easily implemented but outperforms the 

receive PS-based WIPT system as it better exploits the beamforming design at the transmitter side. 
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I. INTRODUCTION 

Dense small-cell deployment is identified as one of the ‘big pillars’ to support the much needed 1, 000× 

increase in data throughput for the fifth-generation (5G) wireless networks [1]. While there is a major 

concern with the energy consumption of such a dense small-cell deployment, recent advances in wireless 

power transfer allow the emitted energy in the RF signals to be harvested and recycled [2]–[6]. The 

scavenged RF energy is stored in the device battery and later used to power other signal processing and 

transmitting operations. For example, an RF-powered relay can be opportunistically deployed to extend 

network coverage without the need to access a main power supply. The wireless power transfer from a 

base station (BS) to its users (UEs) is viable in a dense small-cell environment, because the close BS-UE 

proximity enables an adequate amount of RF energy to be harvested for practical applications [7], [8]. 
 

The two basic realizable receiver structures for separating the received signal for information decoding 

(ID) and energy harvesting (EH) are power splitting (PS) and time switching (TS) [9]. In the PS approach, 

information and energy are simultaneously transmitted using the same signal by the BS. At the UE, a 

power splitter is employed to divide the received signal into two parts of distinct powers, one for ID and 

another for EH. In the receive TS approach, instead of the power splitter a time switch is applied on 

the received signal, allowing the UE to decode the information in one portion of time and harvest the 

energy in the remaining time. In the transmit TS approach, information and energy are transmitted by 

BS in different portions of time. The UE then processes the received signals for ID and EH separately 

in time. The TS structure has received considerable research attention (see [3], [10]–[12]) due its simple 

implementation. Although the performance of the receive TS approach can be worse than the PS approach 

[3], that of the transmit TS approach has not been reported in the literature. 
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Transmit beamforming is beneficial for both PS-based and TS-based WIPT systems. With beamforming, 

the signal beams are steered and the RF energy is focused at the desired UEs. Beamforming design 

without energy harvesting has been studied for multicell multi-input-single-output (MISO) [13]–[17] or 

single-cell MISO [18] networks. Except for [16] and [17], all the formulated problems are solved in a 

decentralized manner by applying Lagrangian duality and uplink-downlink duality. In a single-cell energy 

harvesting MISO network with PS-based receivers, [19]–[23] jointly design transmit beamformers at the 

BS and receive PS ratios at the UEs to minimize the sum beamforming power under UE signal-to- 

interference-plus-noise-ratio (SINR) and EH constraints. Such indefinite quadratic problem is then recast 

as a semidefinite program (SDP) with rank-one matrix constraints. The rank-one matrix constraints are 

dropped to have semidefinite relaxation (SDR) problem. To deal with the rank-more-than-one solution 

given by SDR, [23] proposes using a randomization method after SDR. As shown in [24]–[26], the 

performance of such a method is inconsistent and could be poor in many cases. An approximate rank- 

one solution with compromised performance has been proposed in [27]. Suboptimal algorithms based 

on zero-forcing and maximum ratio transmission are proposed in [20] and [23]. As expected, they are 

outperformed by the SDR solution. Surprisingly, the joint design of transmit beamformers and TS ratios 

at the receivers has not been adequately addressed in the literature although it is much easier to practically 

implement TS-based receivers. The main reason is that even the SDR approach does not lead to solutions 

with tractable computation in this case. Also to the best of our knowledge, such joint design has not been 

previously considered for the transmit TS case. 

This paper addresses the joint design of transmit beamforming and either PS ratios or transmit TS 

ratios in a WIPT-enabled MISO multicell network. We choose to investigate the transmit TS approach 

instead of the receive TS counterpart because of its potential to outperform the receive PS approach. As 

will be shown later, it is actually the case. Specifically, we consider two important design problems: 1) 

Maximizing the minimum UE rate under BS transmit power and UE harvested energy constraints, and 

2) Minimizing the maximum BS transmit power under the UE rate and harvested energy constraints. As 
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the considered optimization problems are highly nonconvex, their global optimality is not theoretically 

guaranteed by any practical methods. 

Here we exploit the partial convexity structure of the problems to propose new algorithms based on 

either quadratic programming iteration (QPI) or second-order cone iteration (SOCI). Significantly, our 

simulation results with practical parameters show that the proposed algorithms for the receive PS-based 

WIPT system tightly approach the bounds provided by the SDR approach. This observation demonstrates 

their ability to locate the global optimum of the original nonconvex problems in the considered numerical 

examples. While the upper/lower bound is not available for the transmit TS-based WIPT system by the 

SDR approach, our practical simulation results reveal that this system outperforms the receive PS-based 

system due its ability to efficiently exploit the transmit beamforming power. It is worth noting that the 

TS-based WIPT system is typically simpler to implement than the PS-based counterpart. 

The rest of the paper is organized as follows: Section II considers the optimization of the receive 

PS-based WIPT system whereas Section III considers the optimization of the transmit TS-based WIPT 

system. Section IV evaluates the performance of our proposed algorithms by numerical examples and 

analyzes their computational complexity. Finally, Section V concludes the paper. 

Notation. Standard notation is used throughout the paper. In particular, �{·} denotes the real part of 

its argument, ∇ denotes the first-order differential operator, and (x, y) !:. xH y. 

 
II. MAX-MIN RATE AND MIN-MAX POWER OPTIMIZATION FOR RECEIVE POWER-SPLITTING WIPT 

SYSTEMS 

Consider the downlink of a K-cell network. As shown in Fig. 1, the BS of a cell k ∈ K !:. {1, . . . , K} 

is equipped with M > 1 antennas and it serves Nk single-antenna UEs within its cell. By BS k and UE 

(k, n), we mean the BS that serves cell k and the UE n ∈ Nk !:. {1, . . . , Nk } of the same cell, respectively. 

Assume universal frequency reuse where all UEs in all cells share the same frequency band. While the 

radio spectrum is best utilized in this approach, the signal interference situation among multiple UEs in 
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Fig. 1.   Downlink multiuser multicell interference scenario consisting of K cells. To keep the drawing clear, we only show the interference 

scenario in cell 1. In general, the interference occurs in all K cells. 

 

multiple cells is most severe. Beamforming is then used to mitigate the effect of interference by steering 

the signal beams in the intended directions. 

Denote by wk̄ ,n̄ ∈ CM ×1  the beamforming vector by BS k̄ ∈ K for its UE (k̄ , n̄) where n̄ ∈ Nk̄ !:. 
 

{1, . . . , Nk̄}. Let hk̄ ,k,n  ∈ CM ×1  be the flat fading channel vector between BS k̄ and UE (k, n), which 
 

includes large-scale pathloss and small-scale fading. Denote xk̄,n̄ as the information signal to be transmitted 

by BS k̄ to UE (k̄ , n̄) where E{|xk̄,n̄ |2} = 1. The complex baseband signal received by UE (k, n) is then 

expressed as: 
 

    
H 
k̄,k,n 

k̄∈K	

  
wk̄,n̄ xk̄,n̄ + za

 

n̄∈Nk̄  

where za
 ∼ CN (0, σ2) is the zero-mean circularly complex Gaussian noise with variance σ2 at the 
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k,k,n k,k,n h k,n. (2)
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hH

a
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receive antenna of UE (k, n). To show the effect of interference at UE (k, n), let us explicitly write (1) 

 

as:  
 
yk,n = hH

 

 
 
wk,nxk,n + hH

 

 

  
 
n̄∈Nk \{n}	

	

wk,n̄ xk,n̄ + 
 

 
k̄∈K\{k}	

	
	
	

H 
k̄ ,k,n 

 
  

wk̄,n̄ xk̄,n̄ + za
 

n̄∈Nk̄  

The first term in (2) is the intended signal for UE (n, k), the second term is the intracell interference from 

within cell k, and the third term is the intercell interference from other cells k̄ ∈ K \ {k}. 

The short BS-UE distances allow the UEs to practically implement the wireless information and power 

transfer. Thus, the UE (k, n) applies the power splitting (PS) technique to coordinate both information 

decoding (ID) and energy harvesting (EH). Specifically, the power splitter divides the received signal yk,n 

into two parts in the proportion of αk,n : (1 − αk,n), where αk,n ∈ (0, 1) is termed as the PS ratio for UE 

(k, n). The first part 
√
αk,nyk,n  forms an input to the ID receiver as: √

αk,nyk,n + zc
  

αk,n 

� 
  

hH
 

� 

wk̄ ,n̄ xk̄,n̄ + za
 

 
,n, (3) 

k,n = 
√

 
� 

k̄∈K	

  
k̄ ,k,n 

n̄∈Nk̄  

k,n
� + zk 

where zc ∼ CN (0, σ2) is the additional noise introduced by the ID receiver circuitry. Upon denoting 
 

w  !:. [wk,n]k∈K,n∈Nk    and  α !:. [αk,n]k∈K,n∈Nk ,  the  signal-to-interference-plus-noise  ratio  (SINR)  at  the 
 

input of the ID receiver of UE (k, n) is given by: 

SINRk,n !:. 
| 
 

k,k,nwk,n|2
 

 
 
, (4) 

 

where 

ϕk,n(w, αk,n) 

 

ϕk,n(w, αk,n) !:. 
 

 |hH
 wk,n̄ |2 + 

 
 |hH

 wk̄ ,n̄ |2 +σ2 + σ2/αk,n, 
 

n̄∈Nk \{n}	
k,k,n 

k̄∈K\{k}	n̄∈Nk̄  

k̄ ,k,n a c 

intracell in terference 
_
 intercell in terference 

_
 

Assuming a normalized time duration of one second, the energy of the second part 
/
1 − αk,nyk,n of the 

received signal yk,n  is harvested by the EH receiver of UE (k, n) as 

Ek,n(w, αk,n) !:. ζk,n(1 − αk,n) 
(
pk,n(w) + σ2) , (5) 

where the constant ζk,n ∈ (0, 1) denotes the efficiency of energy conversion at the EH receiver,1  and 

pk,n(w) !:.           |hH
 wk̄,n̄ |2. 

k̄∈K	n̄∈Nk̄  

1The value of ζk,n is typically in the range of 0.4 − 0.6 for practical energy harvesting circuits [5]. 
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Ek,n  can be stored in a battery and later used to power the operations of UE (k, n) (e.g., processing the 

received signals in the downlink, or transmitting data to the BS in the uplink). 

 

A. Max-Min Rate Iterative Optimization 

 
First, we aim to jointly optimize the transmit beamforming vectors wk,n  and the PS ratios αk,n  for all 

k ∈ K, and n ∈ Nk  by solving the following max-min rate optimization problem: 

 
max 

 
min ln 1 + 

|hk,k,nwk,n|  
(6a) 

wk,n∈CM ×1, k∈K,n∈Nk 

αk,n∈(0,1), 
∀	k∈K,  n∈Nk 

ϕk,n(w, αk,n) 

s.t. lwk,nl2 ≤ P max, ∀k ∈ K (6b) 
n∈Nk 

    
 

k∈K	n∈Nk 

 
lwk,nl 

 
 max 
≤ 

 
, (6c) 

 

Ek,n(w, αk,n) ≥ emin, ∀k ∈ K, n ∈ Nk. (6d) 

Constraint (6b) caps the total transmit power of each BS k at a predefined value P max. Constraint (6c) 

ensures that the total transmit power of the network will not exceed the allowable budget P max, which 

helps limit any potential undue interference from the considered multicell network to another network. 

Constraint (6d) requires that the minimum energy harvested by UE (k, n) exceeds some target emin for 
 

useful EH. It is obvious that (6) is equivalent to the following max-min SINR problem: 
 

 
max 

 
min fk,n(w, αk,n) !:.  

| k,k,nwk,n|2
 s.t. (6b) − (6d). (7) 

wk,n∈CM ×1, 
αk,n∈(0,1), 

∀		 k∈K,  n∈Nk 

k∈K,n∈Nk ϕk,n(w, αk,n) 

While (6b) and (6c) are convex, the objective in (7) is not concave and the constraint (6d) is not convex 

due to the strong coupling between wk,n and αk,n in both the SINR and EH expressions [see (4) and 

(5)]. Moreover, the objective in (7) is also nonsmooth due to the minimization operator. Indeed, (7) is a 

nonconvex nonsmooth function optimization problem subject to nonconvex constraints. If one fixes αk,n 

at some constants, problem (7) would still be nonconvex in wk,n. It is not straightforward to even find a 

feasible solution that satisfies constraints (6b)-(6d). 

2
\

P
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k,n

k,n

k,n

f(κ) 
k,n � h h
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In principle, both problems (6) and (7) could be solved by the d.c. optimization framework of [28] 

and [29], where each function fk,n(w, αk,n) in the objective (6a) would be recast as a d.c. (difference of two 

convex functions) function in numerous constrained additional variables. The objective min 
k∈K,n∈Nk 

fk,n(w, αk,n) 

in (6a) would then be represented as a difference of a convex nonsmooth function and a smooth convex 

function for the d.c. iteration technique of [30] to apply. In this paper, we will develop a new and more 

efficient approach to solve problem (7). 

As observed in [31], for w̄ k,n = e−�.arg(hk,k,nwk,n)wk,n, one has |hH
 wk,n| = hH

 w̄ k,n = �{hH
 w̄ k,n} ≥ 

 
H 
kt,k,nt	wk,n| = |hH

 w̄ k,n| for (kl, nl) /= (k, n) and � !:. √−1. The original problem (7) is thus 
 

equivalent to the following optimization problem: 
 
 
 

H 
k,k,n 

 
wk,n})2 

max min fk,n(w, αk,n) !:. s.t.   (6b), (6c), (6d), (8a) 
wk,n∈CM ×1, k∈K,n∈Nk 

αk,n∈(0,1), 
∀		 k∈K,  n∈Nk 

ϕk,n(w, αk,n) 

H 
k,k,n wk,n} ≥ 0, ∀ k ∈ K, n ∈ Nk. (8b) 

 

Since the function f̃k,n(wk,n, t) !:. (�{hH
 wk,n})2/t is convex in wk,n ∈ CM ×1 and t > 0 [25], it is true 

 

that [32] 
 

f̃k,n(wk,n, t) ≥ f̃k,n(w(κ) , t(κ)) + (∇f̃k,n(w(κ) , t(κ)), (wk,n, t) − (w(κ) , t(κ))) 
 

= 2� 
k,n 

J
hH

 
 
w(κ) 

 
� hH

 

k,n 

wk,n
� 

/t(κ) − (
� 

J
hH

 

k,n 

 

w(κ) 

 
  2  

t/(t(κ))2 (9) 
k,k,n k,n k,k,n k,k,n k,n 

 

for all wk,n  ∈ CM ×1, w(κ)
 ∈ CM ×1, t > 0, t(κ) > 0. Therefore, given (w(κ), α(κ)) from κ-th iteration, 

 

substituting t := ϕk,n(w, αk,n) and t(κ) := ϕk,n(w(κ), α(κ) ) into the above inequality (9) gives 

 
fk,n(w, αk,n) ≥ f (κ)(w, αk,n), ∀(w, αk,n) (10) 

 
where  

 
k,n (w, αk,n) !:. 2� 

J
 

 
(w(κ))H hk,k,n 

 
 

   
H 
k,k,n 

 
wk,n

�
 
− 

 
( J 

H
 

� k,k,n 

 
(κ)     2 

wk,n 

 
 
ϕk,n(w, αk,n) 

 
 
 
(11) 

ϕk,n(w(κ), α(κ) ) 2 
k,n (w

(κ), α(κ) ) 

The function f (κ)(w, αk,n) is concave quadratic and agrees with fk,n(w, αk,n) at (w(κ), α(κ) ) as: 
k,n k,n 

 
fk,n(w(κ), α(κ) ) = f (κ)(w(κ), α(κ) ). (12) 

k,n k,n k,n 

ϕ
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[α(0) 

 
Next, the nonconvex energy harvesting constraint (6d) can be expressed as 

 

min 
k,n 

ζk,n(1 − αk,n) 
− 

 
pk,n (w) ≤ 0, ∀k ∈ K, n ∈ Nk 

 
, (13) 

 

which is still nonconvex. From 
 
 
 
 (κ) 

  ( 
(κ)  H

 

 
 
 
 (κ) 

H 
k̄ ,k,n wk̄ ,n̄ |2 ≥ −|hH

 w
k̄ ,n̄ | + 2� w

k̄,n̄ hk̄ ,k,nhH
 wk̄,n̄ , ∀wk̄ ,n̄ , wk̄ ,n̄ (14) 

 
it follows that 

 

pk,n(w) ≥ p(κ) (w), ∀w and pk,n(w 
(κ) ) = p(κ) (w (κ) ) (15) 

 
where  

k,n(w) !:. −pk,n(w 

 
 
 
(κ) 
 
) + 2            � 

k̄∈K	n̄∈Nk̄  

 
J 

(κ) H 

k̄ ,n̄ ) 

 

hk̄ ,k,nhH wk̄,n̄ . 

Therefore, whenever (w(κ), α(κ)) is feasible to (6d), the nonconvex constraint (6d) is inner-approximated 

by the convex constraint 

min 
k,n p(κ) (w) ≤ σ2, ∀k ∈ K, n ∈ N . (16) 

ζk,n(1 − αk,n) 
− k,n a k 

 

From (12) and (16), for a given (w(κ) , α(κ) ) the following convex quadratic program (QP) provides 
k,n k,n 

 

minorant maximization for the nonconvex program (7): 
 

max 
wk,n∈CM ×1, 
αk,n∈(0,1), 
∀k∈K,n∈Nk 

min 
k∈K	

n∈Nk 

f (κ)(w, αk,n) s.t. (6b), (6c), (8b), (16). (17) 

Using (17), we propose in Algorithm 1 a QP-based iterative algorithm that solves the max-min SINR 
 

problem (7). Here, the initial point w(0) !:. [w(0) ]k 
 
∈K,n 

 
∈Nk can be found by randomly generating M × 

 

1 complex vectors followed by normalizing them to satisfy (6b) and (6c). For a given w(0), α(0)  !:. 

k,n]k∈K,n∈Nk   is then generated by solving (6d) with an equality sign. In each iteration of Algorithm 1, 

only one simple QP (17) needs to be solved. The solution of which is then used to improve the objective 

value in the next iteration. 
 

Proposition 1:  Algorithm  1  generates  a  sequence  {(w(κ), α(κ))} of  improved  points  for  (7),  which 

converges to a Karush-Kuhn-Tucker (KKT) point. 

e 
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Algorithm 1 QP-based Iterative Optimization to Solve Problem (7) 
1:  Initialize κ := 0. 

 
2:  Choose a feasible point (w(0) , α(0) ), ∀k ∈ K, n ∈ Nk  of (7). 

k,n k,n 
 

3:  repeat 
 

4: Solve QP (17) for w(κ+1) and α(κ+1), ∀k ∈ K, n ∈ Nk . 
k,n k,n 

 

5: Set κ := κ + 1. 
 

6:  until convergence of the objective in (7). 
 

 

 
 

Proof: Let us define 

 
F (w, α) !:. min fk,n(w, αk,n) and F (κ)(w, α) !:. min f (κ)(w, αk,n), 

k∈K	
n∈Nk 

which satisfies [cf. (10) and (12)] 

k∈K	
n∈Nk 

k,n 

 

F (κ)(w, α) ≥ F (κ)(w, α) ∀ w, α and F (κ)(w(κ), α(κ)) = F (κ)(w(κ), α(κ)). 
 

Hence,  
F (w(κ+1), α(κ+1)) ≥ F (κ)(w(κ+1), α(κ+1)) > F (κ)(w(κ), α(κ)) = F (w(κ), α(κ)), 

 

where the second inequality follows from the fact that (w(κ+1), α(κ+1)) and (w(κ), α(κ)) are the optimal 

solution and a feasible point of (17), respectively. This result shows that (w(κ+1), α(κ+1)) is a better point 

to (7) than (w(κ), α(κ)). 

Furthermore, the sequence {(w(κ), α(κ))} is bounded by constraints (6b) and (6c). By Cauchy’s theorem, 

there is a convergent subsequence {(w(κν ), α(κν ))} with a limit point (w̄ , ᾱ ), i.e., 
 

lim 
ν→+∞	

 
F (w(κν ), α(κν )) − F (w̄ , ᾱ)

  
= 0. 

 

For every κ, there is ν such that κν  ≤ κ ≤ κν+1, and so 
 

0 =  lim 
ν→+∞	[F (w(κν ), α(κν )) − F (w̄ , ᾱ )] 

 

lim 
→+∞	

[F (w (κ) , α(κ) 
) − F (w̄ , ᾱ )] 

 

lim 
→+∞	

[F (w (κν+1) , α(κν+1) 
) − F (w̄ , ᾱ )] = 0, (18) 

≤ 
κ
 

≤ 
ν
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|h k,n

k,n

k,n

k,n

� h k,n

 

which shows that lim 
κ→+∞	

F (w(κ), α(κ)) = F (w̄ , ᾱ ). Each accumulation point {(w̄ , ᾱ )} of the sequence 

{(w(κ), α(κ))} is indeed a KKT point according to [33, Th. 1]. 

It is noteworthy that our simulation results in Sec. IV further show that the QP-based solution in 

Algorithm 1 achieves the upper bound given by the SDR (A.1) described in Appendix A. 

 
B. Iterative Optimization for Min-Max BS Power 

 
Next, we will address the following min-max BS power optimization problem: 

 

min max       lwk,nl2 s.t. (6d), (19a) 
wk,n∈CM ×1, k∈K	
αk,n∈(0,1), 
∀k∈K,n∈Nk 

n∈Nk 

 

H 
k,k,n wk,n|2 ≥ γminϕk,n(w, αk,n), ∀k ∈ K, n ∈ Nk. (19b) 

 

Here, (6d) requires that the amount of energy harvested by UE (k, n) exceeds some target emin for useful 

EH, whereas (19b) ensures a minimum throughput ln 
(
1 + γmin) for each UE (k, n). Similar to the max- 

min SINR problem (7), this problem (19) is nonconvex due to the strong coupling between wk,n and αk,n 

 
in the harvested energy expression (5). 

Given that the SINR constraint (19b) can be expressed as a second-order cone (SOC) constraint2, we now 

address problem (19) via second-order cone programming (SOCP) in the vector variables wk,n ∈ CM ×1. 
 

Similar to (8b), we make the variable change αk,n → α2 in (19) to express (19b) as: 
 

I I     H 
k,k,n wk,n

� 
≥ min 

k,n ϕk,n(w, α2 ), ∀k ∈ K, n ∈ Nk, (20) 
 

2This only means the SINR function is quasi-convex. Therefore, the SOCP-based optimization approach cannot be applied to solve problem 

(7). 

γ
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I

k,n 

k,n 

2

a

I

 
 

Algorithm 2 SOC-based Iterative Optimization to Solve Problem (19) 
1:  Initialize κ := 0. 

 
2:  Choose a feasible point (w(0) , α(0) ), ∀k ∈ K, n ∈ Nk  of (19). 

k,n k,n 
 

3:  repeat 
 

4: Solve SOCP (24) for w(κ+1) and α(κ+1), ∀k ∈ K, n ∈ Nk . 
k,n k,n 

 

5: Set κ := κ + 1. 
 

6:  until convergence of the objective (19). 
 

 

 
 

which is equivalent to the following SOC: 
I I 
I I 
I σ I 
I I 

I I I 
�{hH

 wk,n} ≥ γmin 
I 

σ t 
I 

, k ∈ K, n ∈ N , (21) 
k,k,n k,n 

I 
I 

I(
hH

 

c k,n
 I 

I 

w¯
 I 

� � 

�tk,n 1 � 

I 
k̄ ,k,n I k,n̄ 

I 
k̄ ,n̄∈K,N	\{k,n}I2 

 
where 

(
hH

 

� 
� 

 
 

w¯   
 

 

� � 0, k ∈ K, n ∈ N , (22) 
1 αk,n

�
 

is an (KN − 1) × 1 column vector. On the other hand, under the variable 
k̄,k,n k,n̄ k̄,n̄ , k,n 

∈K	N	\{	 }	

change αk,n  → α2 in (16), the harvested energy expression (5) is inner-approximated by the following 
 

convex constraints: 
 
 

min 
k,n 

 
p(κ) (w) ≤ σ2, ∀k ∈ K, n ∈ N 

 
 . (23) 

ζk,n(1 − α2   ) 
− k,n a k 

 

As (w(κ), α(κ)) is also feasible to (23), the optimal solution (w(κ+1), α(κ+1)) of the following convex 

program is a better point to (19) than (w(κ), α(κ)) 

min max       lwk,nl s.t. (21), (22), (23). (24) 
wk,n∈CM ×1 

αk,n∈(0,1), tk,n 

∀k∈K,n∈Nk 

k∈K	
n∈Nk 

In Algorithm 2, we propose an SOC-based iterative algorithm to solve problem (19). Here, the initial 

e 
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2

emin
h

k,n

a

k,k,n
2

k,n k,n

h

E

 
point can easily be obtained by solving the following SOCP: 

 

min max       lwk,nl s.t. (21), (22), (25a) 
wk,n∈CM ×1, 

αk,n∈(0,1), βk,n, tk,n, 
∀k∈K,n∈Nk 

k∈K	
n∈Nk 

I  
k,n /ζk,n 

βk,n 
− �{ 

 
H 
k,k,n 

 
wk,n} ≤ 0, (25b) 

β2 2 

k,n + αk,n ≤ 1, ∀k ∈ K, n ∈ Nk. (25c) 

Once initialized from a feasible point, Algorithm 2 solves one simple convex SOCP (24) in each iteration. 

The solution of which is then used in the next iteration to improve the objective value. Similar to 

Proposition 1, it can be shown that Algorithm 2 generates a sequence {(w(κ), α(κ))} of improved points 

for problem (19), which converges to a KKT point. Our simulation results in Sec. IV further show that the 

SOC-based solution in Algorithm 2 achieves the lower bound given by the SDR (A.2a), (A.2b), (A.1e), 

(A.1f) described in Appendix A. 
 
 

III. MAX-MIN RATE AND MIN-MAX POWER OPTIMIZATION FOR TRANSMIT TIME-SWITCHING 

 
WIPT SYSTEMS 

Unlike the power-switching system model in Sec. II, in the time-switching (TS) based system, a fraction 

of time 0 < ρ < 1 is used for power transfer while the remaining fraction of time (1 − ρ) for information 

transfer. Here ρ is termed as the TS ratio. For power transfer, we are to design beamforming vectors wE
 

 

with the achievable harvested energy ρEk,n(wE ), where 

 
Ek,n(wE ) !:. ζk,n(pk,n(wE ) + σ2), 

 

pk,n(wE ) !:.            |hH
 k̄,n̄ | , 

 
and wE !:. [wE

 

 
]k∈K	

	
	
,n∈Nk 

k̄∈K	n̄∈Nk̄  

. For information transfer, we are to design beamforming vectors wI
 

 
with the 

 

achievable data rate  

(1 − ρ) ln 

/ 

1 + 
| 

 
 

H 
k,k,n 

I 2 
\

 
k,n| 

ϕk,n(wI ) 

w

w
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|h 2 |hH 2 2 

k,n 

ρ lw 
2 I

ρ lw 
2 I

P , w

k,n 

ρ lw 2 I 2

k,n 

k,n

k,n

l P

l

P

 
where  

ϕk,n(wI ) !:. 
 

 

 
 
 

H 
k,k,n 

 
 
 

I 
k,n̄ 

 
| + 
 

 

 
  

k̄ ,k,n 

 
 
 

I 
k̄ ,n̄ 

 

| +σa, 
n̄∈Nk \{n}	 k̄∈K\{k}	n̄∈Nk̄  

intracell in terference 
_
 intercell in terference 

_
 

and wI  !:. [wI
 ]k∈K	

	
,n∈Nk . Therefore, the individual BS and total power constraints for the TS-based 

 

system are: 
 
 
 

   
E 
k,n 

n∈Nk 

 

l + (1 − ρ)      lwk,n  
2 

n∈Nk 

 
 
 
 max 
≤ k 

 
 
, ∀k ∈ K (26a) 

     
E 
k,n 

k∈K	n∈Nk 

l + (1 − ρ)          lwk,n  
2 

k∈K	n∈Nk 

max 
≤ , (26b) 

respectively. Here, the following constraints must also be imposed: 
 
 

E 
k,n 

 2 max I 2 
l ≤ l k,nl 

 max 
≤ k , ∀k ∈ K, n ∈ Nk. (27) 

 
The max-min rate optimization problem for the TS-based system is then formulated as: 

 

max 
0<ρ<1, 

wx M ×1 

min 
k∈K,n∈Nk 

(1 − ρ) ln(1 + fk,n(wI )) s.t. (26), (27), (28a) 

k,n∈C , x∈{I,E}	

ρEk,n(wE ) ≥ emin. (28b) 
 
And the min-max BS power optimization problem for the TS-based system is formulated as: 

 

min 
0<ρ<1, 

wx M ×1 

max 
k∈K	

   
E 
k,n 

n∈Nk 
l + (1 − ρ)      lwk,n 

n∈Nk 
l s.t. (27), (28b), (29a) 

k,n∈C , x∈{E,I}	

(1 − ρ) ln 
(
1 + fk,n(wI )

) ≥ rmin, (29b) 
 

where (29b) ensures the minimum rate rmin (in nat/sec/Hz) is achieved. 

Remark 1: The transmit TS-based WIPT system is different from the receive TS-based WIPT system 

[9] which switches the received signal yk,n in (1) in the proportion of time 0 < αk,n < 1 for information de- 

coding. Accordingly, the joint design of transmit beamformer w and receive TS ratios α !:. [αk,n]k∈K,n∈Nk 

is formulated as: 

 

max 
0<αk,n<1, 

wk,n∈CM ×1 

min 
k∈K,n∈Nk 

(1 − αk,n) ln(1 + fk,n(w)) s.t. (6b), (6c), and αk,nEk,n(w) ≥ emin, (30) 

w w

lw

P
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2 

2 2 

(�{h

wx 

� h

e
(

a

P E

E

 
and  

 
 
min 

 
max       lwk,nl2 s.t. αk,nEk,n(w) ≥ emin, (1 − αk,n) ln(1 + fk,n(w)) ≥ rmin. (31) 

0<αk,n<1, 

wk,n∈CM ×1 

k∈K		
n∈Nk 

k,n k,n 

Compared with the receive PS-based optimization problems (7) and (19), the power and EH constraints 

in (30) and (31) remain the same while the data rate in (30) and (31) is lower. The receive PS-based 

design thus outperforms the receive TS-based design in general. On the other hand, the transmit TS-based 

optimizations (28) and (29) exploit the separate designs of wI for ID and wE for EH. For this reason, 

they outperform the receive PS-based designs in (7) and (19) as will be shown later. 

 
A. Iterative Max-Min Rate Optimization 

 
We will now solve the nonconvex problem (28). First, let us make the following change of variable: 

 
1 − ρ = 1/β, (32) 

 
which satisfies the linear constraint 

 
β > 1. (33) 

 

Thus, the power constraints (26) become the following convex constraints: 
 

  
 

n∈Nk 

 
E 2 
k,nl 

1    
 

 

β 
n∈Nk 

 
I 2 
k,nl 

 max 
≤ k 

1    
 

 

β 
n∈Nk 

lwk,n l , ∀k ∈ K (34a) 

    
 

k∈K	n∈Nk 

k,nl + 
1     

 
 

β 
k∈K	n∈Nk 

 
I 2 
k,nl 

 max 
≤ 

1     
 

 

β 
k∈K	n∈Nk 

 
E 
k,n l . (34b) 

Similar to (8), problem (28) can now be equivalently expressed by 
 

 
max 

 
min 1 

/ 
ln 1 + 

H 
k,k,n 

I 
k,n })2 

\
  s.t. (27), (33), (34), (35a) 

 

k,n∈C 

α,β, 
M ×1,x∈{I,E}	

k∈K,n∈Nk   β ϕk,n(wI ) 

   H 
k,k,n 

 
 

I 
k,n 

� ≥ 0, ∀k ∈ K, n ∈ Nk, (35b) 

pk,n(wE ) ≥ 
min 
k,n 1 + 
ζk,n 

1 
\ 

β − 1 
− σ2. (35c) 

 

Note that unlike (8), the objective function in (35) is quite complex to handle due to the additional 

factor 1/β, while the power constraint (34) is nonconvex. To deal with this, we first exploit the fact that 

lw lw

lw lw lw 

w

w

+ +

P +
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t 

¯ ¯ ¯

− −

�{h 

H
2 

k,n

k,n

k,n 

 

function f (x, t) = ln(1+1/x) is convex in x > 0, t > 0 which can be seen by examining its Hessian. The 
 

following inequality for all x > 0, x̄  > 0, t > 0 and t̄  > 0 then holds true: 
 

ln(1 + 1/x) 

t 
≥ f (x̄ , t) + (∇f (x̄ , t), (x, t) − (x̄ , t)) 

ln(1 + 1/x̄) 1 x ln(1 + 1/x̄ ) 

= 2 
t̄
 

+ 
t̄ (x̄  + 1) (x̄  + 1)x̄ t̄  t̄ 2 t. (36) 

By replacing 1/x → x and 1/x̄  → x̄  in (36), we have: 

ln(1 + x) b 

where a = 2 ln(1+x̄)      x̄   x̄2 

t 
≥ a − 

x 
− ct, (37) 

ln(1+x̄) 
t̄  + t̄(x̄+1) > 0, b = t̄(x̄+1) > 0, c = t̄2 > 0. From that, 

1 
/ 

ln 1 + 
( 

H
 

k,k,n 
I 
k,n })2 \ ϕk,n(wI ) ≥ a(κ) − b(κ) c(κ)β (38) β ϕk,n(wI ) (

� hH
 

I 2 − 

where 
(κ) (κ) (κ) 2 

k,k,nwk,n

�)
 

(κ) 

a(κ) = 2 
ln(1 + d   )   d   (κ)   (d    )   (κ) ln(1 + d  ) 

β(κ) + 
β(κ)(d(κ) + 1) 

> 0, b 
= > 0, c = 
β(κ)(d(κ) + 1) 2 (β(κ))2 > 0, (39) 

d(κ) = 
(
� 

J
hH I,(κ)

  
 /
ϕk,n(wI,(κ)). 

 

Now, using 

k,k,nwk,n 

 
(
� hH 

I 
�)2 ≥ 2�{hH

 
wI,(κ)}� hH wI ( J 

—  �  h 
wI,(κ)

  
 !:. ψ (wI   ) 

k,k,nwk,n 
k,k,n k,n k,k,n � 

k,n 

k,k,n k,n k,n k,n 

 
together with (38) leads to 

 

1 
/ (

� hH
 

I 
�)2 \ I

 

ln 1 + k,k,nwk,n a(κ) b(κ) ϕk,n(w ) c(κ)β !:. f (κ)(wI, β) (40) 
 

 

β ϕk,n(wI ) 
≥ − 

ψk,n(wI   ) 
− k,n 

 

for  
 
ψk,n(wI

 

 

) ≥ 0, ∀k ∈ K, n ∈ Nk. (41) 
 

As the function f (κ)(wI, β) is concave on (41), the following convex program provides minorant maxi- 

w 
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wx 

k,n

2 

2 H E 

β

2

wx 
� h 

� h ≥ er β − 1 
I
(

� / 

k,n

k,n

E P E 

l

N

I
I

l I P

l I

 

mization for the nonconvex program (35) for a given (wE,(κ), wI,(κ), β(κ)): 
 
 

 
k,n∈C 

max 
β, 

M ×1, x∈{I,E}	

min 
k∈K,n∈Nk 

f (κ)(wI, β) s.t (27), (33), (35b), (41), (42a) 

  
 

n∈Nk 

k,nl + 
1    

 
 

β 
n∈Nk 

 
I 2 
k,nl 

 max 
≤ k 

1 
 

 

β(κ) 

  
 
n∈Nk 

J 
E,(κ) H 

2�  (wk,n   ) wk,n 

    β    E,(κ)  2 
−

(β(κ))2  
n∈Nk 

lwk,n   l , ∀k ∈ K, (42b) 

lwE
 1     l + lwI

 
2 ≤ P max + 

1 
J 

E,(κ) 2� (w )  w 
 

k∈K	n∈Nk 

k,n β 
k∈K	n∈Nk 

k,n 
β(κ)  

k∈K	n∈Nk 

k,n k,n 

    β      E,(κ)  2 
−

(β(κ))2 
min 

 
k∈K	n∈Nk 

lwk,n   l , (42c) 

      � J
hH

 E,(κ)  H 
¯ 

E H 

¯ −   ¯ 

E,(κ) 2
 
 

  ≥ 
ek,n  

(
 1 
1 + 

\ — σ2 (42d) 

k̄∈K	n̄∈Nk̄  k̄,k,n 
k̄ ,n̄ 

hk,k,nwk,n̄ 

 hk,k,nw
k̄,n̄ ζk,n β − 1 a. 

Here, convex constraints (42b), (42c) and (42d) are the inner approximations of nonconvex constraints 

(34) and (35c) due to the convexity of function  1 lxl2, which leads to 

lxl2 

β 
≥ 

2� (x(κ))H x
�

 

β(κ) − 
lx(κ)l N

 

(β(κ))2 β, ∀x ∈ C 
, x(κ) ∈ C  , β > 0, β 

(κ) > 0. (43) 

The proposed solution for the max-min rate problem (35) (and hence (28)) is summarized in Algorithm 3. 

Similar to Proposition 1, it can be shown that Algorithm 3 generates a sequence  
(
wE,(κ), wI,(κ), β(κ))� 

of 

improved points of (35), which converges to a KKT point. In Algorithm 3, the feasible point 
(
wE,(0), wI,(0), β(0)) 

of (35) is found as follows. We fix β(0) and solve the following convex problem for fixed rmin > 0: 

k,n∈C 

max 
M ×1,x∈{I,E}	

min 
k∈K,n∈Nk 

   H 
k,k,n 

 
 

E 
k,n 

I 
I 

 
 

min 
k,n 

 
/ (ζ 

 
 

k,n 

 
(1 − 1/β 

I 
I 

 
 
(0) 

 
)) s.t. (27), (44a) 

   H 
k,k,n 

 
I 
k,n 

  I σa
 min  (0) 

I   
I hH I 

I I 
, k ∈ K, n ∈ N , (44b) 

I I 
I k̄ ,k,nwk̄ ,n̄ 

k̄ ,n̄∈K,N	\{k,n}
I
2 

(
1 − 1/β(0))       lwE 2 

n∈Nk 

+ 
(
1/β (0))   

n∈Nk 

lwk,nl2 
max 

≤ k , ∀k ∈ K, (44c) 

(
1 − 1/β(0))             lwE 2 

k∈K	n∈Nk 

+ 
(
1/β (0))     

k∈K	n∈Nk 

lwk,nl2 
max 

≤ , (44d) 

lw lw

w � e
I

w 

+

2 w 

P 
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wx 

e
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σ

k,n

wx 

lwE lwI

k,n 

 

−

 
 

Algorithm 3 Iterative Optimization to Solve Problem (35) 
1:  Initialize κ := 0. 

2:  Choose a feasible point 
(
wE,(0), wI,(0), β(0)) of (35). 

 
3:  repeat 

4: Solve convex program (42) for 
(
wE,(κ+1), wI,(κ+1), β(κ+1)). 

 
5: Set κ := κ + 1. 

 
6:  until convergence of the objective in (35). 

 
 

 
 

and then iteratively solve the following convex problem: 
 

 max  min      
2
 J

hH
 

wE,(κ)hH wE  
hH

 wE,(κ)  2
 
 

 

k,n∈C 

 
M ×1 

 
,x∈{I,E}	 k∈K,n∈Nk 

 
k̄∈K	

� 
n̄∈Nk̄  

k̄ ,k,n k̄ ,n̄ k̄ ,k,n k̄ ,n̄ 
   

k̄,k,n k̄ ,n̄ 

min 
k,n — 
ζk,n 

1 
\ 

1 + 2 

β(0) − 1 a 

 
s.t. (27), (44b), (44c), (44d) (45) 

 

where the initial point wE,(0)
 for (45) is obtained from the solution of (44). Problem (45) is solved for 

 

κ = 0, 1, 2, . . . until a positive optimal value is attained. If problem (44) or (45) is infeasible with β(0) 
 
or solving (45) fails to give a positive optimal value, we repeat the above process for a different value of 

β(0)  in order to find a feasible point 
(
wE,(0), wI,(0), β(0)).3 

 
 

B. Iterative Min-Max Power Optimization 

 
We now turn our attention to the min-max BS power optimization problem (29), which is equivalently 

 

expressed as: 
 
 
 

k,n∈C 

 
 
 
min 
β>0, 

M ×1, x∈{E,I}	

	
	

max 
k∈K	

	
	
  

k,n 
n∈Nk 

 
 
2 1 

l + 
β

 

 
 
  

2 1 
k,nl − 

β 
n∈Nk 

 
 

lw 
n∈Nk 

 
l 

E 2 
k,nl 

 
 
(46a) 

s.t. (27), (33), (35c), (46b) 

ln 
(
1 + fk,n(wI )

) ≥ rmin. (46c) 
 

3Simulation results in Sec. IV show that in almost all of the scenarios considered, problems (44) or (45) are feasible and a positive optimal 

value of (45) is obtained in one single iteration for the first tried value β(0) = 1.11. 

−

1
β
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I

 
 

Algorithm 4 Iterative Optimization to Solve Problem (46) 
1:  Initialize κ := 0. 

2:  Choose a feasible point 
(
wE,(0), wI,(0), β(0)) of (46). 

 
3:  repeat 

4: Solve the convex program (47) for 
(
wE,(κ+1), wI,(κ+1), β(κ+1)). 

 
5: Set κ := κ + 1. 

 
6:  until convergence of the objective (47). 

 
 

 
 

From (40) and (43), the following convex program provides majorant minimization for the nonconvex 
 
program (46) for a given (wE,(κ), wI,(κ), β(κ)): 

k,n 

  
k,n 

min max 1 lwE  l2 + 
1 lwI   l2 − 
  

2� 
J

(wE,(κ))H wE
 

 
k,n∈C 

β>0, 
M ×1, x∈{E,I}	

k∈K		
n∈Nk 

k,n β 
n∈Nk 

k,n 
β(κ)  

n∈Nk 

k,n k,n 
 

l 
    β    E,(κ)  2 

+
(β(κ))2  

n∈Nk 

lwk,n l (47a) 

s.t. (27), (33), (35b), (41), (42d), (47b) 

f (κ) 
(
wI, β

) ≥ rmin, (47c) 
k,n k,n 

 

where f (κ)(wI, β) is defined in (40). 

The proposed solution for the min-max BS power optimization problem (46) (and hence (29)) is 

summarized  in  Algorithm  4.  Similar  to  Proposition  1,  it  can  be  shown  that  Algorithm  4  generates 

a sequence 
(
wE,(κ), wI,(κ), β(κ))� 

of improved points of (47), which converges to a KKT point. In 

Algorithm 4, the feasible 
(
wE,(0), wI,(0), β(0))� 

of (46) can be found by first fixing β(0) and solving the 

convex feasibility problem with the following constraints: 
 

I  
emin 

k,n / (ζk,n (1 − 1/β 
(0))) − �{hH wE  } ≤ 0, k ∈ K, n ∈ N , (48a) 

k,k,n k,n I I 
I I I 

min 
(0) 

I σa
 I    H 

k,k,n I � 
k,n erk,n β — 1 

I
 I hH I 

I 
, k ∈ K, n ∈ N , (48b) I I 

I k̄ ,k,nwk̄ ,n̄ 
k̄ ,n̄∈K,N	\{k,n}

I
2 

 

(27), (35b). (48c) 
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Fig. 2.   Topology of the multicell network used in the numerical examples 
 

 
IV. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS 

 
In the numerical examples, a 3-cell network model with 4 UEs per cell shown in Fig. 2 is used. The 

cell radius is set as 40 m and the BS-to-UE distance as 20 m to enable practical WIPT [7], [8]. For 

large-scale propagation loss, a pathloss exponent equal to 4 is assumed. For small-scale fading, a Rician 

fading channel is generated according to 

I 
KR

 

 
I 

LOS 

 
 
 

NLOS 

hk̄ ,k,n = 
 

 

1 + KR 
hk̄,k,n + 

 
 

1 + KR 
hk̄ ,k,n , ∀k̄ , k, n (49) 

 

where KR = 10 dB is the Rician factor; hLOS
 ∈ CM ×1 is the line-of-sight (LOS) deterministic component; 

 

k̄ ,k,n  ∼ CN (0, 1) is the circularly-symmetric complex Gaussian random variable that models the 

Rayleigh fading component. Here, the far-field uniform linear antenna array model is used with 
 

k̄ ,k,n =  1, e 
jθk̄ ,k,n , ej2θk̄ ,k,n , . . . , e j(M −1)θk̄ ,k,n   

T 

 
for θk̄ ,k,n = 2πd sin(φk̄,k,n)/λ, where d = λ/2 is the antenna spacing, λ is the carrier wavelength and 

φk̄,k,n is the direction of UE (k, n) to BS k̄ [20]. In the simulations, φk̄ ,k,n is generated as a random angle 

between 0o and 360o. For simplicity and without loss of generality, we assume that γmin = γ in (19b), 

rmin    min    

k,n  = r in (29b), and ζk,n = ζ, ek,n  = e, ∀k, n. In all simulations, we also set ζ = 0.5, e = −20 dBm, 

y−
co

or
di

na
te

 (
m

)  

1
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Fig. 3.   Maximized minimum UE rate for M = 4 and P max = 22 
 

dBW. 

Fig. 4. Maximized minimum UE rate for P 

P max  = 16 dBW. 

max = 22 dBW and 

 
σ2 2 −3 

a = −90 dBm and σc = −90 dBm. The error tolerance used in the stopping condition is set as 10 

all algorithms. 
 

 
A. Results for Max-Min Rate Problems (7) and (28) 

for 

 
Algorithm 1, the nonsmooth optimization algorithm of [26] and the SDR approach are used to solve 

the PS-based problem (7), whereas Algorithm 3 is to solve the TS-based problem (28). Assuming that 

P max = 22 dBW, Figs. 3 and  4 plot the maximized minimum UE rate for different values of BS transmit 

power P max and BS transmit antenna number M . As can be seen, the performance of Algorithm 1 
 

coincides with the upper bound obtained by the SDR approach in all the considered simulation setups. 

Although the proposed algorithm of [26] also achieves this bound, it requires much higher computational 

complexity than Algorithm 1 as will be analyzed shortly. It should be noted that Algorithm 1 does not 

perform any bisection search as is the case for both the SDR approach and the algorithm of [26]. Note 

further that the SDR approach only provides rank-one matrices W*
 in no more than 61.7% of the time 

 

[26]. In contrast, the nonsmooth optimization algorithm of [26] always returns rank-one matrix solutions, 
 

and Algorithm 1 of course directly gives the optimal vectors w*
 because no matrix optimization is 

 

involved. Figs. 3 and 4 also show that transmit TS-based WIPT system with Algorithm 3 considerably 
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Fig. 5.   Convergence of proposed Algorithms 1 and 3 for M = 4 
 

and P max = 16 dBW. 
 

 
outperforms the receive PS-based counterpart. Such throughput enhancement is generally not possible 

with the receive TS-based WIPT system as has been reported in the literature. With its high performance 

and easy implementation, the transmit TS-based solution could be an attractive candidate for practical 

WIPT systems. 

Fig. 5 illustrates the fast convergence of Algorithms 1 and 3 which terminate in as few as 8 and 4 

iterations, respectively. Here, each iteration corresponds to solving one simple QP (17) in Algorithm 1, 

one convex problem (42) in Algorithm 3, and one SDP (A.1a)–(A.1f) in the SDR approach. Note that 

initializing the proposed Algorithms 1 and 3 only requires a single iteration. 

The computational complexities of Algorithm 1, the nonsmooth optimization algorithm of [26], the SDR 
method and Algorithm 3 are O (iA1(M + 1)3K3N 3(3KN + K + 1)), O 

(
i[26] ((M 2 + M + 2)KN/2) 

(6KN + K + 1)), O 
(
iSDR ((M 2 + M + 2)KN/2) 

3 
 

(6KN + K + 1)   and O(
iA3  (2KNM + 1)3(3KN 

 

+2K + 3)
)
, respectively [34]. Here, iA1 = 11 is the average number of times that QP (17) is solved by 

Algorithm 1; i[26] = 26.5 is the average number of times that an SDP is solved by [26]; iSDR = 17 is 

the average number of times that the feasibility (convex) SDR (A.1b)–(A.1f) is solved; and iA3 = 6.8 

is the average number of times that QP (42) is solved by Algorithm 3. Note that the initialization (45) 

for Algorithm 3 requires 1.1 iterations on average. For the particular case of M = 4, N = 4, K = 3 
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TABLE I 

 
COMPLEXITY ANALYSIS FOR ALG. 1, SDR APPROACH AND [26] (TO SOLVE PROBLEM (7)), AND ALG. 3 (TO SOLVE PROBLEM (28)) 

 

Algorithms avg. # iter scal var lin cons quad cons SD cons 

Alg. 1 (PS) 11 60 24 16 0 

Algorithm of [26] (PS) 26.5 132 40 0 36 

SDR approach (PS) 17 132 40 24 12 

Alg. 3 (TS) 6.8 97 25 20 0 

 
 

and P max
 = 16 dBW, Table I shows the average number of iterations required (‘avg. # iter.’) as well 

 

as the numbers of scalar variables (‘scal var’), linear constraints (‘lin cons’), quadratic constraints (‘quad 

cons’) and semidefinite constraints (‘SD cons’) of the concerned algorithms. Clearly, Algorithms 1 and 

3 are the most computationally efficient as they involve the smallest numbers of iterations, variables and 

constraints. 

 
B. Results for Min-Max BS Power Optimization Problems (19) and (29) 

 
Algorithm 2 and the SDR approach are used to solve problem (19) whereas Algorithm 4 is to solve 

problem (29). Figs. 6 and 7 plot the minimized maximum BS transmit power for different values of the 

minimum rate r and BS transmit antenna number M . As can be observed, Algorithm 2 achieves the 

lower bound given by SDR under all the network settings considered. Furthermore, the transmit TS-based 

WIPT system by Algorithm 4 clearly outperforms the receive PS-based WIPT system by at least 3.5 dB 

in power. Fig. 8 shows that Algorithm 2 quickly converges within 3 iterations to the theoretical lower 

bound obtained after solving the relaxed SDR (A.2a), (A.2b), (A.1e), (A.1f) [see AppendixA]. In this 

algorithm, each iteration corresponds to solving one SOCP (24). On the other hand, Algorithm 4 requires 

about 6 iterations to converge where each iteration solves one QP (47). 

The computational complexities of Algorithm 2, the SDR method and Algorithm 4 are O (iA2(M + 2)3K3 

N 34KN ), O 
(
((M 2 + M + 2)KN/2)3 6KN   and O (i (2KNM + 1)3(4KN + K + 2)), respectively A4
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Fig. 6.   Minimized maximum BS transmit power for M = 5. 

Fig. 7. Minimized maximum BS transmit power for r = 2.31 
 

bits/sec/Hz (i.e., γ = 6 dB). 
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Fig. 8. Convergence of Algorithms 2 and 4 for M  = 5 and 
 

r = 2.31 bits/sec/Hz.) 

 

[34]. Here iA2 = 3 and iA4  = 6.99 are the average number of iterations required for Algorithms 2 and 

4 to converge. For the particular case of M = 4, N = 4, K = 3 and r = 2.316 bit/sec/Hz, Table II 

shows the required number of variables and constraints, where ‘SOC cons’ denotes the required number 

of second-order cone constraints. Although Algorithm 4 for the transmit TS-based WIPT system requires 

more computational effort than Algorithm 2 for the receive PS-based WIPT system, the former system 
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TABLE II 

 
COMPLEXITY ANALYSIS FOR ALG. 2 AND SDR APPROACH (TO SOLVE PROBLEM (19)), AND ALG. 4 (TO SOLVE PROBLEM (29)) 

 

Algorithms avg. # iter scal var lin cons quad cons SD cons SOC cons 

Alg. 2 (PS) 3 72 12 24 0 12 

SDR approach (PS) 1 132 36 24 12 0 

Alg. 4 (TS) 6.99 97 25 28 0 0 

 
 

outperforms the latter system as previously shown in Figs. 6 and 7. 
 

V. CONCLUSIONS 

 
In this paper, we have jointly designed the BS transmit beamformers with either the receive PS ratios 

or the transmit TS ratio for an RF energy harvesting multicell network. The design objectives include 

maximization of the minimum data rate among all UEs and minimization of the maximum BS transmit 

power. To solve the highly nonconvex problem formulations, we have proposed new iterative optimization 

algorithms of low computational complexity that are based on quadratic programming and second-order 

cone programming. Simulation results with practical parameters show that the algorithms converge quickly 

and that the transmit TS-based WIPT system outperforms the receive PS-based WIPT system. In the case 

of PS-based designs, the proposed algorithms tightly approach the theoretical bound in the considered 

numerical examples. 
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APPENDIX A 

 
SDR-BASED APPROACH TO SOLVE PROBLEMS (7) AND (19) 

 
In the SDR-based approach, problem (7) in the beamforming vectors wk,n  is recast as the following 

 

problem in their outer products Wk,n !:. wk,nwH
 >,: 0: 

 
max 

Wk,n∈CM ×M , 
αk,n∈(0,1), γ, 
∀k∈K,n∈Nk 

γ (A.1a) 

s.t. 
1 

Tr H 
γ 

 
 
k,k,n Wk,n} − 

 
 Tr{H 

 
 
k,k,n Wk,n̄ } − 

 
 
  

Tr{Hk̄,k,n Wk̄,n̄ } 
n̄∈Nk \{n}	

σ2 
k̄∈K\{k}	n̄∈Nk̄  

≥ σ2 + 
c 

 

αk,n 
, ∀k ∈ K, n ∈ Nk (A.1b) 

  
Tr{Wk,n} ≤ P max, ∀k ∈ K (A.1c) 

n∈Nk 

     
Tr{Wk,n} ≤ P max (A.1d) 

k∈K	n∈Nk 

    
Tr{Hk̄ ,k,nWk̄ ,n̄ } ≥ 

k̄∈K	n̄∈Nk̄  

min 
k,n 

ζk,n(1 − αk,n) 
— σ2, ∀k ∈ K, n ∈ Nk 

 
(A.1e) 

 

Wk,n >,: 0, ∀k ∈ K, n ∈ Nk (A.1f) 

rank(Wk,n) = 1, ∀k ∈ K, n ∈ Nk. (A.1g) 

Let us denote W !:. [Wk,n]k∈K,n∈Nk . By fixing γ and further ignoring the difficult rank-one constraint 

(A.1g), (A.1) is relaxed to the feasibility SDP (A.1b)–(A.1f). Because (A.1b) is the only constraint that 

involves γ and it is monotonic in γ, the optimal value of γ can be found via a bisection search in an outer 

loop. The optimization process is repeated until (W, α, γ) converges to (W*, α*, γ*), ∀k ∈ K, n ∈ Nk , 

in which case (A.1a)–(A.1f) is solved. The obtained solution by SDR approach is not guaranteed to be 
 

of rank one, i.e., rank(W*
 ) > 1 is mostly observed. Thus, SDR-based solution can serve as an upper 

 

bound for max-min rate problem (7) . 
 

Similarly, problem (19) in beamforming vectors wk,n  is recast as the following rank-one constrained 

e
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SDP in the outer products Wk,n !:. wk,nwH
 >,: 0, ∀k ∈ K, n ∈ Nk : 

 

min max       Tr{Wk,n} (A.2a) 
Wk,n∈CM ×M , k∈K	
αk,n∈(0,1), 

∀		 k∈K,  n∈Nk 

n∈Nk 

� 

s.t. Tr{Hk,k,nWk,n} ≥ γmin � 
 

 Tr{Hk,k,nWk,n̄ } + 
 

 
  

Tr{Hk̄,k,n Wk̄,n̄ } 
n̄∈Nk \{n}	

+σ2 + 
σc  

\ 

, 
 
∀k ∈ K 

k̄∈K\{k}	n̄∈Nk̄  

, n ∈ Nk 

 
 

(A.2b) 
a αk,n 

 

(A.1e), (A.1f), (A.1g). (A.2c) 
 
By ignoring the rank-one constraint (A.1g), the optimal solution 

),
 
∈K	

), 
n∈Nk Tr{W*

 } of the SDR 
 

formed by (A.2a), (A.2b), (A.1e), (A.1f) provides a lower bound of the actual optimal value of problem 

(19). 
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