
The final publication is available at Springer via http://dx.doi.org/10.1007/s00778-016-0453-2

ar
X

iv
:1

61
1.

03
20

4v
1

 [
cs

.D
B

]
 1

0
N

ov
 2

01
6

Noname manuscript No.
(will be inserted by the editor)

Top-k Spatial-keyword Publish/Subscribe Over Sliding
Window

Xiang Wang · Ying Zhang · Wenjie Zhang · Xuemin Lin · Zengfeng
Huang

the date of receipt and acceptance should be inserted later

Abstract With the prevalence of social media and
GPS-enabled devices, a massive amount of geo-textual
data has been generated in a stream fashion, leading
to a variety of applications such as location-based rec-
ommendation and information dissemination. In this
paper, we investigate a novel real-time top-k monitor-
ing problem over sliding window of streaming data;
that is, we continuously maintain the top-k most rel-
evant geo-textual messages (e.g., geo-tagged tweets) for
a large number of spatial-keyword subscriptions (e.g.,
registered users interested in local events) simultane-
ously. To provide the most recent information under
controllable memory cost, sliding window model is em-
ployed on the streaming geo-textual data. To the best
of our knowledge, this is the first work to study top-
k spatial-keyword publish/subscribe over sliding win-
dow. A novel centralized system, called Skype (Top-
k Spatial-keyword Publish/Subscribe), is proposed in
this paper. In Skype, to continuously maintain top-k
results for massive subscriptions, we devise a novel in-
dexing structure upon subscriptions such that each in-
coming message can be immediately delivered on its

X. Wang (�) · W. Zhang · X. Lin · Z. Huang
School of Computer Science and Engineering,
The University of New South Wales
Sydney, Australia
E-mail: xiangw@cse.unsw.edu.au

Y. Zhang
CAI, University of Technology,
Sydney, Australia
E-mail: ying.zhang@uts.edu.au

W. Zhang
E-mail: zhangw@cse.unsw.edu.au

X. Lin
E-mail: lxue@cse.unsw.edu.au

Z. Huang
E-mail: huangzengfeng@gmail.com

arrival. To reduce the expensive top-k re-evaluation
cost triggered by message expiration, we develop a
novel cost-based k-skyband technique to reduce the
number of re-evaluations in a cost-effective way. Ex-
tensive experiments verify the great efficiency and ef-
fectiveness of our proposed techniques. Furthermore,
to support better scalability and higher throughput,
we propose a distributed version of Skype, namely,
DSkype, on top of Storm, which is a popular distributed
stream processing system. With the help of fine-tuned
subscription/message distribution mechanisms, DSkype
can achieve orders of magnitude speed-up than its cen-
tralized version.

1 Introduction

Recently, with the ubiquity of social media and GPS-
enabled mobile devices, large volumes of geo-textual
data have been generated in a stream fashion, leading
to the popularity of spatial-keyword publish/subscribe
system (e.g., [25,11,37,24,12]) in a variety of applica-
tions such as location-based recommendation and social
network. In such a system, each individual user can reg-
ister her interest (e.g., favorite food or sports) and loca-
tion as a spatial-keyword subscription. A stream of geo-
textual messages (e.g., e-coupon promotion and tweets
with location information) continuously generated by
publishers (e.g., local business) are rapidly fed to the
relevant users.

The spatial-keyword publish/subscribe system has
been studied in several existing work (e.g., [25,11,37]).
Most of them are geared towards boolean matching,
thus making the size of messages received by users un-
predictable. This motivates us to study the problem
of top-k spatial-keyword publish/subscribe such that
only the top-k most relevant messages are presented to

http://arxiv.org/abs/1611.03204v1

2 X. Wang et al.

Fig. 1 E-coupon recommendation system

users. Moreover, we adopt the popular sliding window
model [4] on geo-textual stream to provide the fresh
information under controllable memory usage. In par-
ticular, for each subscription, we score a message based
on their geo-textual similarity, and the top-k messages
are continuously maintained against the update of the
sliding window (i.e., message arrival and expiration).
Below is a motivating example.

Example 1 Figure 1 shows an example of location-
aware e-coupon recommendation system. Three users
interested in nearby restaurants are registered with
their locations and favorite food, intending to keep an
eye on the most relevant e-coupon issued recently. We
assume the system only stores the most recent four e-
coupons. An e-coupon e will be delivered to a user u
if e has the highest score w.r.t. u according to their
spatial and textual similarity. Initially, we have four e-
coupons, and the top-1 answer of each user is shown in
bold in the upper-right table, where the relevance score
between user and e-coupon is depicted. When a new e-
coupon e5 arrives and the old e-coupon e1 expires, the
updated results are shown in bottom-right table. Par-
ticularly, the top-1 answer of u1 is replaced by e3 since
e1 is discarded from the system, while the answer of u3
is replaced by e5, as e5 is the most relevant to u3. The
top-1 answer of u2 remains unchanged.

Challenges. Besides the existing challenges in spatial-
keyword query processing [19,15,33,43], our problem
presents two new challenges.

The first challenge is to devise an efficient index-
ing structure for a huge number of subscriptions, such
that each message from the high-speed stream can be
disseminated immediately on its arrival. The only work
that supports top-k spatial-keyword publish/subscribe
is proposed by Chen et al. [12]. In a nutshell, they first
deduce a textual bound for each subscription and then
employ DAAT (Document-at-a-time [8]) paradigm to
traverse the inverted file built in each spatial node.
However, we observe that the continuous top-k mon-
itoring problem is essentially a threshold-based similar-
ity search problem from the perspective of message; that

is, a new message will be delivered to a subscription if
and only if its score is not less than the current thresh-
old score (e.g., k-th highest score) of the subscription.
Consequently, although the DAAT paradigm has been
widely used for top-k search (e.g., [17]), it is not suitable
to our problem because the advanced threshold-based
pruning techniques cannot be naturally integrated un-
der DAAT paradigm.

The second challenge is the top-k re-evaluation
problem triggered by frequent message expiration from
the sliding window. For example, in Figure 1, the expi-
ration of e1 invalidates the current top-1 answer (i.e.,
e1) of u1, and thus the system has to re-compute the
new result for u1 over the sliding window. It is cost-
prohibitive to re-evaluate all the affected subscriptions
from scratch when a message expires. Some techniques
have been proposed to solve this problem (e.g., [41,29,
7,31]). Yi et al. [41] introduce a kmax strategy, try-
ing to maintain top-k′ results, with k′ being a value
between k and kmax, rather than buffering the exact
top-k results. Later, Mouratidis et al. [29] notice that
kmax ignores the dominance relationship between mes-
sages, and propose a novel idea to convert top-k main-
tenance into partial k-skyband maintenance to reduce
the number of re-evaluations. Nevertheless, they simply
use the k-th score of a continuous query (i.e., subscrip-
tion in our paper) as the threshold of its k-skyband
without theoretical underpinnings, which may result in
poor performance in practice.

On the other hand, the limited computational re-
sources (e.g., CPU, memory) in a single machine of-
ten become the bottleneck when we increase the scale
of real-life applications, where millions of active users
need to be maintained simultaneously. To alleviate this
issue, we extend Skype on top of Storm1, an open-source
distributed real-time in-memory processing system, to
leverage parallel processing such that high throughput
can be achieved. Storm itself is intrinsically designed to
solve real-time stream processing tasks, which therefore
best suits our top-k publish/subscribe problem. The
main challenge here lies in how to partition and dis-
tribute subscriptions and messages such that workload
balance and high throughput can be achieved at a small
communication cost.

In this paper, we propose a novel centralized sys-
tem, i.e., Skype, to efficiently support top-k Spatial-
keyword Publish/Subscribe over sliding window. Two
key modules, message dissemination module and top-
k re-evaluation module, are designed to address the
above challenges. Specifically, the message dissemi-
nation module aims to rapidly deliver each arriving
message to its affected subscriptions on its arrival.
We devise efficient subscription indexing techniques

1 Apache storm project. http://storm.apache.org/

http://storm.apache.org/

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 3

which carefully integrate both spatial and textual in-
formation. Following the TAAT (Term-at-a-time [9])
paradigm, we significantly reduce the number of non-
promising subscriptions for the incoming message by
utilizing a variety of spatial and textual pruning tech-
niques. On the other hand, the top-k re-evaluation mod-
ule is designed to refill the top-k results of subscrip-
tions when their results expire. To alleviate frequent
re-evaluations, we develop a novel cost-based k-skyband
technique which carefully selects the messages to be
buffered based on a threshold value determined by a
cost model, considering both top-k re-evaluation cost
and k-skyband maintenance cost. In addition, to speed-
up real-time processing, we follow most of the existing
publish/subscribe systems (e.g., [25,37,24,12]) to im-
plement all our indexes in main memory.

To support better scalability beyond Skype, we pi-
oneer a novel distributed real-time processing system,
namely, DSkype, which is a distributed version of Skype
deployed on top of Storm. We propose four different
distribution mechanisms, i.e., hashing-based, location-
based, keyword-based and prefix-based, to distribute
subscriptions and messages to relevant components.
Among them, prefix-based technique yields the best
overall performance in terms of both throughput and
communication cost. For example, it can process nearly
1300 messages per second over 5M subscriptions on a
small-size cluster.

Contributions. Our principal contributions are sum-
marized as follows:

– We propose a novel framework, called Skype, which
continuously maintains top-k geo-textual messages
for a large number of subscriptions over sliding
window model. To the best of our knowledge,
this is the first work to integrate sliding window
model into spatial-keyword publish/subscribe sys-
tem. (Section 4)

– For message dissemination module, we propose both
individual pruning technique and group pruning
technique to significantly improve the dissemination
efficiency following the TAAT paradigm. (Section 5)

– For top-k re-evaluation module, a novel cost-based
k-skyband method is developed to determine the
best threshold value with in-depth theoretical anal-
ysis. It is worth mentioning that our technique is a
general approach which can be applied to other con-
tinuous top-k problems over sliding window. (Sec-
tion 6)

– We extend Skype on top of Storm, a distributed
real-time processing environment. By introducing to
Storm a distribution layer which employs several ef-
ficient distribution mechanisms, the distributed ver-
sion can achieve high throughput with better scala-
bility. As far as we know, this is the first work which

extends top-k publish/subscribe system on top of
Storm. (Section 7)

– We conduct extensive experiments to verify the ef-
ficiency and effectiveness of both Skype and its dis-
tributed version DSkype. It turns out that Skype

usually achieves up to orders of magnitude improve-
ment compared to its competitors, while DSkype

achieves further improvement over Skype with bet-
ter scalability and large margin. (Section 8)

2 Related Work

2.1 Spatial-keyword Search

Spatial-keyword search has been widely studied in lit-
eratures. It aims to retrieve a set of geo-textual ob-
jects based on boolean matching (e.g., [45,23,19]) or
score function (e.g., [15,33,14,43]) by combining both
spatial index (e.g., R-Tree, Quadtree) and textual in-
dex (e.g., inverted file). A nice summary of spatial-
keyword query processing is available in [13]. Several
extensions based on spatial-keyword processing have
also been investigated, such as moving spatial-keyword
query [21], collective spatial-keyword query [22] and re-
verse spatial-keyword query [26]. Note that a spatial-
keyword search is an ad-hoc/snapshot query (i.e., user-
initiated model) while our problem focuses on continu-
ous query (i.e., server-initiated model).

2.2 Publish/Subscribe System

Users register their interest as long-running queries
in a publish/subscribe system, and streaming publi-
cations are delivered to relevant users whose interests
are satisfied. Nevertheless, most of the existing publish/
subscribe systems (e.g., [38,34,42,35]) do not consider
spatial information. Recently, spatial-keyword publish/
subscribe system has been studied in a line of work
(e.g., [25,11,37,24,12]). Among them, [25,11,37] study
the boolean matching problem while [24] studies the
similarity search problem, where each subscription has
a pre-given threshold. These work are inherently dif-
ferent from ours, and it is non-trivial to extend their
techniques to support top-k monitoring.

The CIQ index proposed by Chen et al. [12] is the
only close work that supports top-k spatial-keyword
publish/subscribe (shown in Figure 2). In CIQ, a
Quadtree is used to partition the whole space. Each
subscription is assigned to a number of covering cells,
forming a disjoint partition of the entire space. In Fig-
ure 2, we assume all the subscriptions have the same
cell covering, i.e., from c1 to c7. A textual bound (e.g.,
MinT) is precomputed for each subscription w.r.t. each

4 X. Wang et al.

w1: s1 s2 ... s7 s10

w2: s1 s3 ... s8

w3: s1 s2 ... s6 Inverted file for c7

Inverted file for c2

s1s5

s6

c1 c2

c4c3

c5 c6

c7

s2

s3

s4

s7s8s9

s10

s11

w1: s1 s2 ... s7 s10

w2: s1 s3 ... s8

w3: s1 s2 ... s6

(w1, w2, w3)
m1

Subscription s1 s2 ✄ ✄
s10 s11

MinT (w.r.t. c7) 0.5 0.4 ✄ ✄ 0.7 0.9

Subscription s1 s2 � �
s10 s11

MinT (w.r.t. c2) 0.6 0.6 � � 0.6 0.8

Fig. 2 Example of CIQ index

assigned cell, as shown in the tables where the tex-
tual bounds w.r.t. c2 and c7 are displayed. An inverted
file ordered by subscription id is built to organize the
subscriptions assigned to each cell. For a new message
(e.g., m1), CIQ traverses all the inverted files with cor-
responding cells penetrated by message location (e.g.,
c2) in DAAT paradigm, and finds all the subscriptions
with textual similarity higher than the precomputed
bound as candidates, which are then verified to get fi-
nal results. However, we notice that DAAT paradigm
employed in CIQ cannot integrate some advanced tech-
niques for threshold-based similarity search, given that
the nature of our problem is a threshold-based search
problem. Contrary to CIQ, our indexing structure is
designed for the TAAT paradigm, combined with ad-
vanced techniques for threshold-based pruning, thus
enabling us to exclude a significant number of sub-
scriptions. Moreover,CIQ indexes each subscription into
multiple cells, taking advantage of precomputed spatial
bound. However, the gain is limited since the number of
covering cells for each subscription cannot be too large;
otherwise, it would lead to extremely high memory cost.
Thus, we turn to an on-the-fly spatial bound computa-
tion strategy, where each subscription is assigned to a
single cell with finer spatial granularity. Finally, we re-
mark that CIQ integrates a time decay function rather
than a sliding window, which, in the worst case, may
overwhelm the limited memory.

2.3 Top-k Maintenance Over Sliding Window

One critical problem for top-k maintenance over slid-
ing window is that, when an old element (i.e., message
in this paper) expires, we have to recompute the top-
k results for the affected continuous queries (i.e., sub-
scriptions in this paper), which is cost-expensive if we
simply re-evaluate from scratch. On the flip side, it is
also infeasible to buffer all elements and their scores
for each individual query to avoid top-k re-evaluation.
Several techniques are proposed aiming to identify a
trade-off between the number of re-evaluations and the
buffer size. In [41], Yi et al. introduce a kmax approach.

Rather than maintain exact top-k results, they continu-
ously maintain top-k′ results where k′ is between k and
a parameter kmax. However, followed by observation
from Mouratidis et al. [29], kmax may contain redun-
dant elements due to the overlook of dominance rela-
tionship. Thus, Mouratidis et al. propose a k-skyband
based algorithm to remove redundancy. Since it is very
expensive to maintain the full k-skyband for each indi-
vidual query, they only keep elements with scores not
lower than the k-th highest score determined by the
most recent top-k re-evaluation. We observe that this
setting is rather ad-hoc and thus may result in unsatis-
factory performance in practice. Böhm et al. [7] utilize
a delay buffer to avoid inserting the newly-arriving ob-
jects with low scores into the k-skyband. However, since
each object has to probe query index twice during its
life time, their method is not suitable to our problem
given the large number of registered queries (i.e., sub-
scriptions). Pripuzic et al. [31] propose a probabilistic
k-skyband method to drop the data which is unlikely to
become top-k results in order to save space and improve
efficiency. However, their technique may discard some
top-k elements due to its probabilistic nature. In this
paper, we propose a novel cost-based k-skyband tech-
nique to carefully determine the size of k-skyband buffer
based on a cost model.

2.4 Distributed Spatial Query Processing

There are a bunch of work studying spatial query pro-
cessing by utilizing distributed system. Nishimura et
al. [30] extend HBase2 to support multi-dimensional in-
dex. Aji et al. [1] propose Hadoop-GIS, a distributed
data warehouse infrastructure built on top of Hadoop,
which provides functionality of spatial data analytics.
Later, Eldawy et al. [18] develop SpatailHadoop, a full-
fledged system which supports various spatial queries
by integrating spatial-awareness in each Hadoop layer.
Aly et al. present an adaptive mechanism on top of
Hadoop to partition large-scale spatial data for efficient
query processing [2]. Xie et al. [40] introduce a sys-
tem called Simba to provide efficient in-memory spa-
tial analytics by extending Spark SQL engine. All the
work above focus on some fundamental spatial queries,
such as range query and kNN query, which is inher-
ently different from our top-k spatial-keyword publish/
subscribe problem. A very relevant work, called Tor-

nado, which also supports spatial-keyword stream pro-
cessing on Storm, appears in [27]. Tornado is a general
spatial-keyword stream processing system to support
both snapshot and continuous queries. However, their
main focus is not on the index construction over sub-

2 Apache HBase project. https://hbase.apache.org/

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 5

scription queries, which nevertheless is the main contri-
bution of our paper. Besides, they cannot support the
top-k spatial-keyword subscription queries as ours.

On the other hand, many stream processing sys-
tems, such as Spark Streaming3, Samza4 and Storm,
have been developed to support efficient processing of
real-time data. Most of them are featured with open-
source, low-latency, distributed, scalable and fault-
tolerant characteristics. A nice comparison between dif-
ferent stream processing systems can be found in [32].
We choose Storm here mainly because of its simplic-
ity, efficiency, well-documented APIs and very active
community5. To the best of our knowledge, our work is
the first one to support top-k spatial-keyword publish/
subscribe in a distributed environment.

3 Preliminary

In this section, we formally present some concepts
which are used throughout this paper.

Definition 1 (Geo-textual Message) A geo-textual
message is defined as m = (ψ, ρ, t), where m.ψ is a
collection of keywords from a vocabulary V , m.ρ is a
point location, and m.t is the arrival time.

Definition 2 (Spatial-keyword Subscription) A
spatial-keyword subscription is denoted as s =
(ψ, ρ, k, α), where s.ψ is a set of keywords, s.ρ is a point
location, s.k is the number of messages that s is willing
to receive and s.α is the preference parameter used in
the score function.

To buffer the most recent data from geo-textual
stream, we adopt a count-based sliding window defined
as follows.

Definition 3 (Sliding Window) Given a stream of
geo-textual messages arriving in time order, the sliding
window W over the stream with size |W| consists of
most recent |W| geo-textual messages.

In the following of the paper, we abbreviate geo-
textual message and spatial-keyword subscription as
message (denoted as m) and subscription (denoted
as s) respectively if there is no ambiguity. We as-
sume that the keywords in vocabulary V , as well as
the keywords in subscription and message, are sorted
in increasing order of their term frequencies. Note
that sorting keywords in increasing order of frequency
is a widely-adopted heuristic to speed up similarity
search [10,5,39]. The i-th keyword in s is denoted as

3 Apache spark project. http://spark.apache.org/streaming/
4 Apache samza project. http://samza.apache.org/
5 https://github.com/apache/storm

Fig. 3 Framework of Skype

s.ψ[i], and we use s.ψ[i : j] to denote a subset of
s.ψ, i.e., ∪i≤k≤j{s.ψ[k]}. Particularly, s.ψ[i :] denotes
∪i≤k≤|s.ψ|{s.ψ[k]}. Message m follows the similar nota-
tions.
Score function. To measure the relevance between a
subscription s and a message m, we employ a score
function defined as follows:

Score(s,m) = s.α · SSim(s.ρ,m.ρ)

+ (1− s.α) · TSim(s.ψ,m.ψ)
(1)

where SSim(s.ρ,m.ρ) is the spatial proximity and
TSim(s.ψ,m.ψ) is the textual relevance between s and
m. Thus, a subscriber can receive messages which are
not only close to her location but also fulfil her inter-
est. Meanwhile, the parameter α can be adjusted by
subscribers to best satisfy their diverse preferences.

To compute spatial proximity, we utilize Euclidean
distance as SSim(s.ρ,m.ρ) = 1 − EDist(s.ρ,m.ρ)

MaxDist
, where

EDist(s.ρ,m.ρ) is the Euclidean distance between s and
m, and MaxDist is maximum distance in the space.

For textual similarity, we employ the well-
known cosine similarity [28] as TSim(s.ψ,m.ψ) =
∑

w∈s.ψ∩m.ψ wt(s.w) · wt(m.w), where wt(s.w) and
wt(m.w) are tf-idf weights of keyword w in s and m
respectively. Note that the weighting vectors of both s
andm are normalized to unit length. Also, same as [12],
to guarantee the top-k results are textual-relevant, a
message must contain at least one common keyword
with a subscription to become its top-k results.
Problem statement. Given a massive number of
spatial-keyword subscriptions and a geo-textual stream,
we aim to continuously monitor top-k results for all the
subscriptions against the stream over a sliding window
W in real time.

4 Framework

Figure 3 shows the framework of Skype (Top-k Spatial-
keyword Publish/Subscribe). We assume our system
already has some registered subscriptions. An arriving

http://spark.apache.org/streaming/

6 X. Wang et al.

message will be processed by message dissemination
module, where a subscription index is built to find all
the affected subscriptions and update their top-k re-
sults. An expired message will be processed by top-
k re-evaluation module. Specifically, it will check
against a result buffer, which maintains the top-k re-
sults (possibly including some non-top-k results) of all
the subscriptions. For the subscriptions that cannot be
refilled through result buffer, their top-k results will be
re-evaluated from scratch against a message index con-
taining all the messages over the sliding window. Note
that the message index can be implemented with any
existing spatial-keyword index, such as IR-Tree [15] and
S2I [33]. Skype can also support subscription update ef-
ficiently. A new subscription will be inserted into sub-
scription index, with its top-k results being initialized
against message index, while an unregistered subscrip-
tion will be deleted from both subscription index and
result buffer. Note that the subscription index and mes-
sage index serve different purposes and cannot be triv-
ially combined together.

5 Message Dissemination

In this section, we introduce a novel subscription index,
which groups similar subscriptions, to support real-time
dissemination against message stream. Specifically, two
key techniques, i.e., individual pruning and group prun-
ing, are proposed in Section 5.1 and Section 5.2 re-
spectively, followed by the detailed indexing structure
in Section 5.3. Finally, we introduce dissemination al-
gorithm in Section 5.4 and index maintenance in Sec-
tion 5.5.

5.1 Individual Pruning Technique

For each incoming message m, the key challenge is to
determine all the subscriptions whose top-k results are
affected. Specifically, we denote the k-th highest score
of a subscription s as kScore(s). Then the top-k results
of s need to be updated if kScore(s) ≤ Score(s,m). In
this section, we propose a novel location-aware prefix
filtering technique to skip an individual subscription
efficiently.

5.1.1 Location-aware Prefix Filtering

For ease of exposition, we denote a spatial similarity
upper bound between a subscription s and a message
m as SSimUB(s.ρ,m.ρ), which will be discussed in de-
tail in Section 5.1.2. Based on Equation 1, we can derive

a textual similarity threshold for pruning purpose ac-
cordingly:

λT (s.ψ,m.ψ) =
kScore(s)

1− s.α
−

s.α

1− s.α
·SSimUB(s.ρ,m.ρ)

(2)

Then the following lemma claims that if the textual
similarity between s and m is less than λT (s.ψ,m.ψ),
we can safely skip s.

Lemma 1 A message m cannot affect top-k results of
a subscription s if TSim(s.ψ,m.ψ) < λT (s.ψ,m.ψ).

Proof It is immediate from Equation 1 and Equation 2.

To utilize Lemma 1, we employ prefix filtering tech-
nique, which is widely adopted in textual similarity
join problems (e.g., [10,5,39]). Prefix filtering is based
on the fact that TSim is essentially a vector product;
therefore, we can determine the similarity upper bound
between two objects by only comparing their prefixes.
Before we introduce prefix filtering technique, we first
introduce a threshold value for each keyword in s:

wtsum(s.ψ[i]) =
∑

i≤j≤|s.ψ|

wt(s.ψ[j]) (3)

Then we define a location-aware prefix as follows.

Definition 4 (Location-aware Prefix) Given a sub-
scription s, a messagem and a textual similarity thresh-
old λT (s.ψ,m.ψ), we use pref(s|m) = s.ψ[1 : p] to
denote the location-aware prefix of s w.r.t. m, where
p = argmini {wtsum(s.ψ[i + 1]) < λT (s.ψ,m.ψ)}.

The following lemma claims that location-aware
prefix is sufficient to decide whether a message can be
top-k result of a subscription.

Lemma 2 Given a subscription s and a message m,
pref(s|m)∩m.ψ = ∅ is sufficient to skip s regarding m.

Proof Since pref(s|m) ∩ m.ψ = ∅, TSim(s.ψ,m.ψ) ≤
∑

p+1≤i≤|s.ψ| wt(s.ψ[i]) · 1.0 < λT (s.ψ,m.ψ), where p is
defined in Definition 4 and 1.0 is the maximum weight
for keyword in m. Then the lemma holds immediately
based on Lemma 1.

Example 2 Figure 4 shows an example of location-
aware prefix, with 3 registered subscriptions and 3 in-
coming messages. The underlined value to the right of
each keyword corresponds to its weight, and we do not
normalize the keyword weight for simplicity. Assum-
ing SSimUB(s1.ρ,m1.ρ) = 0.98, then λT (s1.ψ,m1.ψ) =
0.7

1−0.6 − 0.6
1−0.6 · 0.98 = 0.28. Thus, pref(s1|m1) =

{w1, w2, w3}. Since m1.ψ∩pref(s1|m1) = ∅, we can skip
s1 w.r.t. m1.

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 7

s1

s3

c1 c2

c4c3

c5 c6

c7

s2

m2
mindistout=0.3

MaxDist=1.6

m1

m3

Subscription Keywords ✂ kScore

s1 w1 0.4, w2 0.3, w3 0.2 , w4 0.1 0.6 0.7

s2 w1 0.7, w2 0.5, w3 0.2 0.5 0.6

s3 w1 0.5, w2 0.4, w3 0.3 , w4 0.1 0.7 0.67

Message Keywords

m1 w4 1.0

m2 w2 0.4, w3 0.2 , w4 0.1

m3 w2 0.7, w3 0.3 , w4 0.2
mindistin=0.25

Fig. 4 Example of location-aware prefix

It is noticed that different from conventional prefix
technique (e.g., [5,39]) where only the prefix of a data
entry needs to be indexed, our location-aware prefix is
dependent on the spatial location of messages, and dif-
ferent locations may lead to different prefixes. Thus,
it is impossible to pre-compute and index the prefix
of subscriptions. To address this issue, we utilize the
threshold value wtsum for each keyword in s.ψ to in-
dicate whether this keyword should occur in the prefix
regarding a message m, which is stated formally in the
following lemma.

Lemma 3 Given a subscription s, a message m and
λT (s.ψ,m.ψ), if m.ψ does not contain any keyword
s.w ∈ s.ψ that satisfies wtsum(s.w) ≥ λT (s.ψ,m.ψ),
we can safely skip s regarding m.

Proof It is immediate from Definition 4 and Lemma 2.

In this way, we can dynamically determine the
location-aware prefix of a subscription w.r.t. an arriving
message. Also, since wtsum(s.w) is irrelevant to incom-
ing messages, it can be materialized for each subscrip-
tion.

Example 3 Following the same example in Figure 4,
since wtsum(s1.w4) = 0.1 < λT (s1.ψ,m1.ψ) = 0.28,
and w4 is the only keyword in m1, Lemma 3 holds and
we can skip s1 w.r.t. m1.

Max-weight refinement.We notice that for a specific
message m, we can compute a better location-aware
prefix for s by considering the maximum weight for the
keywords in m. We first define maxwt(m.ψ[i]) as:

maxwt(m.ψ[i]) = max
i≤j≤|m.ψ|

wt(m.ψ[j]) (4)

Then we define a refined location-aware prefix :

Definition 5 (Refined Location-aware Prefix)
Given a subscription s, a message m and λT (s.ψ,m.ψ),
we use pref+(s|m) = s.ψ[1 : p] to denote the
refined location-aware prefix of s w.r.t. m, where
p = argmini{maxwt(m.ψ[j]) × wtsum(s.ψ[i + 1]) <
λT (s.ψ,m.ψ)} with m.ψ[j] = s.ψ[i+ 1].

The following theorem claims that pref+(s|m) is suf-
ficient to decide whether a message can be top-k result
of a subscription.

Theorem 1 Given a subscription s and a message m,
pref+(s|m) ∩m.ψ = ∅ is sufficient to skip s regarding
m.

Proof Since pref+(s|m) ∩ m.ψ = ∅, TSim(s.ψ,m.ψ) ≤
0 + wtsum(s.ψ[p + 1]) · maxwt(m.ψ[j]) < λT (s.ψ,m.ψ)
holds, where p is defined in Definition 5 and m.ψ[j] =
s.ψ[p+ 1]. Then the theorem holds immediately based
on Lemma 1.

Example 4 Assuming SSimUB(s1.ρ,m2.ρ) = 0.99 in
Figure 4, then λT (s1.ψ,m2.ψ) = 0.26. Based on
Lemma 3, pref(s1|m2) = {w1, w2, w3}, and thus s1
cannot be skipped w.r.t. m2. However, if we consider
maxwt, then pref+(s1|m2) = {w1}. Thus, s1 can be
skipped w.r.t. m2.

5.1.2 Spatial Bound Estimation

In this section, we discuss the computation of
SSimUB(s.ρ,m.ρ) between a subscription s and a mes-
sage m in order to get a better threshold λT (s.ψ,m.ψ)
for efficient location-aware prefix filtering. To this end,
we employ a spatial index to group subscriptions with
similar locations, such that the spatial upper bound
for a group of subscriptions can be computed simul-
taneously. Due to the easy implementation and well-
adaptiveness to skewed spatial distributions, we choose
Quadtree to index subscriptions. Specifically, each sub-
scription s is assigned into a leaf cell c with range c.r
based on its location s.ρ. Then the following two types
of spatial bounds can be defined and utilized.

Definition 6 (Inner Spatial Bound) Given a sub-
scription s and its residing cell c, inner spatial bound,
denoted as SSimUBin(s.ρ, c.r) is computed as 1.0 −
mindist(s.ρ,c.r)

MaxDist
, where mindist(s.ρ, c.r) is the mindist

from s to the nearest boundary of cell range c.r.

It is obvious that for any s ∈ c and m /∈ c, we
have SSimUBin(s.ρ, c.r) ≥ SSim(s.ρ,m.ρ). An example
is shown in Figure 4. Since the mindist from s2 to c1
is 0.25, SSimUBin(s2.ρ, c1.r) = 1 − 0.25

1.6 = 0.84 if we
assume the MaxDist in the space is 1.6.

Definition 7 (Outer Spatial Bound) Given a mes-
sage m and an outer cell c, outer spatial bound, de-
noted as SSimUBout(m.ρ, c.r) is computed as 1.0 −
mindist(m.ρ,c.r)

MaxDist
, where mindist(m.ρ, c.r) is the mindist

from m to c.

For any s ∈ c and m /∈ c, we have
SSimUBout(m.ρ, c.r) ≥ SSim(s.ρ,m.ρ). An example is
also shown in Figure 4. The mindist from m2 to c1 is
0.3, and thus SSimUBout(m2.ρ, c1.r) = 1− 0.3

1.6 = 0.81.

8 X. Wang et al.

Definition 8 (Spatial Upper Bound) Given a sub-
scription s inside a cell c and a messagem outside c, the
spatial upper bound, denoted as SSimUB(s.ρ,m.ρ) is

computed as 1.0− mindist(s.ρ,c.r)+mindist(m.ρ,c.r)
MaxDist

, where
mindist(s.ρ, c.r) and mindist(m.ρ, c.r) are the same as
Definition 6 and 7.

Following the example in Figure 4, by combin-
ing both inner and outer distance, we can get a
tighter spatial upper bound between s2 and m2 as
SSimUB(s2.ρ,m2.ρ) = 1− 0.25+0.3

1.6 = 0.65.
Note that the inner spatial bound can be pre-

computed and materialized, while the outer spatial
bound has to be computed on-the-fly as it is relevant
to the location of an arriving message. However, the
computation cost of SSimUBout(m.ρ, c.r) is not expen-
sive since we only need to compute this value against
each leaf cell. Finally, we remark that when s and m
are within the same cell, both SSimUBin(s.ρ, c.r) and
SSimUBout(m.ρ, c.r) are always 1.0.

Example 5 An example is shown in Figure 4. If
we assume the SSimUB(s2.ρ,m2.ρ) = 1.0, we have
λT (s2,m2) = 0.6

1−0.5 − 0.5
1−0.5 · 1.0 = 0.20, and

pref+(s2|m2) = {w1, w2}. Thus, s2 cannot be skipped
w.r.t. m2. However, if we utilize the inner spatial
bound and outer spatial bound together, we have
SSimUB(s2.ρ,m2.ρ) = 1− 0.25+0.3

1.6 = 0.65, λT (s2,m2) =
0.55, and pref+(s2|m2) = {w1}. In this case, we can
safely skip s2 w.r.t. m2.

5.1.3 Bound Estimation for Unseen Keywords

Since we employ TAAT paradigm to visit inverted file,
we can estimate a textual upper bound for unseen key-
words. If this upper bound plus the textual similarity
that has already been computed is still less than the
required threshold, we can safely skip s. The textual
upper bound between the unseen keywords of s and m
can be computed as follows:

TSimUB(s.ψ[i :],m.ψ[j :]) = min
{

wtsum(s.ψ[i])

×maxwt(m.ψ[j]),wtsum(m.ψ[j])×maxwt(s.ψ[i])
}

(5)

where i and j are starting positions of unseen keywords.
Then the following theorem claims we can skip a sub-
scription by utilizing the textual upper bound.

Theorem 2 Given a subscription s, a message m and
their textual similarity threshold λT (s.ψ,m.ψ), assum-
ing we have already computed the partial similarity be-
tween s.ψ[1 : i] and m.ψ[1 : j], denoted as TSim(s.ψ[1 :
i],m.ψ[1 : j]), then TSim(s.ψ[1 : i],m.ψ[1 : j]) +
TSimUB(s.ψ[i + 1 :],m.ψ[j + 1 :]) < λT (s.ψ,m.ψ) is
sufficient to skip s.

Proof As TSim(s.ψ,m.ψ) ≤ TSim(s.ψ[1 : i],m.ψ[1 :
j]) + TSimUB(s.ψ[i + 1 :],m.ψ[j + 1 :]), we have
TSim(s.ψ,m.ψ) < λT (s.ψ,m.ψ). The theorem holds
immediately from Lemma 1.

Example 6 In Figure 4, consider that we are currently
disseminating m3. Based on the dissemination algo-
rithm to be discussed later in Section 5.4, we need
to traverse the inverted lists in cell c3 (where s3 re-
sides) for all the keywords in m3.ψ one by one. We first
check the inverted list of w2 since w2 is the 1st keyword
of m3. Assuming λT (s3.ψ,m3.ψ) = 0.48, we cannot
skip s3 since w2 ∈ pref+(s3|m3) = {w1, w2}. However,
since w2 is the 2nd keyword in s3.ψ, we can compute
TSim(s3.ψ[1 : 2],m3.ψ[1 : 1]) = 0.4 · 0.7 = 0.28, and
TSimUB(s3.ψ[3 :],m3.ψ[2 :]) = min(0.4 · 0.3, 0.5 · 0.3) =
0.12. Because 0.28 + 0.12 < λT (s3.ψ,m3.ψ) = 0.48, we
can immediately skip s3.

5.2 Group Pruning Technique

After applying individual pruning technique, many sub-
scriptions can be skipped without the need to compute
their exact similarity w.r.t. a message. To further en-
hance the performance, we propose a novelGroup Prun-
ing Technique such that we can skip a group of sub-
scriptions without the need to visit them individually.
To begin with, we first define subscription-dependent
prefix for a message.

Definition 9 (Refined Sub-dependent Prefix)
Given a message m, a subscription s and λT (s.ψ,m.ψ),
we use pref+(m|s) = m.ψ[1 : p] to denote the re-
fined subscription-dependent prefix ofm w.r.t. s, where
p = argmini{maxwt(s.ψ[j]) × wtsum(m.ψ[i + 1]) <
λT (s.ψ,m.ψ)} with s.ψ[j] = m.ψ[i+ 1].

The following lemma claims the refined subscription-
dependent prefix is sufficient to determine whether a
message could be top-k result of a subscription.

Lemma 4 Given a subscription s and a message m,
pref+(m|s)∩s.ψ = ∅ is sufficient to skip s regarding m.

Proof Since pref+(m|s) ∩ s.ψ = ∅, TSim(s.ψ,m.ψ) ≤
0 + wtsum(m.ψ[p+ 1]) ·maxwt(s.ψ[j]) < λT (s.ψ,m.ψ),
where p is defined in Definition 9 and s.ψ[j] =
m.ψ[p + 1]. Then the lemma holds immediately based
on Lemma 1.

Let us denote the posting list of keyword w in cell c
as plist(c, w), which contains all the subscriptions hav-
ing w and residing in c. Then based on Lemma 4, for a
subscription s in plist(c, w), if s.w /∈ pref+(m|s), we can
safely skip s. Further, if this holds for a group of sub-
scriptions on plist(c, w), we can safely skip the whole
group as follows.

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 9

Lemma 5 Given a message m, a keyword w ∈ m.ψ, a
posting list plist(c, w) and a group of subscriptions G in-
side plist(c, w), maxs∈G {maxwt(s.w)} · wtsum(m.w) <
mins∈G {λT (s.ψ,m.ψ)} is sufficient to skip the whole
group G.

Proof For each s ∈ G, maxwt(s.w) · wtsum(m.w) <
λT (s.ψ,m.ψ) holds which indicates s.w /∈ pref+(m|s)
according to Definition 9. Thus, s can be skipped based
on Lemma 4, and therefore G can be skipped immedi-
ately.

The left side of the inequality in Lemma 5 can
be computed in O(1) time since we can materialize
maxs∈G {maxwt(s.w)} for each group. However, for the
right side, it would be quite inefficient if we compute it
on the fly for each new message. To avoid this, we pro-
pose a lower bound for mins∈G {λT (s.ψ,m.ψ)} which
can be computed in constant time. In the following,
we first present the subscription grouping strategy and
then introduce the details of the lower bound deduction.

5.2.1 α-Partition Scheme

Intuitively, we should group subscriptions with
similar λT (s.ψ,m.ψ) such that we can get a
tighter textual threshold for the group. We first
let SSimUB(s.ρ,m.ρ) = SSimUBout(m.ρ, c.r). Note
that we compute SSimUB(s.ρ,m.ρ) by utiliz-
ing SSimUBout(m.ρ, c.r) only in order to make
SSimUB(s.ρ,m.ρ) independent of a specific subscrip-
tion. Therefore, it is observed from Equation 2 that,
for the computation of λT (s.ψ,m.ψ), only

kScore(s)
1−s.α and

s.α
1−s.α are dependent on s while SSimUB(s.ρ,m.ρ) is

irrelevant to s. For simplicity, we denote kScore(s)
1−s.α as

kScore∗(s) and s.α
1−s.α as s.α∗ respectively. Then, we

partition subscriptions into groups based on their α∗

values, such that the subscriptions inside a group have
similar α∗ values. We employ a quantile-based method
to partition the domain of α∗ to ensure that each
group has similar number of subscriptions. Then, we
can skip the whole group G as stated in the following
theorem.

Theorem 3 Given a group G generated by α-
partition in a posting list plist(c, w), we denote
mins∈G {kScore∗(s)} as kScore∗(G) and maxs∈G {s.α∗}
as G.α∗. then maxs∈G {maxwt(s.w)} · wtsum(m.w) <
kScore∗(G)−G.α∗ · SSimUBout(m.ρ, c.r) is sufficient to
skip the whole group G.

Proof It is obvious that for any subscription s in
G, we have maxs′∈G {maxwt(s′.w)} · wtsum(m.w) <
kScore∗(G) − G.α∗ · SSimUB(c.r,m.ρ) ≤ kScore∗(s) −
s.α∗ · SSimUB(c.r,m.ρ) = λT (s.ψ,m.ψ). Thus,
we have maxs′∈G {maxwt(s′.w)} · wtsum(m.w) <

mins′∈G {λT (s′.ψ,m.ψ)}. Combined with Lemma 5,
the theorem holds immediately.

Time complexity. The condition checking in Theo-
rem 3 takes O(1) time, since we can precompute the
values of kScore∗(G) and G.α∗.

5.2.2 Early Termination Within Group

When a group G cannot be skipped given a message,
we have to check each subscription in it. To avoid this,
we propose an early termination technique to early stop
within a group when the group cannot be skipped to-
tally. To enable early termination, for each group G
in plist(c, w), we sort the subscriptions in G by their
kScore∗ values increasingly. For each subscription s in G,
we denote the subscriptions with kScore∗ not less than
kScore∗(s) as G[s] = {s′ ∈ G|kScore∗(s′) ≥ kScore∗(s)},
and maintain two statistics maxwt(G[s]) and G[s].α∗

w.r.t. keyword w as follows:

maxwt(G[s]) = max
s′∈G[s]

{maxwt(s′.w)} (6)

G[s].α∗ = max
s′∈G[s]

{s′.α∗} (7)

Then we can employ early termination as follows.

Theorem 4 Given a group G inside a posting list
plist(c, w), and assuming ŝ is the subscription with
smallest position in G such that the following inequality
holds: maxwt(G[ŝ])·wtsum(m.w) < kScore∗(ŝ)−G[ŝ].α∗ ·
SSimUBout(m.ρ, c.r), then there is no need to check the
subscriptions after ŝ (including ŝ itself).

Proof For any subscription s′ after ŝ, the follow-
ing inequalities hold: kScore∗(ŝ) ≤ kScore∗(s′),
maxwt(G[ŝ]) ≥ maxwt(G[s′]), G[ŝ].α∗ ≥ G[s′].α∗.
Thus, maxwt(s′.w) · wtsum(m.w) ≤ maxwt(G[s′]) ·
wtsum(m.w) ≤ maxwt(G[ŝ]) · wtsum(m.w) <
kScore∗(ŝ) − G[ŝ].α∗ · SSimUBout(m.ρ, c.r) ≤
kScore∗(s′) − G[s′].α∗ · SSimUBout(m.ρ, c.r) ≤
kScore∗(s′) − s′.α∗ · SSimUBout(m.ρ, c.r) =
λT (s

′.ψ,m.ψ). Based on Definition 9, we know
that s′.w /∈ pref+(m|s′). Thus s′ can be skipped based
on Lemma 4. Thus, the theorem holds immediately.

Time complexity. To speed-up the real-time process-
ing, we precompute maxwt(G[s]) and G[s].α∗ and store
them with each subscription in the group G. The condi-
tion checking in Theorem 4 can be efficiently computed
in O(log|G|) time with a binary search method.
5.2.3 Cell-based Pruning

Besides the above group pruning technique, we notice
that for some cells which are far away from the location
of an arriving message, we can safely skip the whole cell.

10 X. Wang et al.

s1s5

s6

c1 c2

c4c3

c5 c6

c7

Inverted file for c7
Quadtree

Subscription Table StatisticsStatistics

s2

s3

s4

s7

s8

s9
s10

s11

S3, S1w1 S2, S4

S3, S1 S2, S4w2

S3w3 S2

Group maxwt ✂�

g1 s3 0.6, s1 0.4 s3 0.42, s1 0.42

g2 ✄ ✄

✄ ✄

g5 ✄ ✄

g6 ✄ ✄

Subscription Keywords ✁

s1 w1 0.4, w2 0.2 0.3

s2 w1 0.7, w2 0.3 , w3 0.2 0.8

s3 w1 0.6, w2 0.4 , w3 0.2 0.3

☎ ☎ ☎

s11 w2 0.5 0.5

Subscription maxwt wtsum kScore

s1 w1 0.4, w2 0.2 w1 0.6, w2 0.2 0.84

s2 ✆ ✆ 0.72

s3 ✆ ✆ 0.61

✆ ✆ ✆ ✆

s11 ✆ ✆ 0.67

Fig. 5 Subscription index

Specifically, for each subscription s within a cell c, we
can derive a spatial similarity threshold as follows:

λS(s.ρ) =
kScore(s)

s.α
−

1− s.α

s.α
(8)

where we assume the textual similarity achieves the
largest value, i.e., 1. Then we can reach the following
lemma.

Lemma 6 Given a cell c, if mins∈c λS(s.ρ) >
SSimUBout(m.ρ, c.r), we can safely skip all the subscrip-
tions in cell c.

Proof For ∀s ∈ c, we have λS(s.ρ) =
kScore(s)
s.α

− 1−s.α
s.α

>
SSimUBout(m.ρ, c.r). Thus, kScore(s) > (1−s.α)+s.α ·
SSimUBout(m.ρ, c.r) >= Score(s,m). Thus, m cannot
be top-k results of any s in c.

5.3 Subscription Index

Relying on all the techniques discussed above, our sub-
scription index is essentially a Quadtree structure in-
tegrated with inverted file in each leaf cell, as shown
in Figure 5. For each registered subscription, we store
its detailed information and relevant statistics in a sub-
scription table, and insert it into a leaf cell of Quadtree
based on its spatial location. Note that in Quadtree, we
only store the subscription id referring to its detailed
information in subscription table. Within each leaf cell,
an inverted file is built upon all the subscriptions inside
the cell. Then each posting list in inverted file is further
partitioned into groups based on the subscription pref-
erence α∗ to enable group pruning. Each group is also
associated with some statistics mentioned above. Fi-
nally, to facilitate early termination, the subscriptions
within each group are ordered based on their kScore∗.

5.4 Dissemination Algorithm

Algorithm 1 shows our message dissemination algo-
rithm. We follow a filtering-and-verification paradigm,
where we first generate a set of candidate subscriptions
(Lines 1-1), and then compute the exact scores to deter-
mine the truly affected ones, with the updated results
being disseminated accordingly (Line 1). Specifically,

we first initialize an empty map R to store candidates
with their scores (Line 1). Then the maxwt and wtsum

values for all the keywords in the arriving message m
are computed for later use (Line 1). For each leaf cell c
surviving from cell pruning (Line 1), we first compute
SSimUBout(m.ρ, c.r) and then traverse the inverted file
in cell c following a TAAT manner. For each group G
encountered in plist(c, w) (Line 1), we skip G if group
pruning can be applied (Line 1); otherwise, we identify
ŝ for early termination based on Theorem 4 (Line 1
and Line 1). For each surviving subscription s, we em-
ploy location-aware prefix filtering (Line 1) and bound
estimation for unseen keywords (Line 1) to skip it as
early as possible. For the surviving subscriptions, we
store the accumulated textual similarity so far w.r.t. m
in R, while for the skipped subscriptions, we set R[s]
to negative infinity (Line 1). Finally, for each subscrip-
tion in R with R[s] > 0, we verify it and update its
top-k results if needed (Line 1). Note that when verify-
ing a candidate s, we only need to compute the exact
spatial similarity to get the final score because the tex-
tual similarity, i.e., R[s], has already been computed.
The statistics relevant to pruning techniques are also
updated in Line 1.

5.5 Index Maintenance

Our indexing structure can also support subscription
update efficiently. For a new subscription s, we first
find the leaf cell containing its location, and then in-
sert it into the inverted file with O(|s.ψ| · log |G|) cost.
Note that the statistics mentioned above need to be
updated accordingly. For an expired subscription, we
simply delete it from index and update the statistics if
necessary.

6 Top-k Re-evaluation

In this section, we present the details of top-k re-
evaluation module. We first introduce some background
knowledge for k-skyband in Section 6.1. Then we
present our cost-based skyband technique in detail in
Section 6.2. In the following of this paper, we denote

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 11

Algorithm 1: MessageDissemination(m)

Input : m : a new incoming message
R := ∅ /* A candidate map */;1

for 1 ≤ i ≤ |m.ψ| do2

Compute maxwt(m.ψ[i]) and wtsum(m.ψ[i]);3

for each leaf cell c in the Quadtree do4

if c is skipped by Lemma 6 then /* Cell pruning */5

Continue;6

Compute outer spatial bound SSimUBout(m.ρ, c.r);7

for 1 ≤ i ≤ |m.ψ| do8

w := m.ψ[i] ;9

for each group G in plist(c,w) do10

if maxs∈G {maxwt(s.w)} · wtsum(m.w) <11

kScore∗(G)− G.α∗ · SSimUBout(m.ρ, c.r)
then /* Group pruning based on

Theorem 3 */

Continue;12

Identify ŝ based on Theorem 4 ;13

for each subscription s in group G do14

if s == ŝ then /* Early termination15

based on Theorem 4 */

Break;16

if s ∈ R && R[s] == −∞ then17

Continue;18

Compute λT (s.ψ,m.ψ) based on both19

inner and outer spatial bounds;
if20

maxwt(m.w)·wtsum(s.w) < λT (s.ψ,m.ψ)
then /* Theorem 1 */

Continue;21

if s ∈ R then22

R[s]+ := wt(s.w) · wt(m.w);23

else24

R := R∪ s;25

R[s] := wt(s.w) · wt(m.w);

pos := the position of keyword w in26

s.ψ;
if R[s] + TSimUB(s.ψ[pos+ 1 :27

],m.ψ[i+ 1 :]) < λT (s.ψ,m.ψ) then

/* Theorem 2 */

R[s] := −∞;28

VerifyAndUpdate(R) and disseminate updated results to29

corresponding subscriptions;

the k-skyband buffer (either fully or partially) of a sub-
scription s as s.A for simplicity, and the exact top-k
results are denoted as s.Ak. Meanwhile, s.k is denoted
as k if it is clear from context.

6.1 K-Skyband

The idea of utilizing k-skyband to reduce the number
of re-evaluations for top-k queries over a sliding win-
dow is first proposed in [29]. In particular, for a given
subscription s, only the messages in its corresponding k-
skyband can appear in its top-k results over the sliding
window, thus being maintained. Following are formal
definitions of dominance and k-skyband.

Algorithm 2: TopkRe-evaluation(m)

Input : m : an expired message
for each subscription s whose k-skyband buffer contains m1

do

Delete m from s.A;2

if |s.A| < k then3

Compute the best s.θ based on our cost model;4

Retrieve5

B := {m|m ∈ W && Score(s,m) ≥ s.θ};
s.A := k-skyband of B;6

Extract s.Ak from s.A;7

Definition 10 (Dominance) A message m1 domi-
nates another messagem2 w.r.t. a subscription s if both
Score(s,m1) ≥ Score(s,m2) and m1.t > m2.t hold.

Definition 11 (k-skyband) The k-skyband of a sub-
scription s, denoted as s.A, contains a set of messages
which are dominated by less than k other messages.

Instead of keeping k-skyband over all the messages in
the sliding window, which is cost-prohibitive, Moura-
tidis et al. [29] maintain a partial k-skyband. Specifi-
cally, they only maintain the messages with score not
lower than a threshold s.θ, where s.θ is the kScore(s)
after the most recent top-k re-evaluation for s and re-
mains unchanged until next re-evaluation is triggered.
However, as our experiments suggest, the method in [29]
may result in expensive computational cost due to the
improper selection of s.θ.

To alleviate the above problem, we propose a novel
cost-based k-skyband technique, which judiciously se-
lects a best threshold s.θ for the k-skyband mainte-
nance of each subscription. To start with, we present an
overview of our top-k re-evaluation algorithm in Algo-
rithm 2. For each subscription s containing the expired
messagem, if the size of s.A after deletingm is less than
k, we need to re-evaluate its top-k results from scratch.
Specifically, we first compute a proper threshold s.θ
based on our cost model (Line 2), and then re-compute
k-skyband buffer s.A based on B, which contains all the
messages with score at least s.θ (Line 2 and Line 2) 6.
Note that B can be computed by utilizing message in-
dex. Finally, we extract top-k results from s.A (Line 2).
The key challenge here is to estimate a best threshold
s.θ, which will be discussed in the following in detail.
We remark that we use the term re-evaluation to re-
fer in particular to the top-k re-computation against
message index.

6.2 Cost-based K-Skyband

The general idea of our cost-based k-skyband model is
to select a best threshold s.θ for each subscription such

6 The same technique in [29] is used to compute k-skyband.

12 X. Wang et al.

that the overall cost defined in the cost model can be
minimized. The following theorem guarantees that, as
long as we maintain a partial k-skyband over all the
messages with score not lower than s.θ, we can extract
top-k results from partial k-skyband safely when some
message expires.

Theorem 5 Given a subscription s, let kScorelast(s)
be the kScore(s) after the most recent top-k re-
evaluation for s. We always have s.Ak ⊆ s.A if the
following conditions hold: (1) |s.A| ≥ k; (2) s.A is a
partial k-skyband which is built over all the messages
with score at least s.θ in the sliding window, where
0 ≤ s.θ ≤ kScorelast(s).

Proof We prove it by contradiction. Assuming there
exists a message m ∈ s.Ak while m /∈ s.A, then we
discuss two possible cases: (1) Score(s,m) ≥ s.θ; (2)
Score(s,m) < s.θ. For the first case, since m /∈ s.A,
m must be dominated by more than k messages in
s.A, which indicates it cannot be top-k results, i.e.,
m /∈ s.Ak. For the second case, at least k messages in
s.A must have a higher score than m because |s.A| ≥ k
and all the messages in s.A have score at least s.θ. Thus,
m still cannot be top-k results. Thus, the original as-
sumption does not hold, which immediately indicates
s.Ak ⊆ s.A.

Thus, based on Theorem 5, we can safely extract
top-k results from k-skyband buffer s.A when |s.A| ≥ k;
when |s.A| < k, we have to re-evaluate from message
index.

Our cost-based k-skyband model, based on Theo-
rem 5, aims to find the best s.θ such that the overall
cost can be minimized for each subscription. We mainly
consider two costs. The first one is k-skyband mainte-
nance cost, denoted as Csm(s), which is triggered upon
message arrival and expiration. The second one is top-k
re-evaluation cost, denoted as Cre(s), which is triggered
when some message expires and the top-k results can no
longer be retrieved from k-skyband buffer. We aim to
estimate the expected overall cost w.r.t. each message
update, i.e., message arrival and message expiration,
each of which we assume occurs with probability 1

2 as
the window slides. To simplify the presentation, we de-
note as prob(s.θ) the probability that the score between
a random message and a subscription s is at least s.θ.
We may immediately derive prob(s.θ) for a given s.θ
from historical data, assuming the score follows pre-
vious distribution. The details of these two costs are
presented in the following respectively.

6.2.1 K-Skyband Maintenance Cost

The maintenance of k-skyband is triggered when the
following two types of updates happen, both with prob-

ability 1
2 · prob(s.θ), where 1

2 is the probability of mes-
sage arrival or message expiration due to the count-
based sliding window, and prob(s.θ) is the probability
that the score between a random message and s is at
least s.θ. Please note that if the independence assump-
tion does not hold for messages, the above probabilities
cannot be estimated accurately, and we may resort to
utilizing historical data for the estimation.

The first type of update is triggered when a message
m with score at least s.θ arrives. Apart from the inser-
tion of m into s.A, the dominance counters of all the
messages in s.A with score not higher than Score(s,m)
will increase by 1, and the messages with dominance
counter equal to k will be evicted. Since we imple-
ment our k-skyband buffer with a linked list sorted by
Score(s,m). The above operations can be processed in
O(|s.A|) time with a linear scan. The next challenge is
to estimate |s.A|. Based on the independence assump-
tion between score dimension and time dimension, the
expected number, i.e., |s.A|, of messages in the partial

k-skyband is k · ln(|W|·prob(s.θ)
k

) [44], where |W| is the
size of sliding window. Please note that if the indepen-
dence assumption does not hold, the worst case space
complexity will be |W| · prob(s.θ).

The second type of update occurs when an old mes-
sagem among the k-skyband buffer of s expires. In this
case, we only need to delete m from s.A in O (|s.A|)
time. Note that m does not dominate any remaining
messages and therefore the dominance counters of the
remaining messages are not affected. Finally, we get the
total cost of k-skyband maintenance as follows:

Csm(s) =
1

2
· prob(s.θ) · |s.A|+

1

2
· prob(s.θ) · |s.A|

= prob(s.θ) · k · ln(
|W| · prob(s.θ)

k
) (9)

6.2.2 Top-k Re-evaluation Cost

The top-k re-evaluation cost can be formalized as:

Cre(s) = Ctopk(s) ·
1

Z(s)
(10)

where Ctopk(s) is the average top-k computation cost
over message index for subscription s, and Z(s) is the
expected number of message updates that is required
to trigger top-k re-evaluation, i.e., leading to |s.A| < k.
The value of Ctopk(s) can be estimated by the average of
previous top-k computation cost against message index.
The remaining issue is how to estimate Z(s), which is
non-trivial.

To solve this problem, we model the streaming up-
dating process as a simple random walk. A random walk
is a stochastic sequence RWn, with RW0 being the
starting position, defined by RWn =

∑n

i=1Xi where

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 13

Xi are independent and identically distributed ran-
dom variables (i.e., i.i.d.). The random walk is sim-
ple if prob(Xi = 1) = p, prob(Xi = −1) = q and
prob(Xi = 0) = r, where p+q+r = 1. We map the esti-
mation of Z(s) into a simple random walk as follows. We
model the change of k-skyband buffer s.A w.r.t. each
message update as an i.i.d. variable Xi. Xi is set to 1
when the size of s.A is increased by 1 at i-th step, while
Xi is set to −1 when the size of s.A is decreased by 1.
When the size of s.A does not change, Xi is set to 0.
Unfortunately, it is difficult to estimate the probability
of prob(Xi = 1) and prob(Xi = −1) for each message
update, due to the eviction of messages by dominance
relationship. For example, for a new message, the size
of s.A may decrease rather than increase due to the
eviction of messages with dominance counter reaching
k. To address this problem, rather than estimating Z(s)
for s.A maintenance, we estimate Z

′(s) for s.A′, which
contains all the messages with score not lower than s.θ.
Specifically, when we maintain s.A′, we do not consider
the dominance relationship between messages for each
message update, and thus the messages dominated by
k (or more) messages are not evicted. Clearly, s.A′ is a
superset of s.A, i.e., s.A ⊆ s.A′. The following theorem
guarantees that Z(s) is equal to Z

′(s).

Theorem 6 The expected number of message updates
that is required to trigger top-k re-evaluation for s.A
maintenance is the same as that for s.A′ maintenance,
i.e., Z(s) = Z

′(s).

Proof To show Z(s) is equal to Z
′(s), it is sufficient

to prove that |s.A| < k if and only if |s.A′| < k at
any point. Initially, we have s.A ∪ s.Aevict = s.A′ and
s.A ∩ s.Aevict = ∅, where s.Aevict is a set of messages
evicted by messages in s.A. We prove that after each
message update, s.A∪ s.Aevict = s.A′ always holds. As
to the arrival of a new message m, if m is inserted into
s.A′, it will also be inserted into s.A since m will not
be dominated by any existing message due to its fresh-
ness; and vice versa. Note that some messages may be
evicted from s.A to s.Aevict due to dominance relation-
ship. Thus, s.A∪ s.Aevict = s.A′ holds. As to the expi-
ration of an old message m, (1) If m ∈ s.A, m will also
expire from s.A′, while s.Aevict does not change. (2) If
m /∈ s.A, m will expire from both s.Aevict and s.A′.
Thus, s.A∪ s.Aevict = s.A′ still holds. Therefore, when
|s.A| < k occurs, s.Aevict must be empty because there
is no k messages in s.A that can dominate any message
in s.Aevict. Thus, |s.A′| = |s.A| < k holds. Contrarily,
when |s.A′| < k occurs, it is immediate that |s.A| < k
because s.A is always a subset of s.A′. Therefore, the
theorem holds.

Based on the above theorem, we turn to estimate
Z
′(s), which is much easier. Now the probability distri-

bution of Xi can be estimated as:

prob(Xi) =

1
2 · prob(s.θ) if Xi = 1,
1
2 · prob(s.θ) if Xi = −1,

1− prob(s.θ) if Xi = 0.

(11)

We denote the initial size of s.A′ as |s.A′
init|. Now,

the estimation of Z
′(s) is equivalent to a well-known

random walk problem, namely Monkey at the cliff with
reflecting barriers [20]. Specifically, we set the starting
position RW0 as |s.A′

init| and the destination position
as k−1; the i.i.d. variable Xi is defined as Equation 11;
and the reflecting barrier is set as 2 ·RW0. By applying
some mathematical reduction based on the property of
random walk [20], we get the following result.

Z
′(s) =

2 · (|s.A′
init| − k + 1) · |s.A′

init|

prob(s.θ)

+
(|s.A′

init| − k + 1) · (|s.A′
init| − k + 2)

prob(s.θ)
(12)

where |s.A′
init| can be estimated as prob(s.θ) · |W|.

Thus, the top-k re-evaluation cost in Equation 10 can
be estimated by replacing Z(s) with Z

′(s). Based on
Equation 9 and Equation 10, we get our final cost
model:

C(s) = Csm(s) + Cre(s) (13)

To minimize Equation 13 where the only variable
is s.θ, we employ an incremental estimation algorithm
similar to gradient descent [3] to compute the best value
of s.θ.
Remark. To accommodate our cost-based skyband
model with the message dissemination algorithm, we
need to replace kScore(s) in Section 5 with s.θ such that
any message with score not lower than s.θ will be con-
sidered to possibly affect the top-k results of s. More-
over, since our dominance definition simply depends on
the 2-dimensional score-time space while is irrelevant to
the exact score function, our technique can be easily ap-
plied to other top-k monitoring problems with different
score functions.

6.3 Discussions

Initialization of incoming subscriptions. The ini-
tialization of a new subscription s can be processed in a
similar way to Algorithm 2, where we regard the initial
size of s.A as 0 and execute Lines 2-2 in Algorithm 2
sequentially.
Time-based sliding window model. Our techniques
discussed above can also be extended to support time-
based sliding window model, where only the messages
within a recent time period are maintained. Unlike
count-based sliding window whose size is constant, the

14 X. Wang et al.

size of time-based sliding window, i.e., |W|, can change
at any time due to the volatile message workload. To es-
timate |W|, we assume that the message workload does
not change significantly in the near future. Then we can
estimate |W| by the historical message workload from a
recent period. Another difference is that the probability
of message arrival (resp. expiration) cannot be regarded
as 1

2 trivially as indicated in Equation 9 and Equa-
tion 11, because the number of message arrival and the
number of message expiration are possibly rather differ-
ent in each timestamp. To alleviate this issue, we resort
to estimating the above probabilities based on the rela-
tive proportion of message arrival and expiration within
a recent time period. Then the probabilities (e.g., 1

2) in
Equation 9 and Equation 11 are updated accordingly.
We also conduct experiments to verify the efficiency of
our techniques under time-based sliding window in Sec-
tion 8.

7 Distributed Processing

In this section, we introduce DSkype, a distributed top-
k spatial-keyword publish/subscribe system built on
top of Storm. We first touch some background knowl-
edge about Storm in Section 7.1, followed by the de-
tailed system framework in Section 7.2. Four novel
distribution mechanisms are discussed in Section 7.3,
which manage to partition the subscriptions and mes-
sages to multiple bolt instances for parallel process-
ing. The maintenance issue is finally discussed in Sec-
tion 7.4. To the best of our knowledge, this is the
first work to extend top-k spatial-keyword publish/
subscribe system to a distributed environment.

7.1 Storm Background

Storm is a distributed, fault-tolerant and general-
purpose stream processing system. Unlike Hadoop7

which is mainly designed to process batch tasks, Storm
is designed to process streaming data continuously and
endlessly. There are three key abstractions in Storm:
spout, bolt and topology. A spout is a source of
streams, which reads input stream from external re-
sources, such as Twitter API8. A bolt is a processing
unit responsible for data processing, which handles any
number of input streams and produces any number of
new output streams. A topology is a network of spouts
and bolts, with each directed edge in the network repre-
senting a bolt subscribing to the output stream of some
other spout or bolt. Essentially, topology defines the
working flow of a real-time computation task, which is

7 Apache Hadoop project. https://hadoop.apache.org/
8 https://dev.twitter.com/rest/public

Fig. 6 A simple storm flow

similar to a MapReduce job [16]. Storm employs various
stream groupings techniques9, such as shuffle group-
ing and fields grouping, to specify for each bolt instance
which streams it should receive as input. Figure 6 de-
picts a simple Storm working flow where there are two
spouts and five bolts connected by directed edges. Note
that each spout/bolt can have many parallel-running
instances/tasks.

7.2 Framework

Figure 7 shows the topology of our DSkype, which con-
tains five main components:

– Subscription/Message spouts. Subscription
spouts receive new subscription request while mes-
sage spouts collect message stream from external
source, e.g., Twitter API. The incoming streams
are then subscribed by other components of the
topology.

– Distribution bolts. Distribution bolts receive
streams from spouts and navigate them down-
wards to the subscription bolts according to some
carefully designed distribution mechanisms (Sec-
tion 7.3), aiming to achieve good workload balance.
This component is critical to the overall communi-
cation cost and throughput of our system. Note that
the distribution bolts will also route new messages
to the message bolts to ensure that the sliding win-
dow is always up-to-date.

– Subscription bolts. Subscription bolts partition
the subscription index and result buffer among
multiple parallel-running tasks. A new subscription
from a distribution bolt is inserted into one or more
subscription bolts, and a new message is processed
simultaneously among multiple bolts. Note that dis-
tribution bolts and subscription bolts together cor-
respond to message dissemination module in the
centralized version discussed in Section 4.

– Message bolts.Message bolts maintain the sliding
window in a distributed manner, and each bolt con-
tains part of the sliding window. A message index
(e.g., IR-Tree, S2I) is built over the messages resid-
ing in each bolt. The top-k re-evaluation request

9 http://storm.apache.org/releases/0.10.0/Concepts.html

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 15

Message

Spouts

Distribution Bolts

Subscription Bolts

Message Bolts

Aggregation Bolts

Top-k

Revaluation

Module

Message

Dissemination

Module
Subscription Index +

Result buffer

Message Index

(sliding window)

Output

Subscription

Spouts

Hashing/Location/

Keyword/Prefix

12

3

5

6

7

4

Fig. 7 DSkype topology (solid arrows indicate stream flow
between components)

for a subscription s issued by subscription bolts will
be processed concurrently among all message bolts,
each generating a partial message buffer consisting
of all the messages with score at least s.θ. Note that
each message is stored in only one message bolt.

– Aggregation bolts. Aggregation bolts are intro-
duced to aggregate the partial message buffer gen-
erated by message bolts. Then the final k-skyband
buffer is computed and forwarded back to the sub-
scription bolts where s resides. Note that message
bolts and aggregation bolts together form the coun-
terpart to the top-k re-evaluation module in its cen-
tralized version.

All the stream groupings in the topology are sum-
marized in Table 1. We remark that the result buffer
can be easily swapped to any persistent state, such as
Memcached10 and HDFS [36], to support various appli-
cations.
Working flow. When a new message m is digested
by a message spout, it will be delivered to a distribu-
tion bolt (stream 1©, see Figure 7). The distribution
bolt then will navigate m to some of subscription bolts
(stream 3©) such that it can be processed against lo-
cal subscription index in a parallel manner. The distri-
bution bolt will also disseminate m to a message bolt
(stream 4©) to keep the sliding window therein up-to-
date. When m expires, the top-k re-evaluations trig-
gered by m in the subscription bolts will be emitted to
message bolts (stream 5©) and then to aggregation bolts
(stream 6©), where the k-skyband buffers of all affected
subscriptions will be re-computed and forwarded back
to the subscription bolts (stream 7©). Similarly, a new
subscription s will be firstly delivered from a subscrip-
tion spout to a distribution bolt (stream 2©), and then
routed to one or more subscription bolts (stream 3©)

10 http://storm.apache.org/releases/0.10.0/Trident-
tutorial.html

for indexing based on the distribution mechanism. The
initial result of s will be computed from message bolts
(stream 5©) and aggregation bolts (stream 6©) accord-
ingly and forwarded back to subscription bolt (stream
7©) where s is indexed. An unregistered subscription
will be simply deleted from all its residing subscription
bolts.
Challenges. As the number of subscriptions increases,
the subscription bolts become the main bottleneck of
our system. Meanwhile, the communication cost be-
tween distribution bolts and subscription bolts domi-
nates all the other communication cost as we increase
the number of subscription bolts. Thus, the key chal-
lenge in DSkype is to develop an efficient distribution
mechanism to assign subscriptions and messages only
to some inevitable subscription bolts, such that both
small communication cost and high throughput can
be realized while still guaranteeing the correctness of
our algorithms. Furthermore, the distribution mecha-
nism should be able to handle workload balance, since
both the subscription workload and message workload
in real life are extremely biased regarding keywords and
locations. At last, the distribution mechanism should
be light-weighted without consuming many CPU and
memory resources.

7.3 Distribution Mechanism

In this section, we present several novel, efficient and
light-weighted distribution mechanisms, which can be
integrated into distribution bolts. For the ease of ex-
position, we assume we already have a set of existing
subscriptions S and a random messagem sampled from
message stream. We denote the number of subscription
bolts as Nsb, with each bolt identified by a partition in-
dex ranging from 0 toNsb−1. A distribution mechanism
aims to partition S into Nsb subscription bolts and nav-
igate the message m to relevant subscription bolts for
top-k dissemination. In the following, we propose four
different distribution methods, namely hashing-based,
location-based, keyword-based and prefix-based, respec-
tively.

7.3.1 Hashing-based Method

Hashing-based method partitions the subscriptions
based on a uniform hashing function defined as follows:

h(s) = s.id mod Nsb (14)

where s.id is a unique id assigned to each subscription,
and h(s) is the bolt index where s should be allocated.
Analysis. Since each subscription is allocated to only
one bolt, the replication ratio of subscriptions is 1. The
replication ratio here indicates the number of times a

16 X. Wang et al.

Table 1 Stream grouping methods. ID in first column corresponds to ID in Figure 7.

ID Source Destination Grouping Description

1© message
spouts

distribution
bolts

shuffle grouping Each message is distributed to only one distribution bolt randomly.

2© subscription
spouts

distribution
bolts

shuffle grouping Each subscription is distributed to only one distribution bolt ran-
domly.

3© distribution
bolts

subscription
bolts

all/direct
grouping

Subscriptions/messages are distributed to subscription bolts with ei-
ther all grouping or direct grouping (depending on the distribution
mechanism employed).

4© distribution
bolts

message
bolts

direct grouping Each message is distributed to only one message bolt based on its
unique id to keep the sliding window up-to-date.

5© subscription
bolts

message
bolts

all grouping Each top-k re-evaluation request is distributed to all message bolts
for parallel processing.

6© message
bolts

aggregation
bolts

fileds grouping The partial result buffers from the same subscription are distributed
to the same aggregation bolt.

7© aggregation
bolts

subscription
bolts

direct grouping The aggregated k-skyband buffer is forwarded back to one or more
subscription bolts where this subscription resides.

subscription has been stored in the system. Note that
we ignore the replication ratio of messages, because it
is always 1 regardless of the distribution mechanisms.
Meanwhile, for any new message, it needs to be dis-
tributed to all the subscription bolts to ensure the cor-
rectness. Thus, the average communication cost of each
message is Nsb. Note that we only consider the com-
munication cost between distribution bolts and sub-
scription bolts w.r.t. each message since it is dominant.
For example, on a cluster with 32 subscription bolts,
the communication cost between distribution bolts and
subscription bolts account for more than 90% of total
communication cost.

7.3.2 Location-based Method

Hashing-based method is simple and can achieve very
good workload balance, because the number of sub-
scriptions in each subscription bolt is nearly the same
by the nature of uniform hashing. However, it does not
take the location factor into consideration. Intuitively,
distributing subscriptions with high spatial similarity
into the same bolt can lead to lower AMP cost and thus
higher throughput, since we can acquire better spatial
bounds as discussed in Section 5.1.2. On the other hand,
it is also pivotal to balance subscription and message
workloads among the subscription bolts. To this end,
we propose a cost-based spatial partition schema us-
ing KD-Tree [6], where the leaf nodes of KD-Tree form
a disjoint partition of the whole space. For each leaf
node, we allocate a subscription bolt to process all the
subscriptions whose locations are inside the leaf node.
Formally, given any node, denoted as nd, in KD-Tree,
we estimate its cost by:

C(nd) = N(nd)× p(nd) (15)

where N(nd) is the number of subscriptions whose lo-
cations are inside nd and p(nd) is the probability that

Algorithm 3: SpatialPartition(nd, depth)

Input : nd : a node in KD-Tree

depth : the depth of nd
Output : A spatial partition consisting of all the leaf

nodes in KD-Tree

if depth == maxdepth then1

return;2

if depth is even then /* split by x-coordinate */3

Find a value x from the x-coordinates of all the4

subscriptions in nd, which leads to minimum
|C(nd1)− C(nd2)|, where nd1 and nd2 are two
child nodes split based on x;

else /* split by y-coordinate */5

Find a value y from the y-coordinates of all the6

subscriptions in nd, which leads to minimum
|C(nd1)− C(nd2)|, where nd1 and nd2 are two
child nodes split based on y;

Assign subscriptions in nd to nd1 and nd2 based on7

the splitting value;
SpatialPartition(nd1 , depth+ 1);8

SpatialPartition(nd2 , depth+ 1);9

a random incoming message falls inside nd. Note that
p(nd) can be easily estimated from historical message
workloads. The cost-based spatial partition algorithm
is depicted in Algorithm 3, which is very similar to the
original KD-Tree construction algorithm. The key dif-
ference is that, unlike KD-Tree which selects a line halv-
ing all the points along x-axis or y-axis alternately, our
algorithm tries to find a splitting line which minimizes
the cost difference between two children (Lines 3 and 3)
in order to achieve workload balance. We limit the to-
tal number of partitions (i.e., leaf nodes) by setting a
maxdepth value (Line 3).

Analysis. The time complexity of Algorithm 3 is
bounded by O(|S|× log |S|) as we need to sort subscrip-
tions in S by x-coordinate and y-coordinate respectively
beforehand and then do a divide-and-conquer partition.
Each subscription will be assigned to only one subscrip-
tion bolt containing its location. Thus, the replication
ratio is 1. On the other hand, each incoming message

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 17

needs to be delivered to all subscription bolts to guar-
antee the algorithm correctness. Thus, the average com-
munication cost is Nsb.

7.3.3 Keyword-based Method

Both hashing-based and location-based methods have
to send each message to all the subscription bolts, which
results in high communication overhead especially when
we increase the number of subscription bolts. To allevi-
ate this issue, we propose a novel keyword-based parti-
tion mechanism, which can reduce the communication
cost significantly at the cost of small subscription repli-
cations. The general idea is that, each subscription bolt
only accounts for a subset of keywords; thus, each sub-
scription s (resp. messagem) will be distributed only to
the subscription bolts whose keyword sets overlap with
s.ψ (resp. m.ψ). To start with, similar to Section 7.3.2,
we estimate the processing cost of a subscription bolt
with keyword set Wi as follows:

C(Wi) = N(Wi)× p(Wi) (16)

where N(Wi) is the number subscriptions whose key-
words overlap withWi and p(Wi) is the probability that
a random incoming message contains at least one key-
word from Wi. Note that p(Wi) can be estimated from
historical message workloads. We then define variance
to measure the workload balance as follows:

V ar =
1

Nsb
×
Nsb−1
∑

i=0

(C(Wi)− Cµ)
2 (17)

where Cµ is the average cost over all keyword sets.
We are now ready to present the keyword par-

tition problem: given a keyword vocabulary, denoted
as V , where keywords are ordered by their frequen-
cies, we aim to partition V into Nsb subsets, i.e.,
W0,W1, ...,WNsb−1, each covering a number of consec-
utive keywords, such that the following conditions are
satisfied: (1). ∀0 ≤ i < j ≤ Nsb − 1,Wi ∩Wj = ∅, (2).
∪0≤i≤Nsb−1Wi = V , (3). V ar is minimized.

Since the search space is exponentially large, we re-
sort to an efficient heuristic algorithm to solve this prob-
lem, which is demonstrated in Algorithm 4. The idea is
to recursively partition the keyword set into two sub-
sets by carefully selecting a splitting keyword to balance
the cost between two subsets. The parametermaxdepth
here (Line 4) is used to control the number of partitions
we need. Once we get keyword partitions, a subscription
s will be allocated to the ith bolt as long as s.ψ∩Wi 6= ∅.
Similarly, a message m will also be distributed to the
ith bolt if m.ψ ∩Wi 6= ∅.

Example 7 Figure 8 shows an example of keyword-
based method. Assume there are 10 keywords in the vo-
cabulary, and there are four subscription bolts. Based

Algorithm 4: KeywordPartition(W , depth)

Input : W : current keyword set
depth : the depth of recursion

Output : A keyword partition
if depth == maxdepth then1

return;2

Find a splitting keyword w from W which leads to3

minimum |C(W1)− C(W2)|, where W1 contains all the
words on the left of w (inclusive) while W2 contains all
the keywords on the right of w (exclusive);
KeywordPartition(W1 , depth+ 1);4

KeywordPartition(W2 , depth+ 1);5

w1-w2 w3-w5 w6-w8 w9-w10

Bolt 1 Bolt 2 Bolt 3 Bolt 4

Message Keywords

m w6 0.4, w7 0.3, w8 0.2 , w9 0.1

Subscription Keywords ✂ kScore

s w1 0.4, w2 0.3, w5 0.2 , w6 0.1 0.6 0.8

Fig. 8 Keyword-based example

on the keyword-based distribution method, subscrip-
tion s is allocated to bolt 1, bolt 2 and bolt 3 while
message m is distributed to bolt 3 and bolt 4.

Analysis. The time complexity of Algorithm 4 is
O(|V| ×maxdepth+ |S|) if we use a linear scan to find
the splitting keyword (Line 4). Each subscription is dis-
tributed to at most |s.ψ| bolts and each message is dis-
tributed to at most |m.ψ| bolts. Thus, the replication
ratio is at most |s.ψ| while the average communication
cost is at most min(|m.ψ|, Nsb).

7.3.4 Prefix-based Method

Compared to both hashing-based and location-based
methods, keyword-based method can reduce the com-
munication cost significantly, especially when we have
a large number of subscription bolts (i.e., large Nsb),
since each message is only distributed to keyword-
overlapping bolts. However, the pitfall is that we have
to duplicate subscriptions among different subscription
bolts to ensure the correctness of our algorithms, which
often leads to poor throughput as shown in the experi-
mental part. To further reduce the subscription replica-
tions as well as improve throughput, we propose a light-
weighted prefix-based method, which only distributes
subscriptions based on their keyword prefixes, rather
than all the keywords. However, we cannot employ the
same prefix as defined in Definition 4, because the value
of SSimUB(s.ρ,m.ρ) is not available beforehand. To
overcome this issue, we define a new textual similar-

18 X. Wang et al.

w1-w2 w3-w5 w6-w8 w9-w10

Bolt 1 Bolt 2 Bolt 3 Bolt 4

Message Keywords

m w6 0.4, w7 0.3, w8 0.2 , w9 0.1

Subscription Prefix ✂ kScore

s w1 0.4, w2 0.3 0.6 0.8

Fig. 9 Prefix-based example

ity threshold λT (s.ψ) as follows:

λT (s.ψ) =
kScore(s)

1− s.α
−

s.α

1− s.α
· 1.0 (18)

where we always assume SSimUB(s.ρ,m.ρ) to be 1.0 re-
gardless of the actual location of the incoming message.
Then, we propose a loose prefix, denoted as pref(s),
which is defined as follows.

Definition 12 (Loose Prefix) Given a subscription
s and a textual similarity threshold λT (s.ψ), we use
pref(s) = s.ψ[1 : p] to denote the loose prefix of s,
where p = argmini {wtsum(s.ψ[i+ 1]) < λT (s.ψ)}.

We remark that this definition is similar to Definition 4,
except that we replace λT (s.ψ,m.ψ) with λT (s.ψ), such
that the loose prefix pref(s) is irrelevant to the message.
The following lemma guarantees the correctness of our
distribution mechanism based on loose prefix.

Lemma 7 Our algorithm is correct as long as we dis-
tribute each subscription s (resp. message m) only to
the subscription bolts whose keyword sets intersect with
pref(s) (resp. m.ψ).

Proof Based on the distribution method, it is immedi-
ate to conclude that if pref(s) ∩m.ψ 6= ∅ (and thus m
might be a candidate of s), m must be distributed to at
least one subscription bolt where s also resides. On the
other hand, if pref(s) ∩m.ψ = ∅, m must not be a can-
didate of s. This can be easily proved based on a similar
deduction from the proof of Lemma 2. Thus, there is no
need to distribute the subscription s to the subscription
bolts whose keyword sets overlap with s.ψ − pref(s).

Example 8 Following the same example in Figure 8,
Figure 9 depicts an example of prefix-based method.
From Equation 18, we get λT (s.ψ) =

0.8
1−0.6 − 0.6

1−0.6 =
0.5, and therefore pref(s) = {w1, w2}. Thus, subscrip-
tion s is only allocated to bolt 1 while message m is
still distributed to bolt 3 and bolt 4. It is obvious that
the computation between s and m is avoided since m
cannot be the top-k results of s.

Analysis. The replication ratio is determined by
|pref(s)| based on Lemma 7, which is usually smaller

Table 2 Summary of distribution mechanisms (worst case)

Method Replica. ratio Comm. cost

Hashing-based 1 Nsb

Location-based 1 Nsb

Keyword-based |s.ψ| min(|m.ψ|, Nsb)
Prefix-based |pref(s)| min(|m.ψ|, Nsb)

than |s.ψ|. Meanwhile, the average communication cost
is bounded by min(|m.ψ|, Nsb), which is the same as
keyword-based method. As shown in the experiments,
the prefix-based method not only can reduce the repli-
cation ratio but also can improve the system through-
put with a large margin compared to keyword-based
method. Note that Algorithm 4 is also used here to get
keyword partitions, except that the value of N(Wi) in
Equation 16 needs to be recomputed since we only use
the loose prefix of subscription. Besides, a subscription
may need to be reallocated among subscription bolts
when pref(s) changes due to the updating of kScore(s).
We employ a lazy reallocation strategy, where the re-
allocation is triggered only when pref(s) needs to cover
more keywords.

Remark. We remark that all the distribution mecha-
nisms discussed above are light-weighted indexes em-
ployed in the distribution bolts in order to facilitate
the distribution of subscriptions and messages. This is
different from the subscription index built in each sub-
scription bolt, which aims to accelerate top-k dissemi-
nation regarding each incoming message.

Discussions. We summary all the distribution mecha-
nisms discussed above in Table 2, where we report the
replication ratio of subscriptions and average commu-
nication cost w.r.t. each message, both of which are
the main factors of system throughput. From the ta-
ble, we notice that when |m.ψ| < Nsb, both keyword-
based and prefix-based methods are likely to benefit
a lot from the large reduction in communication cost,
and are expected to have higher throughput; however,
when |m.ψ| > Nsb, both keyword-based and prefix-
based methods may not perform very well because they
cannot reduce communication cost by a large margin,
while suffered from the extra cost triggered by repli-
cates. In Section 8.2, we have conducted detailed ex-
periments to evaluate the performances of different al-
gorithms under different settings, which further verify
our analysis above. Furthermore, workload balance is
also a main factor contributing to the system through-
put. The hashing-based method can achieve best bal-
ance due to the nature of uniform hashing. However,
for all the other three methods, we observe that the
workload balance can also be well maintained, since we
take into consideration both the subscription workload
and message workload during distribution.

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 19

Table 3 Datasets Statistics

Datasets TWEETS GN YELP

of msg 12.7M 2.2M 1.6M
Vocabulary size 1.7M 208K 85K

Avg. # of msg keywords 9 7 37
Size in GB 2.26 0.3 1.04

Kmax (Time)
Kmax (Buffer)

cSkyband (Time)
cSkyband (Buffer)

Skyband (Time)
Skyband (Buffer)

 0

 5

 10

 15

 20

20 40 60 80 100 120
0

30

60

90

120

150

A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

A
vg

. B
uf

fe
r

S
iz

e

kmax

(a) kmax

100

101

102

103

1.0 0.95 0.90 0.85 0.80 0.75
0

30

60

90

120

150

A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

A
vg

. B
uf

fe
r

S
iz

e

ratio w.r.t. kScore

(b) Skyband

Fig. 10 Tuning baseline algorithms

7.4 Maintenance

Storm provides a graphical interface to monitor the
workload of each spout/bolt11. We fork a background
process to access the interface and monitor the work-
load of each component automatically and periodically.
When some component becomes overloaded, we may
simply increase its parallelism, while decreasing its par-
allelism if it becomes idle. The subscription bolts dis-
cussed in the above distribution mechanisms can be
easily further partitioned or merged according to the
system workload. For example, for the location-based
method, we can simply split a leaf node if it becomes
overloaded.

8 Experiments

8.1 Centralized Evaluations

In this section, we conduct extensive experiments to
verify the efficiency and effectiveness of Skype in a sin-
gle machine. All experiments are implemented in C++,
and conducted on a PC with 3.4GHz Intel Xeon 2 cores
CPU and 32GB memory running Red Hat Linux. Fol-
lowing the typical setting of publish/subscribe systems
(e.g., [24,12]), we assume indexes fit in main memory
to support real-time response.

8.1.1 Experimental Setup

As this is the first work to study top-k spatial-keyword
publish/subscribe over sliding window, we extend pre-
vious work [12] to sliding window. We implement and
compare the following algorithms. For message dissem-
ination module:

11 http://storm.apache.org/releases/0.10.0/STORM-UI-
REST-API.html

 5

 10

 15

 20

5 10 20 30 40

A
vg

. A
M

P
 T

im
e

(m
s)

Number of groups

TWEETS
GN

YELP

Fig. 11 Vary # groups

100

101

102

TWEETS GN YELP

A
vg

. A
M

P
 T

im
e

(m
s)

Datasets

IGPT-cSkyband
IPT-cSkyband

Fig. 12 Pruning methods

– CIQ. The subscription index proposed in [12] 12.
– IGPT. The subscription index proposed in our pa-

per, which combines both Individual and Group
Pruning Techniques.

For top-k re-evaluation module:

– Skyband. The k-skyband algorithm proposed
in [29].

– kmax. The kmax algorithm proposed in [41].
– cSkyband. The cost-based k-skyband algorithm

proposed in our paper.

Note that our Skype algorithm is the combination of
IGPT and cSkyband. We apply IR-Tree [15] to index
messages.
Datasets. Three datasets are deployed for experimen-
tal evaluations. TWEETS is a real-life dataset collected
from Twitter [25], containing 12.7M tweets with geo-
locations from 2008 to 2011. GN is obtained from the
US Board on Geographic Names13 in which each mes-
sage is associated with a geo-location and a short text
description. YELP is obtained from Yelp14, which con-
tains user reviews and check-ins for thousands of busi-
nesses. The statistics of three datasets are summarized
in Table 3.
Subscription workload. We generate top-k subscrip-
tions based on the above datasets. For each dataset,
1M geo-textual messages are randomly selected. For
each selected message, we randomly pick j keywords as
subscription keywords with 1 ≤ j ≤ 5. The weight of
each keyword is computed according to tf-idf weighting
scheme15. The subscription location is the same as mes-
sage location. For each subscription, the preference pa-
rameter α is randomly selected between 0 and 1, while
the default value of k, i.e., the number of top-k results,
is set to 20.
Message workload. Our simulation starts when the
sliding window with default size of 1M is full and con-
tinuously runs for 100, 000 arriving messages over the
sliding window.

We report the average processing time, in-
cluding average arriving message processing time
(i.e., AMP) and average expired message processing

12 The time decay function and related index in CIQ are
removed to adapt to our problem.
13 http://geonames.usgs.gov
14 http://www.yelp.com/
15 https://en.wikipedia.org/wiki/Tfidf

20 X. Wang et al.

100

101

102

103

TWEETS GN YELP

A
vg

. A
M

P
 T

im
e

(m
s)

Datasets

IGPT-cSkyband
CIQ-cSkyband

(a) Arriving msg processing

 0

 0.5

 1

 1.5

 2

 2.5

TWEETS GN YELP

M
em

or
y

C
os

t (
G

)

Datasets

IGPT-cSkyband
CIQ-cSkyband

(b) Memory cost

Fig. 13 Compare dissemination algorithms

10-2

10-1

100

101

102

TWEETS GN YELP

A
vg

. E
M

P
 T

im
e

(m
s)

Datasets

IGPT-cSkyband
IGPT-Kmax

IGPT-Skyband

Fig. 14 Compare re-evaluation algorithms

time (i.e., EMP), as well as the index size. By default,
the number of α-partition groups is set to 10. The maxi-
mum number of subscriptions that can be stored in each
cell is set to 1000.

8.1.2 Experimental Tuning

Tuning kmax and Skyband. In the first set of ex-
periments, we tune the performance of both kmax and
Skyband techniques in Figure 10 on TWEETS dataset,
where IGPT algorithm is employed for message dissem-
ination. For better understanding, we evaluate aver-
age processing time (denoted as solid line) and average
buffer size (denoted as dotted line) in the same figure.
We also show the results of our IGPT-cSkyband algo-
rithm under default settings which remains unchanged.
For kmax algorithm (Figure 10(a)), we vary kmax from
20 to 120. It is noticed that a small kmax leads to
high top-k re-evaluation cost while a large kmax results
in high message dissemination cost and buffer mainte-
nance cost. We set 60 as the default kmax value since
it strikes a good trade-off between performance and
buffer size (i.e., memory cost). For Skyband algorithm,
we vary the threshold score s.θ from 1.0×kScore to
0.75×kScore where the smaller value leads to larger
buffer size. It is noticed that when the ratio is 1.0
which is the original setting in [29], the performance
of Skyband is poor due to the frequent re-evaluations.
For comparison fairness, s.θ is set to its sweet point
0.95×kScore for Skyband in the following experiments.
It is worth mentioning that our cSkyband always out-
performs Skyband under all settings because cSkyband

can tune a best threshold for each individual subscrip-
tion based on the cost model while there is no sensible
way to tune Skyband for millions of subscriptions. The
similar trends are also observed on other datasets.
Vary the number of groups in α-partition. Fig-
ure 11 reports the AMP time of Skype algorithm

Table 4 Average buffer size of different re-evaluation algo-
rithms (Unit: 1)

Algorithm TWEETS GN YELP

IGPT-cSkyband 35 33 28

IGPT-Kmax 58 58 59
IGPT-Skyband 52 58 56

SkypeAMP SkypeEMP CIQ-KmaxAMP CIQ-KmaxEMP

10-2

10-1

100

101

102

103

10 20 30 40 50A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

k

Fig. 19 Zipf distribution
workload

10-2

10-1

100

101

102

10 20 30 40 50A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

k

Fig. 20 Performance of time-
based sliding window

against three datasets where the number of groups vary-
ing from 5 to 40. It is shown that we can achieve a good
trade-off between the group filtering effectiveness and
group checking costs when the number of groups is set
to 10, which is used as default value in the following
experiments.

Effect of pruning techniques. In this experiment, we
compare the AMP time of different pruning techniques
employed in our message dissemination module. Specif-
ically, we compare IGPT with IPT, which only employs
individual pruning technique in Figure 12. We observe
that IGPT algorithm can achieve at least three times
improvement compared with IPT over all the datasets,
which verifies the efficiency of our group pruning tech-
niques. This is mainly because the group pruning tech-
nique can skip the whole group without the need to
check individual subscription, and can terminate early
within a group. In the following experiments, we always
use IGPT as our dissemination algorithm.

8.1.3 Performance Evaluation

Compare message dissemination algorithms. In
this experiment, we compare the performance of differ-
ent dissemination algorithms. Specifically, we compare
CIQ and IGPT with cSkyband being top-k re-evaluation
algorithm. As shown in Figure 13(a), our algorithm can
achieve about 10 times faster than CIQ algorithm, due
to the benefit of individual pruning technique and group
pruning technique. On the other hand, as shown in Fig-
ure 13(b), even if we need to maintain some additional
statistics, the memory cost of our subscription index
is much smaller than that of CIQ, since our algorithm
only indexes each subscription into single cell, rather
than multiple cells.

Compare top-k re-evaluation algorithms. In this
experiment, we compare the performance of differ-
ent top-k re-evaluation strategies combined with our

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 21

SkypeAMP SkypeEMP CIQ-KmaxAMP CIQ-KmaxEMP

10-1

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

of Subscription Keywords

(a) TWEETS

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)
of Subscription Keywords

(b) GN

Fig. 15 Effect of number of subscription keywords

10-1

100

101

102

103

10 20 30 40 50A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

k

(a) TWEETS

100

101

102

103

10 20 30 40 50A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

k

(b) GN

Fig. 16 Effect of number of top-k results

SkypeAMP SkypeEMP CIQ-KmaxAMP CIQ-KmaxEMP

10-1

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

of Subscription (M)

(a) TWEETS

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

of Subscription (M)

(b) GN

Fig. 17 Effect of number of subscriptions

10-1

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

Size of Sliding Window (M)

(a) TWEETS

100

101

102

103

1 2 3 4 5A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

Size of Sliding Window (M)

(b) GN

Fig. 18 Effect of sliding window size

IGPT algorithm. Specifically, we compare kmax algo-
rithm [41], k-skyband algorithm [29] and our cost-based
k-skyband algorithm, which are denoted as IGPT-Kmax,
IGPT-Skyband, IGPT-cSkyband respectively. The aver-
age EMP time is reported in Figure 14. We observe
that our cSkyband algorithm can achieve about 4-20
times improvement compared to the second best algo-
rithm. This is mainly due to the adaptiveness of our
cost model which can tune a best threshold for each
subscription. Table 4 demonstrates the average buffer
size of each algorithm. Our algorithm maintains much
fewer number of messages than other competitors due
to the advantage of our cost model. In the following ex-
periments, we only compare our Skype algorithm (i.e.,
IGPT-cSkyband) with CIQ-Kmax, which performs best
among all the baselines.

Effect of number of subscription keywords. We
assess the effect of number of subscription keywords
in Figure 15. We notice that the AMP time increases
as we vary the number of keywords from 1 to 5. This
is obvious since more candidates will be encountered
during traversing posting lists when the number of key-
words is large. As to the EMP time, we observe that
the selectivity is low and fewer messages are relevant at
initial, thus leading to high cost. With increasing num-
ber of keywords, the selectivity increases, thus reduc-
ing the number of re-evaluations accordingly. Finally,
when the number of keyword reaches 4 or 5, a message
is less likely to have a high score w.r.t. a subscription
due to the smaller weight assigned to each subscription
keyword on average, resulting in the increase of EMP

time. The overall processing time increases decently for
a large number of keywords.

Effect of number of top-k results. In this set of
experiments, we analyse the effect of number of top-
k results, i.e., k, in Figure 16. For AMP time, as we
increment k from 10 to 50, the average kScore of sub-
scriptions decreases; therefore, an arriving message is
more likely to influence more subscriptions, leading to
high AMP time in our algorithm. Meanwhile, a large
k usually results in high EMP time, because the sub-
scriptions with low selectivity are more likely to expire
and incur top-k re-evaluations. Besides, the k-skyband
maintenance cost also increases for large k. Overall, the
average processing time increases slowly w.r.t. k.

Effect of number of subscriptions. We evaluate the
scalability of our system in Figure 17, where we vary the
number of subscriptions from 1M to 5M . As shown in
the figure, our algorithm scales very well with increasing
number of subscriptions, thus making it practical to
support real-life applications with fast response.

Effect of sliding window size. We turn to evaluate
the effect of sliding window size |W| in this set of ex-
periments. The results are demonstrated in Figure 18,
where we vary |W| from 1M to 5M . It is observed that,
when we increase |W|, the AMP time decreases, which
is due to the fact that a large sliding window usually
leads to better top-k results with higher kScore. Thus,
a new message will affect less subscriptions, resulting
in lower AMP cost. Regarding the EMP time, it fluc-
tuates around a value due to the competitive results
of fewer number of re-evaluations and high query cost
against the message index as we increase |W|.

22 X. Wang et al.

Performance over zipf distribution. We evaluate
the performance over a different subscription workload
where the keywords are sampled from a zipf distribution
(Figure 19). It is observed that the zipf distribution
workload has similar performance compared to original
workload, where keywords are randomly sampled from
messages.

Performance over time-based sliding window.
We verify the performance over time-based sliding win-
dow against TWEETS dataset. We set the sliding win-
dow size as 4 months and feed the initial sliding window
with tweets from January to April 2010. The tweets
from recent one month are used to estimate window
size and probability discussed in Section 6.3. The AMP
and EMP time w.r.t. each timestamp (i.e., 1 sec) are re-
ported by continuously feeding the sliding window with
tweets collected in May 2010. The results are shown in
Figure 20 where we vary the number of top-k results.
It is noticed that Skype can still achieve an order of
magnitude improvement compared to CIQ-Kmax, which
verifies the efficiency of our extensions.

8.2 Distributed Evaluations

In this section, we verify the performance of our dis-
tributed publish/subscribe system, i.e., DSkype. All the
experiments are conducted on a 10-node (one nimbus
and nine supervisors) cluster running Storm 0.10.016,
with a single node Zookeeper server17 deployed for co-
ordination. Each node in the cluser is a Debian 6.0.10
server that has 3.4GHz Intel Xeon 8 cores CPU, 16GB
memory, and gigabit ethernet interconnect. Each su-
pervisor node is configured to run at most 3 workers
at the same time, and each worker can run multiple
spouts/bolts concurrently.

We use the same TWEETS , GN and YELP
datasets as above and generate subscription workload
and message workload accordingly. The default num-
ber of subscriptions is 5M , and the default size of slid-
ing window is 1M . The message workload is fed to
the system continuously for one hour. The number of
subscription spouts, message spouts, distribution bolts,
subscription bolts, message bolts and aggregation bolts
is set to 1, 1, 1, 32, 3 and 1 respectively by default.
It is noticed that the number of subscription bolts is
the largest compared to other components, since sub-
scription bolts are the main bottleneck of our system.
The parameters in the subscription index are tuned in a
similar way to Section 8.1.2. We use the throughput,
i.e., the average number of messages processed in one

16 http://storm.apache.org/2015/11/05/storm0100-
released.html
17 http://zookeeper.apache.org/doc/r3.4.8/

hashing-based
location-based

keyword-based
prefix-based

0

400

800

1200

1600

TWEETS GN YELP

T
hr

ou
gh

pu
t (

pe
r

se
c)

Datasets

(a) Throughput

 0
 5

 10
 15
 20
 25
 30
 35

TWEETS GN YELPA
vg

. C
om

m
un

ic
at

io
n

C
os

t

Datasets

(b) Avg. communication cost

Fig. 21 Compare different distribution mechanisms

Table 5 Replication ratio

Methods TWEETS GN YELP

hashing-based 1 1 1
location-based 1 1 1
keyword-based 3.2 3.3 3.3
prefix-based 1.9 1.9 2.1

second, and the communication cost, i.e., the aver-
age number of tuples transmitted between distribution
bolts and subscription bolts to process one message,
as the main measurements. Note that, since the real
communication cost heavily depends on the hardware,
we use the number of tuples transmitted as the measure
of communication cost, which is hardware-independent.
Besides, we only consider the communication cost be-
tween distribution bolts and subscription bolts because
it dominates all the other communication costs. All the
measurements are computed after system initialization,
which usually takes about 2 minutes.

Compare different distribution mechanisms. In
this set of experiments, we compare the performance of
our proposed distribution mechanisms over TWEETS ,
GN and YELP datasets. We denote the four dis-
tribution mechanisms as hashing-based, location-based,
keyword-based and prefix-based respectively. The re-
sults are depicted in Figure 21. Regarding TWEETS
dataset in Figure 21(a), we observe that location-based
method achieves about 15% throughput improvement
than hashing-based method. This is mainly due to the
better spatial similarity bound computed in location-

based method. It is also noticed that keyword-based

method performs the worst among all the methods be-
cause of the extra overhead incurred by duplicate sub-
scription allocation, which is shown in Table 5. How-
ever, prefix-based method has the best performance,
about 56% faster than hashing-based, at slightly ex-
tra cost of replication ratio (i.e., 1.9). Similar trend is
also observed on GN dataset. We remark that the dis-
tributed system is about 26 ∼ 49 times faster than its
centralized version, which demonstrates the superiority
of distributed processing. On the other hand, the com-
munication cost of both keyword-based and prefix-based

methods in TWEETS dataset (Figure 21(b)) achieve
about 80% reduction compared to hashing-based and

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 23

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 8 16 32

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscription Bolts

hashing-based
location-based

prefix-based

(a) TWEETS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

4 8 16 32

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscription Bolts

hashing-based
location-based

prefix-based

(b) GN

 0

 100

 200

 300

 400

 500

4 8 16 32

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscription Bolts

hashing-based
location-based

prefix-based

(c) YELP

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32A
vg

. C
om

m
un

ic
at

io
n

C
os

t

of Subscription Bolts

hashing-based
location-based

prefix-based

(d) TWEETS

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32A
vg

. C
om

m
un

ic
at

io
n

C
os

t

of Subscription Bolts

hashing-based
location-based

prefix-based

(e) GN

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32A
vg

. C
om

m
un

ic
at

io
n

C
os

t

of Subscription Bolts

hashing-based
location-based

prefix-based

(f) YELP

Fig. 22 Effect of number of subscription bolts

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

10 20 30 40 50

T
hr

ou
gh

pu
t (

pe
r

se
c)

k

hashing-based
location-based

prefix-based

(a) TWEETS

 1000

 1100

 1200

 1300

 1400

 1500

 1600

10 20 30 40 50

T
hr

ou
gh

pu
t (

pe
r

se
c)

k

hashing-based
location-based

prefix-based

(b) GN

 300

 350

 400

 450

 500

10 20 30 40 50

T
hr

ou
gh

pu
t (

pe
r

se
c)

k

hashing-based
location-based

prefix-based

(c) YELP

Fig. 23 Effect of number of top-k results

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscriptions (M)

hashing-based
location-based

prefix-based

(a) TWEETS

 200

 400

 600

 800

 1000

 1200

 1400

 1600

5 10 15 20

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscriptions (M)

hashing-based
location-based

prefix-based

(b) GN

 0

 100

 200

 300

 400

 500

5 10 15 20

T
hr

ou
gh

pu
t (

pe
r

se
c)

of Subscriptions (M)

hashing-based
location-based

prefix-based

(c) YELP

Fig. 24 Effect of number of subscriptions

location-basedmethods, which demonstrates the benefit
of former two methods, especially when the communi-
cation cost becomes system bottleneck. Similar trends
can also be observed from GN dataset. However, as to
YELP dataset, we notice that even though prefix-based

method is much faster than keyword-based method, it
is slower than hashing-based and location-based meth-
ods. This is mainly because the number of keywords in
YELP message is much larger than TWEETS and GN ,
and thus the reduction in communication cost (Fig-
ure 21(b)) is not significant enough to pay off the cost
contributed by duplicate allocation. In the following ex-
periments, we omit keyword-based method since prefix-

based method has much better overall performance in
terms of both throughput and replication ratio.

Effect of number of subscription bolts. We eval-
uate the effect of number of subscription bolts Nsb

in Figure 22 by varying Nsb from 4 to 32. In terms
of throughput, all the three algorithms can scale very
well with increasing number of subscription bolts. We
observe that when Nsb is small (i.e., 4 or 8), prefix-

based method performs worse than hashing-based and
location-based methods due to the duplicate subscrip-
tions in TWEETS and GN (Figure 22(a) and Fig-
ure 22(b)). However, when Nsb reaches 16 or 32,
the benefit of communication cost reduction has be-
come significant (Figure 22(d) and Figure 22(e)), thus
contributing to the high throughput of prefix-based

method. For YELP dataset, prefix-based method pro-
cesses less messages per second compared to hashing-

based and location-based methods while managed to re-
duce communication by about 50%.

Effect of number of top-k results. We turn to eval-
uate the effect of number of top-k results in Figure 23.

24 X. Wang et al.

location-based prefix-based spatial-first keyword-first

 800

 900

 1000

 1100

 1200

 1300

 1400

1×32 2×16 4×8 8×4 16×2 32×1

T
hr

ou
gh

pu
t (

pe
r

se
c)

l1×l2

(a) TWEETS

 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600

1×32 2×16 4×8 8×4 16×2 32×1

T
hr

ou
gh

pu
t (

pe
r

se
c)

l1×l2

(b) GN

 200

 250

 300

 350

 400

 450

 500

1×32 2×16 4×8 8×4 16×2 32×1

T
hr

ou
gh

pu
t (

pe
r

se
c)

l1×l2

(c) YELP

Fig. 25 Throughput of hybrid methods

location-based prefix-based spatial-first keyword-first

 5

 10

 15

 20

 25

 30

 35

1×32 2×16 4×8 8×4 16×2 32×1A
vg

. C
om

m
un

ic
at

io
n

C
os

t

l1×l2

(a) TWEETS

 5

 10

 15

 20

 25

 30

 35

1×32 2×16 4×8 8×4 16×2 32×1A
vg

. C
om

m
un

ic
at

io
n

C
os

t

l1×l2

(b) GN

 15

 20

 25

 30

 35

1×32 2×16 4×8 8×4 16×2 32×1A
vg

. C
om

m
un

ic
at

io
n

C
os

t

l1×l2

(c) YELP

Fig. 26 Communication cost of hybrid methods

We do not show the communication cost because it is
irrelevant to the number of top-k results. As shown in
Figure 23, the throughputs in all the datasets decrease
when we vary k from 10 to 50. This is because large k
usually yields high processing cost in subscription in-
dex. However, the influence of k is not very significant
as the throughputs decrease slowly and linearly.

Effect of number of subscriptions. In Figure 24, we
vary the number of subscriptions from 5M to 20M . It
is obvious that the throughputs drop in all the datasets
when we increase the number of subscriptions. How-
ever, the decreasing trend indicates that the average
processing time of an incoming message is still linearly
proportional to the number of subscriptions, consider-
ing the factor that the average processing time is in-
versely proportional to the throughput.

Hybrid methods. In this set of experiments, we com-
pare our methods with two possible hybrid methods:
spatial-first method and keyword-first method. Specif-
ically, spatial-first method employs two-level partition
scheme. On the first level, it employs location-based

method while on the second level it employs prefix-

based method. keyword-firstmethod is similar to spatial-

first method except that it employs prefix-based method
first and then location-based method. We compare the
throughput and communication cost of these two hy-
brid methods while changing the number of partitions
on each level. The results of location-based and prefix-

based methods are also shown in dotted line for com-
parison purpose. Regarding throughput in Figure 25
where l1 is the number of partitions on the first level

and l2 is the number of partitions on the second level,
all the datasets exhibit similar trends. Specifically, for
spatial-first method, when l1 increases and l2 decreases,
the benefit of keyword partition becomes less while the
benefit of spatial partition is still not significant, which
leads to decreasing throughput. As we further increase
l1 (e.g., 16 × 2), the spatial partition becomes domi-
nant and thus improves the throughput which finally
reaches the same throughput as location-based method
at 32 × 1. The trends of keyword-first method can be
explained similarly. The communication costs of both
spatial-first and keyword-first methods in Figure 26 are
between those of location-based and prefix-based due to
its hybrid nature. Overall, the hybrid methods do not
exhibit large improvement compared to location-based

and prefix-based methods.

9 Conclusion

The popularity of streaming geo-textual data offers
great opportunity for applications such as information
dissemination and location-based campaigns. In this
paper, we study a novel problem of continuous top-
k spatial-keyword publish/subscribe over sliding win-
dow. To maintain top-k results for a large number of
subscriptions over a fast stream simultaneously and
continuously, we propose a novel indexing structure,
which employs both individual pruning technique and
group pruning technique, to process a new message in-
stantly on its arrival. In addition, to handle the re-
evaluations incurred by expired messages from the slid-

Top-k Spatial-keyword Publish/Subscribe Over Sliding Window 25

ing window, we develop a novel cost-based k-skyband
model with theoretical analysis to judiciously maintain
a partial k-skyband for each subscription. Furthermore,
a distributed stream processing system called DSkype

is developed, which extends Skype to Storm to ex-
ploit the benefit of parallel processing. The experiments
demonstrate that both Skype and its distributed version
DSkype can achieve high throughput performance over
geo-textual stream.

References

1. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X.,
Saltz, J.H.: Hadoop-gis: A high performance spatial data
warehousing system over mapreduce. PVLDB 6(11),
1009–1020 (2013)

2. Aly, A.M., Mahmood, A.R., Hassan, M.S., Aref, W.G.,
Ouzzani, M., Elmeleegy, H., Qadah, T.: AQWA: adaptive
query-workload-aware partitioning of big spatial data.
PVLDB 8(13), 2062–2073 (2015)

3. Avriel, M.: Nonlinear programming: analysis and meth-
ods. Courier Corporation (2003)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom,
J.: Models and issues in data stream systems. In: PODS
(2002)

5. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs
similarity search. In: WWW, pp. 131–140 (2007)

6. Bentley, J.L.: Multidimensional binary search trees used
for associative searching. Commun. ACM 18(9), 509–517
(1975)

7. Böhm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently pro-
cessing continuous k-nn queries on data streams. In:
ICDE, pp. 156–165 (2007)

8. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien,
J.Y.: Efficient query evaluation using a two-level retrieval
process. In: CIKM, pp. 426–434 (2003)

9. Buckley, C., Lewit, A.F.: Optimization of inverted vector
searches. In: SIGIR, pp. 97–110 (1985)

10. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive oper-
ator for similarity joins in data cleaning. In: ICDE, p. 5
(2006)

11. Chen, L., Cong, G., Cao, X.: An efficient query indexing
mechanism for filtering geo-textual data. In: SIGMOD
(2013)

12. Chen, L., Cong, G., Cao, X., Tan, K.: Temporal spatial-
keyword top-k publish/subscribe. In: ICDE (2015)

13. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial
keyword query processing: An experimental evaluation.
PVLDB (2013)

14. Christoforaki, M., He, J., Dimopoulos, C., Markowetz,
A., Suel, T.: Text vs. space: efficient geo-search query
processing. In: CIKM, pp. 423–432 (2011)

15. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB 2(1)
(2009)

16. Dean, J., Ghemawat, S.: Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM 51(1), 107–113
(2008)

17. Ding, S., Suel, T.: Faster top-k document retrieval using
block-max indexes. In: SIGIR, pp. 993–1002 (2011)

18. Eldawy, A., Mokbel, M.F.: Spatialhadoop: A mapreduce
framework for spatial data. In: ICDE, pp. 1352–1363
(2015)

19. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on
spatial databases. In: ICDE, pp. 656–665 (2008)

20. Feller, W.: An introduction to probability theory and its
applications, vol. 2. John Wiley & Sons (2008)

21. Guo, L., Zhang, D., Li, G., Tan, K., Bao, Z.: Location-
aware pub/sub system: When continuous moving queries
meet dynamic event streams. In: SIGMOD, pp. 843–857
(2015)

22. Guo, T., Cao, X., Cong, G.: Efficient algorithms for an-
swering the m-closest keywords query. In: SIGMOD
(2015)

23. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing
spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems. In: SSDBM, p. 16 (2007)

24. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.: A location-
aware publish/subscribe framework for parameterized
spatio-textual subscriptions. In: ICDE, pp. 711–722
(2015)

25. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware
publish/subscribe. In: SIGKDD, pp. 802–810 (2013)

26. Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual
k nearest neighbor search. In: SIGMOD, pp. 349–360
(2011)

27. Mahmood, A.R., Aly, A.M., Qadah, T., Rezig, E.K.,
Daghistani, A., Madkour, A., Abdelhamid, A.S., Has-
san, M.S., Aref, W.G., Basalamah, S.M.: Tornado:
A distributed spatio-textual stream processing system.
PVLDB 8(12), 2020–2031 (2015)

28. Manning, C.D., Raghavan, P., Schütze, H., et al.: Intro-
duction to information retrieval, vol. 1. Cambridge Press
(2008)

29. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous
monitoring of top-k queries over sliding windows. In:
SIGMOD, pp. 635–646 (2006)

30. Nishimura, S., Das, S., Agrawal, D., El Abbadi, A.: Md-
hbase: A scalable multi-dimensional data infrastructure
for location aware services. In: MDM 2011, pp. 7–16
(2011)

31. Pripuzic, K., Zarko, I., Aberer, K.: Time and space-
efficient sliding window top-k query processing. TODS
(2015)

32. Ranjan, R.: Streaming big data processing in datacenter
clouds. IEEE Cloud Computing 1(1), 78–83 (2014)

33. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag,
K.: Efficient processing of top-k spatial keyword queries.
In: SSTD, pp. 205–222 (2011)

34. Sadoghi, M., Jacobsen, H.: Be-tree: an index struc-
ture to efficiently match boolean expressions over high-
dimensional discrete space. In: SIGMOD, pp. 637–648
(2011)

35. Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.:
Top-k publish-subscribe for social annotation of news.
PVLDB (2013)

36. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The
hadoop distributed file system. pp. 1–10 (2010)

37. Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.:
Ap-tree: Efficiently support continuous spatial-keyword
queries over stream. In: ICDE, pp. 1107–1118 (2015)

38. Whang, S., Brower, C., Shanmugasundaram, J., Vassil-
vitskii, S., Vee, E., Yerneni, R., Garcia-Molina, H.: In-
dexing boolean expressions. PVLDB 2(1), 37–48 (2009)

39. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Effi-
cient similarity joins for near-duplicate detection. TODS
(2011)

40. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba:
Efficient in-memory spatial analytics. SIGMOD (2016)

41. Yi, K., Yu, H., Yang, J., Xia, G., Chen, Y.: Efficient main-
tenance of materialized top-k views. In: ICDE (2003)

42. Zhang, D., Chan, C., Tan, K.: An efficient pub-
lish/subscribe index for ecommerce databases. PVLDB
7(8), 613–624 (2014)

26 X. Wang et al.

43. Zhang, D., Chan, C., Tan, K.: Processing spatial keyword
query as a top-k aggregation query. In: SIGIR, pp. 355–
364 (2014)

44. Zhang, Y., Lin, X., Yuan, Y., Kitsuregawa, M., Zhou, X.,
Yu, J.X.: Duplicate-insensitive order statistics computa-
tion over data streams. TKDE 22(4), 493–507 (2010)

45. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.: Hy-
brid index structures for location-based web search. In:
CIKM, pp. 155–162 (2005)

	1 Introduction
	2 Related Work
	3 Preliminary
	4 Framework
	5 Message Dissemination
	6 Top-k Re-evaluation
	7 Distributed Processing
	8 Experiments
	9 Conclusion
	Blank Page

