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Parallel random number generators in
Monte Carlo derivative pricing:

An application-based test

Michael Mascagni and Lin-Yee Hin

Abstract. Parallel pseudorandom number generators (PPRNG) that satisfy classical sta-
tistical tests may still demonstrate intra-stream and inter-stream correlations in real life
applications. In order to investigate the suitability of a PPRNG for use in Monte Carlo
pricing of financial derivatives, an application-based test is proposed to evaluate the bias
and the standard error of the mean (SE) associated with the PPRNG as a gauge of intra-
stream and inter-stream correlations respectively. This test involves estimating the price
of a vanilla European call option via Monte Carlo simulation, where the asset price at
maturity is estimated by propagating the Black–Scholes stochastic differential equation
via the Euler–Maruyama discretization scheme. The mean and SE profiles of the numer-
ical results based on three PPRNG libraries (RNGSTREAM, TRNG and SPRNG) that
implement parallel random numbers via sequence splitting strategies (RNGSTREAM and
TRNG) and parameterization strategy (SPRNG) are compared. In terms of the bias and
SE profiles, the best performing PPRNG constructed using the sequence splitting strat-
egy is comparable to that constructed using parameterization, both use multiple recursive
generators in their kernel.

Keywords. Parallel random number generators, testing random numbers,
financial applications.
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1 Introduction

The objective of Monte Carlo (MC) derivative pricing is to produce an accurate
and precise stochastic estimate of the present value and the sensitivities of a fi-
nancial instrument. The former estimate is intended for pricing and the latter for
hedging and risk management. Inaccurate estimates of these quantities creates risk
and may result in financial losses, at times staggering ones. The increased sophis-
tication of stochastic dynamics used to describe the evolution of asset prices and
the advent of complex path-dependent payoff functions render the availability of
closed-form solutions a rarity, and MC simulation a powerful and virtually un-
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162 M. Mascagni and L.-Y. Hin

avoidable tool. However, the slow convergence rate of MC simulation limits the
speed at which pricing of derivatives can be done. While variance reduction tech-
niques and the use of quasi-Monte Carlo methods have been developed to address
this issue by improving the convergence rate for a given number of simulations
[4, 10], parallelization of MC simulation is a natural direction to achieve higher
speed by sharing the required number of simulations among multiple processors.

In MC simulation, the quality of the pseudorandom number generator (PRNG)
is pivotal to its success. The random variates generated should be independent and
identically distributed (IID), implying an absence of correlation among the random
variates. This requirement translates into an absence of intra-stream correlation for
a single processor MC, and absence of both intra-stream and inter-stream correla-
tion for parallel MC.

For sequential MC, as long as there are no short-range correlations among ran-
dom variates, the PRNG will work reasonably well because the number of random
variates consumed in the stochastic propagation of an asset price path in each sim-
ulation is generally not large enough to uncover the effect of long-range correlation
among the random variates for that path. That said, this may not be true for Brown-
ian Bridge computations. However, the story is different in parallel MC. A large
number of processors can be committed to simulation concurrently and are thus
capable of consuming a much larger number of random variates compared to a
single processor simulation. The fact that there can be correlation between differ-
ent parts of the stream of random variates [5] implies that long-range correlation
may present itself as either inter-stream or intra-stream correlations in parallel MC,
the former compromising the standard error of mean (SE) for the estimate while
the latter causing bias in the estimate for the same period of computing time. The
impact of inter-stream and intra-stream correlations on MC derivative pricing is
considered in greater detail in Section 2.

Two common strategies have been proposed to provide independent streams
of random variates from a PRNG for parallel MC simulation. The parameteri-
zation strategy provides independent streams of random variates by assigning, in
different processors, different values to parameters in the generation algorithm of
the parallel PRNG (PPRNG) (see [15]). The sequence splitting strategies include
block-splitting and leapfrog. In block-splitting, widely separated seeds are cho-
sen deterministically for the processors to divide a sequential stream of random
variates into sufficiently large blocks so that each processor consumes one of the
substreams and the blocks of random variates do not overlap. However, if the user
happen to consume more random variates than anticipated, and the blocks do over-
lap, this may lead to correlation among segments of random variates in different
streams (inter-stream correlation). In leapfrog, if there are n processors, then each
processor is assigned a stream of random variates that are n positions apart in the
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Testing parallel random numbers for derivatives 163

original sequence. Depending on the number of processors involved and the num-
ber of random variates making up the segments of correlated random variates, the
segments of correlated random variates far apart in the original stream may now
find themselves close to each other as some of the interposing random variates
have been distributed to other streams, leading to short-range intra-stream correla-
tion. In the worst case scenario, most, if not all, of the parallel streams may exhibit
short-range intra-stream correlation if the segments of random variates exhibiting
long range correlation consist of sizable blocks of random variates [16]. In addi-
tion, if correlated blocks of random variates are distributed to different streams,
this can result in intra-stream as well (Figure 1).

Short of conclusive theoretical and empirical evidence favoring one strategy
over another, application-based tests are necessary to uncover strengths and short-
falls of each PRNGs when parallelized using these different strategies. In the con-
text of parallel MC for derivative pricing, accurate point estimates and small stan-
dard error (SE) of the estimates are of practical importance. In MC derivative pric-
ing, both accuracy and precision are of paramount importance. The former can
be assessed by bias while the latter by variance. The choice from among a set of
competing PRNGs can be made based on their bias-variance trade-off profile.

Using a parallel MC simulation framework that is designed to estimate the
present value of a derivative instrument using different PRNGs, the SEs of the
present value estimates of a derivative instrument can be compared based on simu-
lation results estimated with respect to a chosen set of model parameters. When the
derivative instrument used in the test is analytically tractable, the bias associated
with different PRNGs can be evaluated based on the present value of the derivative
instrument evaluated analytically. Such tests are described in detail in Section 3

The outline of the paper is as follows. In Section 2, we discuss the impact of
inter-stream and intra-stream correlations on the bias and variance of the estimated
present value for a derivative product priced using the parallel MC framework. In
Section 3, an application-based test is proposed to investigate the bias and standard
error of the mean (SE) associated with the PRNG that is being tested by comparing
the result of estimation against the analytic solution. In Section 4, we subject three
PRNG libraries to the application-based test proposed in Section 3 and report the
test results. The three PRNG libraries being tested are the

(i) Scalable Parallel Random Number Generators (SPRNG) library that imple-
ment the parameterization strategy [17],

(ii) TINA’s Random Number Generator library (TRNG) that implements both
block-splitting and leapfrog sequence splitting strategy [18],

(iii) RNGSTREAM library that implements block-splitting strategy [14].
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164 M. Mascagni and L.-Y. Hin

There have been no publicly available reports on a comparison of their perfor-
mance in terms of bias and SE in derivative pricing under the parallel MC frame-
work as reported in this paper.

2 Impact of correlation among random variate in derivative pricing

The use of MC is extensive in a large number of application areas in mathematics,
physics, chemistry, biology, and the various engineering disciplines. This is due to
its intrinsic nature and often the similarity of the MC approach to an underlying
mechanism. However, one of the areas where MC has grown tremendously in its
use and its effectiveness is in finance. In the past, methods of testing the quality of
PRNGs that were based on applications came from the sciences and engineering
([6, 8, 13]); however, it seems appropriate to do the same with calculations that
are somehow characteristic of important financial computations. Thus, we have
chosen to fashion an application-based test for PRNGs from the calculation of
the price of a financial derivative. This is a very basic financial computation, yet
if it is done from the point-of-view of solving a stochastic differential equation,
it is a challenging computation and provides a unique application-based test of
randomness.

Bias and SE are metrics that can be used to measure the accuracy and pre-
cision of the point estimates obtained via MC simulation. They are related to the
mean squared error (MSE) by the expression MSE D bias2 C SE2. In Sections 2.1
and 2.2, we demonstrate that the presence of inter-stream correlation increases the
variance while the presence of intra-stream correlation increases the bias.

2.1 Inter-stream correlation

Let there be n processors indexed by i D 1; : : : ; n each carrying outmi MC simu-
lations, so that the total number of MC simulations carried out across all n proces-
sors is N D

Pn
iD1mi . Let �i;j be the MC estimate for sample j on processor i

where j D 1; : : : ; mi . In the context of derivative pricing, �i;j typically denotes
the present value of a financial instrument or one of its sensitivities evaluated using
pathwise differentiation [7]. In addition, let xi D

Pmi

jD1 �i;j and Ox D 1
n

Pn
iD1 xi

where Ox is the global point estimate across all n processors. In general,

VarŒ Ox� D Var

"
1

n

nX
iD1

xi

#
D

1

n2

´
nX
iD1

VarŒxi �C
X
i¤j

Cov.xi ; xj /

µ
(2.1)

where VarŒxi � is the variance of xi and Cov.xi ; xj / is the covariance between xi
and xj when the xi are identically distributed. When there is no inter-stream cor-
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relation,
P
i¤j Cov.xi ; xj / D 0 and we have SEŒ Ox� D SEŒxi �=

p
n, where SEŒ Ox�

is the standard error of the mean and SEŒxi � is the standard error of the sample
because the xi are IID. On the contrary, when inter-stream correlation is non-zero,
i.e., �j;k ¤ 0, then

P
i¤j Cov.xi ; xj / ¤ 0, leading to VarŒ Ox� ¤ 1

n
VarŒxi �. Posi-

tive inter-stream correlation leads to

VarŒ Ox� >
1

n
VarŒxi �;

resulting in a larger standard error compared to the case of no inter-stream corre-
lation. The larger the number of processors, the greater the deviation of VarŒxi �
away from VarŒxi �=n because the number of covariance terms increases at the rate
of O.

�
n
2

�
/ D O.n2/. Therefore, a larger number of processors tend to reveal inter-

stream correlation more readily.

2.2 Intra-stream correlation

Let C.t; X.t// be the price of a derivative instrument at time t , the value of which
depends on the time, t , and the price of an underlying asset, X.t/, observed at
time t . Let the price evolution of the underlying asset follow a stochastic differ-
ential equation (SDE) defined as dX.t/ D a.X.t//dt C b.X.t//dW . The price
evolution of this derivative instrument from the current time t1 to a future time tK
where t1 < tK can be estimated using Itô’s lemma [11]

C.tK ; X.tK// D C.t1; X.t1//C

²
@C.t; X.t//

@t
dt

³
tDt1;X.t/DX.t1/

C

²
@C.t; X.t//

@X.t/
dX.t/

³
tDt1;X.t/DX.t1/

C

²
1

2

@2C.t; X.t//

@X.t/2
¹b.X.t//º2dW.�/dW.�/

³
tDt1;X.t/DX.t1/

where � D tK � t1 and dW.�/ is the Wiener process spanning the time interval
Œt1; tK �. By definition, EŒdW.�/� D 0 and EŒdW.�/dW.�/� D � so that the
quadratic term in Itô’s lemma is approximated by

EŒdW.�/dW.�/� �

²
1

2

@2C.t/

@X2
¹b.X.t//º2

³
tDt1;X.t/DX.t1/

D �

²
1

2

@2C.t/

@X2
¹b.X.t//º2

³
tDt1;X.t/DX.t1/

:

(2.2)

Let dW.t2 � t1/; dW.t2 � t1/; : : : ; dW.tK � tK�1/ be K � 1 successive Wiener
processes spanning Œt1; tK � representing the decomposition of dW.�/. In solving
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the partial differential equation for C.tK/ by MC simulation using stochastic nu-
meric strategies such as the Euler or the Milstein scheme [12], the discretization
expression dW.tk � tk�1/ �

p
tk � tk�1Z.k/, k D 2; : : : ; K, is used to approx-

imate the Wiener process spanning the interval Œtk; tk�1�. Since

dW.�/ D

KX
kD2

dW.tk � tk�1/;

we have dW.�/ �
PK
kD2

p
tk � tk�1Z.k/ where Z.2/; : : : ; Z.K/ is a stream of

K � 1 standard Gaussian random variates with mean 0 and variance 1 so that

EŒdW.�/dW.�/� � E

" 
KX
kD2

p
tk � tk�1Z.k/

! 
KX
sD2

p
ts � ts�1Z.s/

!#

D � C

´
KX

k;sD2
k¤s

p
.tk � tk�1/.ts � ts�1/�Z.k/;Z.s/

µ
; (2.3)

where
PK
kD2.tk � tk�1/ D � and �Z.k/;Z.s/ is the correlation between Z.k/ and

Z.s/ since Cov.Z.k/;Z.s// D �Z.k/;Z.s/ because Z.k/ and Z.s/ are standard
Gaussian random variates. If the stream of standard Gaussian random variates is
IID, Cov.Z.k/;Z.s// D 0, k; s D 2; : : : ; K, k ¤ s, the definition of Wiener pro-
cess is observed in the discretization scheme and the estimation of the quadratic
term in the Itô lemma is consistent with (2.2). On the contrary, if intra-stream
correlation is present among the random variates, Cov.Z.k/;Z.s// ¤ 0, the defi-
nition of Wiener process is violated, leading to biased estimation of the quadratic
term in the Itô lemma demonstrated by substituting (2.3) into the left hand side of
(2.2) as

E ŒdW.�/dW.�/� �

²
1

2

@2C.t/

@X2
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tDt1;X.t/DX.t1/
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¹b.X.t//º2�
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p
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µ
: (2.4)
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Here the second term on the right hand side is the magnitude of bias due to intra-
stream correlation. The magnitude of the bias term depends on the overall intra-
stream correlation and is stream specific.

3 Test description

In the proposed test, a vanilla European call option is used as the test financial in-
strument. This is an option that is exercised only at maturity, and the price depends
solely on the price of the underlying asset at maturity, X.tK/. Its present value is
readily calculated using a closed-form formula, facilitating assessment of the op-
tion price estimated via parallel MC simulation powered by different PPRNGs.
The present value at time t1 of a European vanilla call option maturing at time tK
with strike price Y and underlying asset price at maturity X.tK/ is

V0 D e
�r�E

�
.X.tK/ � Y /

C
�
; (3.1)

where r is the risk-free interest rate, suppressing the notational dependence of
V0 on t and X.t/. If we apply Itô’s lemma to (3.1), and since the option’s price
depends on the underlying asset price at maturity only, the potential bias incurred
by intra-stream correlation is reflected in the bias term defined in (2.4) with respect
to V0 is

Bias.V0/ D
²
1

2

@2V0

@X2
¹b.X.t//º2

³
tDt1;X.t/DX.t1/

�

´
KX

k;sD2
k¤s

p
.tk � tk�1/.ts � ts�1/�.Z.k/;Z.s//

µ
: (3.2)

Positive intra-stream correlation leads to upward bias while negative intra-stream
correlation leads to downward bias.

Under the risk-neutral assumption, the Black–Scholes model [3] is

dS.t/=S.t/ D rdt C �dW.t/ (3.3)

where S.t/ is the asset price at time t , r the risk-free interest rate, � the implied
volatility, and dW.t/ the stochastic diffusion component following a Wiener pro-
cess. Within the Black–Scholes framework, (3.1) has a closed-form solution

V0 D e
�r�EŒ.S.tK/ � Y /

C� D S0N .dC/ � e
�r�YN .d�/: (3.4)

Here V0 is the present value of the vanilla call option, t1 is the present time, tK is
the time at maturity, � D tK � t1 is the time interval between now and the option
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maturity date, S.tK/ is the asset price at maturity, S0 D S.t1/ is the spot asset
price, Y is the strike price,

N .x/ D
1
p
2�

Z x

�1

e�y
2=2dy

is the cumulative distribution function of the standard normal distribution,

dC D

²
log.S0=Y /C

�
r �

1

2
�2
�
�

³
=.�
p
�/; and dC D d� C �

p
�;

assuming the dividend rate is zero, without loss of generality.
Monte Carlo estimation of V0 is performed under three different market scenar-

ios:

(i) at the money (ATM, S0 D Y ): S0 D Y D 1,

(ii) out of the money (OTM, S0 < Y ): S0 D 1, Y D 1:05,

(iii) in the money (ITM, S0 > Y ): S0 D 1, Y D 0:95,

where � D 0:19, T D 1, r D 0:01. The SDE for the asset path is numerically in-
tegrated via the log-Euler discretization scheme [9]

logS.tk1
/ D logS.tk/C .r � �

2=2/hC �
p
hZ.tkC1/

where S.tk/ is the asset price at time tk , h is the equally spaced discretization time-
step, and Z.tkC1/ is the standard Gaussian random variable spanning Œtk; tkC1�.
The use of the log-Euler scheme is to ensure positivity of the simulated asset price.
In this test, a discretization time-step of size h D 10�4 is used and 106 simulation
runs were performed for each PRNG setting to estimate V0 and the MSE of V0. In
this setting, simulating one stochastic path for the underlying asset consumes 104

random variates and the entire simulation consumes 1010 random variates. The
choice of testing whether the PRNG passes the proposed application-based test
at 1010 random number is inspired by the observation that block-splitting of the
48-bit Cray linear congruential generator fails the blocking test with around 1010

random variates without inter-stream sequence overlap [16], indicating that 1010

may be a reasonable size of random variates to uncover defect due to long-range
correlations.

Let Bias.V0/ D OV0;PRNG � V0;T where Bias.V0/ is the estimated bias of V0 for
the MC simulation framework powered by a PRNG, OV0;PRNG is the value of V0
estimated using MC simulation powered by the PRNG considered, and V0;T is the
value of V0 evaluated using (3.4). Comparison against the closed form is intended
to measure the accuracy of each PRNG being tested by quantifying the magni-
tude of the bias that can potentially be incurred by the presence of intra-stream
correlation among the random variates.
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Let R-SE. OV0/ D SE. OV0;PRNG/=SE. OV0;PRNG,SERIAL/ be the relative SE of the V0
estimate, where SE. OV0;PRNG/ is the SE of V0 estimate obtained using the paral-
lel MC framework, SE. OV0;PRNG,SERIAL/ using the serial MC framework, and both
parallel and serial MC simulations are powered by the same PRNG. Since the
parallel and serial MC frameworks share identical discretization time-steps, they
share similar discretization error. The ratio defined by R-SE. OV0/ is intended to
measure the precision of each PRNG being tested by quantifying the relative mag-
nitude of the MSE that can potentially be incurred by the presence of inter-stream
correlation among the random variates.

4 PRNGs tested

The SPRNG, TRNG and RNGSTREAM libraries are subjected to the application-
based test detailed in Section 3.

The PRNGs from version 2.0 of the SPRNG library being tested are tabulated
in Table 1. For this library, parallelization of PRNG streams is implemented by
appropriate parametrization of the coefficients in the generators and the magnitude
of moduli (prime or power of 2) that ensures long period and passing of statistical
tests [16].

The PRNGs from version 4.10 the TRNG library being tested are tabulated
in Table 2. Each of the PRNGs in TRNG listed are tested under both the block-
splitting and leapfrog methods in the parallel MC framework.

The RNGSTREAM PRNG deploys the block-splitting strategy to provide paral-
lel streams of random variates based on a direct combination of two shift-registered
generators both of order 2 with prime moduli. This generator is defined by

zn D
�
x1;n � x2;n

�
.mod 4294967087/;

where

x1;n D 1403580 � x1;n�2 � 810728 � x1;n�3 .mod 232 � 209/;

x2;n D 527612 � x2;n�2 � 810728 � x2;n�3 .mod 232 � 22853/:

The period is approximately 3:1 � 1057.

5 Test results

A PRNG suitable for parallelization should be free of intra-stream correlation in
both sequential and parallel implementations, the latter include the block-splitting
implementation, leapfrog implementation, and parameterization implementation.
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The PRNG of choice should demonstrate comparable magnitudes of price estima-
tion bias for all implementations.

For a PRNG to be considered safe for use under a particular implementation in
pricing derivative instruments, it should demonstrate the same bias profile across
all moneyness scenarios consistently.1 For example, a PRNG demonstrating the
smallest bias for the block-splitting implementation under all moneyness scenar-
ios can be considered safe for use in block-splitting. On the contrary, a PRNG with
an inconsistent bias profile cannot be considered safe for use in a particular imple-
mentation because it is unclear the precise point on the moneyness axis at which
the bias profile changes from one to another. It would be impractical to evaluate
bias profiles for all implementations on a fine grid along the moneyness axis due
to the computational burden. In addition, the point along the moneyness axis that
marks where change in the bias profile takes place may differ for different deriva-
tive instruments, different discretization sizes and schemes, and different scenario
parameters including moneyness. Therefore, it would be safer to use a PRNG that
has a consistent bias profile across all moneyness scenarios.

In addition, a PRNG suitable for parallelization should be free of inter-stream
correlation in a parallel implementation, demonstrating comparable magnitudes of
price estimate SE for sequential and parallel implementations. This is reflected by
R-SE( OV0), the ratio of the standard error of the mean for the parallel implemen-
tation to the standard error of the mean of the sequential implementation, that is
near unity.

The sequential and parallel MC simulations are carried out on a Linux Ubuntu
platform with an Intel Core 2 processor that supports two threads. Thus, one can
have two streams of random variates generated from each PRNG tested in each
parallel MC simulation. This mimics the situation when a MC simulation pric-
ing algorithm is executed on an average desktop or notebook computer currently
available, since most of these machine are equipped with multicore processors.
Therefore, the test results reported in this section are specific to a dual-core set-
ting. Before these results can be generalized to a larger number of processors, the
tests detailed in Section 3 should be performed for the PRNGs within the parallel
framework in question because, for sequence splitting strategies, the partition of
segments of random variates that exhibit long range correlation to different streams
and the resultant intra-stream proximity varies as the number of streams differ. In
addition, a larger number of parallelized streams that exhibit inter-stream corre-
lations tend to cause an increase in SE to a greater extent because there are more
covariance terms in the variance expression, as per (2.1).

1 The moneyness of a derivative refers to the degree to which the derivative will pay off as “in
the money” (ITM), “at the money” (ATM), and “out of the money” (OTM).
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5.1 Tests on TRNG generators

The test results for PRNGs in the TRNG library under ITM, ATM and OTM mon-
eyness scenarios are tabulated in Table 3.

The PRNGs lcg64, mrg4, mrg5, mrg3s and yarn5s demonstrate a consistent
bias profile across all moneyness scenarios with the smallest bias in block-splitting
implementation compared to leapfrog implementation and sequential implementa-
tion. Therefore, it appears that these PRNGs can be safely used in block-splitting
parallel implementation.

However, the PRNGs lcg64_shift, mrg2, mrg3, yarn4 demonstrate their low-
est bias in sequential implementation under the ATM and OTM scenarios. How-
ever, under the ITM scenario, these PRNGs demonstrate their lowest bias in ei-
ther block-splitting implementation or leapfrog implementation. The other PRNGs
considered, mrg5s, yarn2, yarn3, yarn5 and yarn3s, demonstrate inconsistent
bias profiles as well. The extreme case is mrg5s where different implementations
demonstrate the smallest bias profile under different moneyness scenarios. There-
fore, these PRNGs cannot be safely recommended for use in parallel implementa-
tion because of inconsistency in their bias profile.

5.2 Test on RNGSTREAM generator

The test results for PRNGs in the RNGSTREAM library under the ITM, ATM and
OTM scenarios are tabulated in Table 4. The bias profile for the RNGSTREAM

PRNG is larger in the block splitting parallel MC framework compared to that
in the sequential MC framework. This suggests that some degree of intra-stream
correlation may exist in the parallel implementation that leads to estimation bias.
Nonetheless, RNGSTREAM will serve as a good sequential PRNG as the bias pro-
file is the smallest for the sequential implementation for all three scenarios tested.

5.3 Tests on SPRNG generators

The test results for PRNGs in the SPRNG library under the ITM, ATM and OTM
scenarios are tabulated in Table 5. For sprng::lcg, the bias profile for sequential
and parallel implementations are comparable. The bias profiles for sprng::cmrg
and sprng::lfg is higher in parallel implementation than that in sequential imple-
mentation. For sprng::pmlcg, the bias profile is consistently smaller for sequen-
tial implementation under the ITM, ATM and OTM scenarios. The bias profiles for
sprng::lcg64 and sprng::cmrg are consistently smaller for parallel implemen-
tation compared to sequential implementation under all three scenarios, making
them suitable for parallel implementation of Monte Carlo pricing of financial in-
struments that are similar in nature to the proposed application based test.
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5.4 Bias and SE profile comparison among TRNG, RNGSTREAM
and SPRNG

Among the PRNGs tested, sprng::cmrg and trng::mrgn where n D 4 demon-
strate the smallest bias profile in parallel implementation, where the bias profile
associated with sprng::cmrg is smaller than that of trng::mrgn where n D 4
in the ITM and OTM scenarios, while their bias profiles are comparable in the
ATM scenario. In addition, sprng::pmlcg has the smallest bias profile across all
moneyness scenarios in sequential implementation among all the PRNGs tested,
making it a PRNG of choice among the tested PRNGs for sequential implemen-
tation. The SE for sequential and parallel MC implementations for all PRNGs in
TRNG RNGSTREAM and SPRNG are comparable. One reason for this may be
that only two processors are used in this test. Whether the same standard error
of mean profiles hold for a larger number of parallel threads will require a larger
number of parallel threads.

6 Discussion

The PRNG kernels used in sequence splitting strategies are not entirely the same
as that used in the parametrization strategy. In order to achieve rapid calculations
to facilitate jumping ahead in sequence in sequence splitting, multiple recursion
generators and additive lagged-Fibonacci generators are commonly used due to
efficiency consideration, such as their application in the TRNG and RNGSTREAM

PRNGs.
Therefore, the comparison between PRNGs implementing sequence splitting

strategies and those implementing the parameterization strategy is not merely a
comparison between parallelization strategies, but also a comparison of the quality
of the generators used to implement these strategies.

It is difficult to draw a general conclusion on whether the PRNGs produced
using the sequence splitting strategy or the parameterization strategy are in gen-
eral associated with a more favorable bias and SE profiles. However, the PRNG
with the smallest bias profile among PRNGs produced by sequence splitting paral-
lelization has a bias profile comparable to the PRNG with the smallest bias profile
among PRNGs produced by parameterization parallelization.

It is interesting to note that both trng::mrgn where n D 4 and sprng::cmrg
involve the use of multiple recursive generator in their kernel. Whether combined
PRNGs that involve the use of multiple recursive generators in composition or
direct combination will produce new PRNGs with bias and SE profiles that are at
least comparable to those of trng::mrgn where n D 4 and sprng::cmrg while
satisfying all the necessary statistical tests is an open research question.
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PRNG name Definition Approximate period

sprng::lcg xn D axn�1 C p .mod 248/ 248

sprng::lcg64 xn D axn�1 C p .mod 264/ 264

sprng::pmlcg xn D axn�1 .mod 261 � 1/ 264 � 2

sprng::cmrg zn D xn C yn � 2
32 .mod 264/ 2219

sprng::mlfg xn D xn�j � xn�k .mod 264/ 261.2k � 1/

sprng::lfg zn D Qxn ˚ Qxn 231.2k � 1/

Table 1. Random number generators from SPRNG. Here, p is a prime number, a is
a multiplier, xn is the sequence generated by the 64-bit LCG, yn is the sequence gen-
erated by yn D 107374182yn�1C104480yn�5 .mod 2147483647/, and˚ denotes
exclusive-or operator, Qxn and Qyn are sequences obtained from lagged-Fibonacci gen-
erator (LFG) sequences X and Y defined by Xn D Xn�j CXn�k .mod 232/, and
Yn D Yn�j C Yn�k .mod 232/, where xn is obtained by setting the least significant
bit of Xn to zero and yn is obtained by right-shifting Yn by one bit. By default,
k D 1279.

PRNG name Definition Approximate
period

trng::lcg64 xn D axn�1 C p .mod 264/ 264

trng::lcg64_shift xn D axn�1 C p .mod 264/ 264

trng::mrgn xn D
Pj
iD1 aixn�i .mod m/ 2155 for j D 5

trng::mrgns xn D
Pj
iD1 aixn�i .mod Q/m 2155 for j D 5

trng::yarn rn D

´
g Qxn .mod m/ if qi > 0,
0 if qi D 0,

2155 for j D 5

trng::yarns rn D

´
g Qxn .mod m/ if qi > 0,
0 if qi D 0,

2155 for j D 5

Table 2. Random number generators from TRNG. Here, x � n is bit-shift of x
to the right of size n and x � n is bit-shift of x to the left of size n, tn;0 D xn,
tn;1 D tn;0˚ .tn;0� 17/, tn;2 D tn;1˚ .tn;1� 31/, tn;3 D tn;2˚ .tn;2� 8/, m is
the Mersenne prime, ai denotes a multiplier, Qm is a Sophie-Germain prime, Qxn is
defined as Qxn D

Pj
iD1 aixn�i .mod m/, and for trng::yarn and trng::yarns ,

n 2 ¹1; 2; 3; 4; 5º.
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PRNG name Implementation Bias.V0/(�10�4) R-SE. OV0/
ITM ATM OTM ITM ATM OTM

lcg64 leapfrog �0:324 �0:647 �0:598 0.9987 0.9991 0.9991
lcg64 block-split �0:131 �0:236 �0:188 1.0051 1.0015 1.0015
lcg64 sequential �0:236 �0:375 �0:316 1.0000 1.0000 1.0000

lcg64_shift leapfrog �0:044 0:140 0:178 0.9967 0.9995 0.9994
lcg64_shift block-split �0:189 �0:350 �0:265 0.9961 0.9981 0.9981
lcg64_shift sequential �0:105 �0:132 �0:082 1.0000 1.0000 1.0000

mrg2 leapfrog �0:191 �0:379 �0:321 0.9979 0.9995 0.9995
mrg2 block-split 0:093 0:379 0:422 1.0037 1.0025 1.0025
mrg2 sequential �0:098 �0:113 �0:064 1.0000 1.0000 1.0000

mrg3 leapfrog �0:140 �0:205 �0:161 1.0015 0.9996 0.9996
mrg3 block-split 0:054 0:304 0:344 1.0045 1.0018 1.0019
mrg3 sequential �0:071 0:022 0:062 1.0000 1.0000 1.0000

mrg4 leapfrog �0:083 0:065 0:124 0.9974 1.0002 1.0001
mrg4 block-split �0:083 �0:020 0:021 0.9991 1.0004 1.0004
mrg4 sequential �0:108 �0:090 �0:043 1.0000 1.0000 1.0000

mrg5 leapfrog �0:198 �0:275 �0:218 0.9988 0.9985 0.9985
mrg5 block-split �0:131 �0:131 �0:082 0.9996 0.9997 0.9997
mrg5 sequential �0:155 �0:251 �0:196 1.0000 1.0000 1.0000

mrg3s leapfrog �0:281 �0:474 �0:410 0.9998 0.9988 0.9988
mrg3s block-split �0:182 �0:260 �0:205 1.0012 1.0006 1.0006
mrg3s sequential �0:251 �0:414 �0:349 1.0000 1.0000 1.0000

mrg5s leapfrog �0:019 0:160 0:211 1.0028 1.0004 1.0004
mrg5s block-split �0:094 �0:086 �0:048 0.9991 0.9994 0.9994
mrg5s sequential �0:070 0:044 0:097 1.0000 1.0000 1.0000

to be continued
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PRNG name Implementation Bias.V0/(�10�4) R-SE. OV0/
ITM ATM OTM ITM ATM OTM

yarn2 leapfrog �0:125 �0:039 0:009 0.9963 0.9996 0.9996
yarn2 block-split �0:061 �0:020 0:018 1.0006 1.0014 1.0015
yarn2 sequential �0:208 �0:477 �0:426 1.0000 1.0000 1.0000

yarn3 leapfrog �0:117 �0:196 �0:125 1.0020 1.0002 1.0002
yarn3 block-split 0:093 0:472 0:532 1.0033 1.0020 1.0020
yarn3 sequential 0:020 0:281 0:321 1.0000 1.0000 1.0000

yarn4 leapfrog 0:015 0:311 0:345 1.0021 1.0000 1.0000
yarn4 block-split �0:168 �0:220 �0:175 0.9979 0.9986 0.9986
yarn4 sequential �0:093 �0:042 0:005 1.0000 1.0000 1.0000

yarn5 leapfrog �0:163 �0:320 �0:272 0.9998 0.9997 0.9998
yarn5 block-split �0:170 �0:167 �0:114 0.9966 0.9988 0.9988
yarn5 sequential �0:063 0:140 0:204 1.0000 1.0000 1.0000

yarn3s leapfrog 0:048 0:250 0:280 1.0024 1.0021 1.0022
yarn3s block-split �0:070 �0:008 0:039 1.0007 1.0002 1.0001
yarn3s sequential �0:051 0:060 0:102 1.0000 1.0000 1.0000

yarn5s leapfrog �0:194 �0:457 �0:415 1.0054 1.0019 1.0019
yarn5s block-split �0:148 �0:292 �0:243 1.0064 1.0020 1.0021
yarn5s sequential �0:266 �0:459 �0:411 1.0000 1.0000 1.0000

Table 3. TRNG results: Bias.V0/: bias of OV0 with respect to V0, R-SE. OV0/: ratio be-
tween SE. OV0/ of parallel schemes and that of sequential MC simulations, leapfrog:
results estimated using parallel MC with leapfrog PRNG, block-split: results esti-
mated using parallel MC with block splitting PRNG, sequential: results estimated
using sequential MC, ITM: into the money, ATM: at the money, OTM: out of the
money.
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Implementation Bias.V0/(�10�4) R-SE. OV0/
ITM ATM OTM ITM ATM OTM

block-split 0.245 0.297 0.056 1.002543 1.002555 1.006525
sequential �0:149 �0:110 �0:136 1.000000 1.000000 1.000000

Table 4. RNGSTREAM results: Bias.V0/: bias of OV0 with respect to V0, R-SE. OV0/:
ratio between SE. OV0/ of parallel schemes and that of sequential MC simulations,
block-split: results estimated using parallel MC with block splitting PRNG, sequen-
tial: results estimated using sequential MC, ITM: into the money, ATM: at the
money, OTM: out of the money.

PRNG name Implementation Bias.V0/(�10�4) R-SE. OV0/

ITM ATM OTM ITM ATM OTM

lfg parameterization �0.1650 �0.4310 �0.3910 1.0006 0.9993 0.9994
lfg sequential �0.1230 �0.2110 �0.1600 1.0000 1.0000 1.0000
lcg parameterization �0.1980 �0.4140 �0.3610 0.9994 0.9997 0.9997
lcg sequential �0.2150 �0.4490 �0.3830 1.0000 1.0000 1.0000
lcg64 parameterization �0.0110 0.1080 0.1480 1.0002 1.0010 1.0010
lcg64 sequential �0.1530 �0.3340 �0.2770 1.0000 1.0000 1.0000
cmrg parameterization �0.0440 �0.0330 0.0100 1.0003 0.9991 0.9991
cmrg sequential 0.0650 0.4100 0.4560 1.0000 1.0000 1.0000
mlfg parameterization �0.0370 0.1640 0.1990 0.9997 0.9996 0.9996
mlfg sequential 0.0110 0.3260 0.3620 1.0000 1.0000 1.0000
pmlcg parameterization �0.0810 �0.1190 �0.0850 0.9972 0.9991 0.9991
pmlcg sequential �0.0270 �0.0020 0.0310 1.0000 1.0000 1.0000

Table 5. SPRNG results: Bias.V0/: bias of OV0 with respect to V0, R-SE. OV0/: ratio
between SE. OV0/ of parallel schemes and that of sequential MC simulations. param-
eterization: results estimated using parallel MC, sequential: results estimated using
sequential MC, ITM: into the money, ATM: at the money, OTM: out of the money.
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Main stream

Leapfrog sub-stream 1

Leapfrog sub-stream 2

Leapfrog sub-stream 3

Block-splitting sub-stream 1

Block-splitting sub-stream 2

Block-splitting sub-stream 3

Block-splitting sub-stream 4

Block-splitting sub-stream 5

Figure 1. Parallelization by leapfrogging or block splitting from a stream of random
numbers.
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